diff --git a/Chapter5/DeterminantsViaRowReduction.md b/Chapter5/DeterminantsViaRowReduction.md
index db3b26ae603da65eca49290443d6d2b2b0a9561e..a6629ad587d61d94a66558e8b7361d862fff3416 100644
--- a/Chapter5/DeterminantsViaRowReduction.md
+++ b/Chapter5/DeterminantsViaRowReduction.md
@@ -557,7 +557,14 @@ $$
 \det{(A+B)} = \det{A}+\det{B}.
 $$
 
-This statement is false. A trivial counterexample:  $A = I$, $B = -I$.
+This statement is false. A trivial counterexample is given by   $A = B = I_n$, for $n \geq 2$.  Namely, for these matrices we see that
+
+<BR>
+
+$$
+  \det{A} + \det{B} = 1 + 1 = 2 \neq \det{(A+B)} = \det{(2I)} = 2^n.
+$$
+
 </li>
 <li>
 
diff --git a/Chapter7/LeastSquares.md b/Chapter7/LeastSquares.md
index 915c97a0e065b662d23641ad0ba1c8bf054828e7..d59d8d9d5c143656207778050b1cbaeb30749e62 100644
--- a/Chapter7/LeastSquares.md
+++ b/Chapter7/LeastSquares.md
@@ -1117,10 +1117,9 @@ give  a unique least squares solution, and it is $\hat{a} = 1.6$, $\hat{b} = 0.3
 :::{figure} Images/Fig-LeastSquares-LSline.svg
 :name: Fig:LeastSquares:LSline
 
-Least square line
-:::
-
+Least squares line
 
+:::
 
 
 For the line  $y = \hat{a}  + \hat{b}x$  the sum of the squares of the residues becomes