From c17cf12fc3bb923e6f388acb2fa3334e6374e386 Mon Sep 17 00:00:00 2001 From: douden <49307154+douden@users.noreply.github.com> Date: Mon, 4 Nov 2024 08:27:01 +0100 Subject: [PATCH] Publish pre-Q2 2024-2025 --- .gitlab-ci.yml | 3 +- .gitlab-ci.yml.bak | 27 + .gitmodules | 2 +- Appendices/ComplexNumbers.md | 121 +- Appendices/InverseMatrixTheorem.md | 5 +- Appendices/SVDProof.md | 100 - Chapter1/Cross_Product.md | 34 +- Chapter1/Images/Fig-InnerProduct-SameProj.svg | 339 ++- Chapter1/Inner_Product.md | 136 +- Chapter1/Lines_and_Planes.md | 42 +- Chapter1/Vectors.md | 34 +- Chapter2/Images/Fig-LinInd-Examplein2D.svg | 23 +- Chapter2/Images/Fig-LinInd-Examplein3D.svg | 76 +- Chapter2/LinearCombinations.md | 32 +- Chapter2/LinearIndependence.md | 94 +- Chapter2/LinearSystems.md | 55 +- Chapter2/MatrixVectorProduct.md | 40 +- Chapter2/SolutionSets.md | 35 +- Chapter3/GeometryofLinearTransformations.md | 92 +- Chapter3/Injectivity_and_surjectivity.md | 100 +- Chapter3/LUdecomp.md | 1909 +++++++++-------- Chapter3/Linear_Transformations.md | 62 +- Chapter3/MatrixInverse.md | 90 +- Chapter3/MatrixOperations.md | 87 +- Chapter4/BasisAndDimension.md | 82 +- Chapter4/ChangeOfBasis.md | 58 +- Chapter4/Images/Fig-TheGame.svg | 16 + Chapter4/Subspaces_of_Rn.md | 51 +- Chapter5/DetGeometric.md | 527 ----- Chapter5/DeterminantsExtras.md | 88 +- Chapter5/DeterminantsGeometric.md | 46 +- Chapter5/DeterminantsViaCofactors.md | 29 +- Chapter5/DeterminantsViaRowReduction.md | 116 +- Chapter6/CharPolynomial.md | 27 +- Chapter6/ComplexEigenvalues.md | 29 +- Chapter6/Diagonalizability.md | 41 +- Chapter6/EigenvaluesEigenvectors.md | 36 +- Chapter7/GramSchmidt.md | 36 +- Chapter7/LeastSquares.md | 79 +- Chapter7/OrthoBase.md | 26 +- Chapter7/OrthoComp.md | 55 +- Chapter7/Orthogonality.md | 332 --- Chapter8/Images/Fig-SVD-Decomposition.svg | 376 +++- Chapter8/QuadraticForms.md | 41 +- Chapter8/SingularValueDecomp.md | 36 +- Chapter8/SymmetricMatrices.md | 47 +- Chapter9/DynSystContinuous.md | 27 +- Chapter9/DynSystDiscrete.md | 22 +- .../Fig-DynSystContinuous-Trajectories.svg | 445 ++++ Chapter9/MarkovChains.md | 11 +- Chapter9/PowerMethod.md | 11 +- README.md | 2 +- README.md.bak | 51 +- _ext/applet.py | 12 +- _static/extra_css_config.css | 263 +++ _toc.yml | 1 - add_darklight_grasple.py | 46 + install.sh | 12 +- sphinx-grasple | 2 +- 59 files changed, 3933 insertions(+), 2684 deletions(-) create mode 100644 .gitlab-ci.yml.bak delete mode 100644 Appendices/SVDProof.md create mode 100644 Chapter4/Images/Fig-TheGame.svg delete mode 100644 Chapter5/DetGeometric.md delete mode 100644 Chapter7/Orthogonality.md create mode 100644 Chapter9/Images/Fig-DynSystContinuous-Trajectories.svg create mode 100644 add_darklight_grasple.py diff --git a/.gitlab-ci.yml b/.gitlab-ci.yml index 9a5c6ed..ff5e02c 100644 --- a/.gitlab-ci.yml +++ b/.gitlab-ci.yml @@ -3,7 +3,8 @@ stages: - deploy variables: GIT_SUBMODULE_STRATEGY: recursive - + GIT_SUBMODULE_UPDATE_FLAGS: --remote + jupyter-build: stage: build image: python:slim diff --git a/.gitlab-ci.yml.bak b/.gitlab-ci.yml.bak new file mode 100644 index 0000000..9a5c6ed --- /dev/null +++ b/.gitlab-ci.yml.bak @@ -0,0 +1,27 @@ +stages: + - build + - deploy +variables: + GIT_SUBMODULE_STRATEGY: recursive + +jupyter-build: + stage: build + image: python:slim + script: + - sh install.sh + - jupyter-book clean . + - jupyter-book build . + artifacts: + paths: + - _build/ + +pages: + stage: deploy + image: busybox:latest + script: + - mv _build/html public + artifacts: + paths: + - public + rules: + - if: $CI_COMMIT_BRANCH == $CI_DEFAULT_BRANCH diff --git a/.gitmodules b/.gitmodules index d56b648..6f834eb 100644 --- a/.gitmodules +++ b/.gitmodules @@ -1,3 +1,3 @@ [submodule "sphinx-grasple"] path = sphinx-grasple - url = https://github.com/dbalague/sphinx-grasple.git + url = https://github.com/TeachBooks/Sphinx-Grasple-public.git \ No newline at end of file diff --git a/Appendices/ComplexNumbers.md b/Appendices/ComplexNumbers.md index 757455f..d5fd876 100644 --- a/Appendices/ComplexNumbers.md +++ b/Appendices/ComplexNumbers.md @@ -14,7 +14,6 @@ where $a\neq0$. Previously you probably learned that Equation {eq}`Eq:ComplexNum :::{math} :label: Eq:ComplexNumbers:abc-sol - x_{1,2}=\frac{-b\pm\sqrt{D}}{2a}. ::: @@ -65,7 +64,10 @@ Let $a$ be a _positive_ real number. Then the two numbers $x_-=-ai$ and $x_+=ai$ :::: -:::{prf:proof} +:::{admonition} Proof of {prf:ref}`Thm:ComplexNumbers:roots` +:class: myproof, dropdown + +<!-- :::{prf:proof} --> First we consider $x_-=-ai$ and take its square: @@ -193,7 +195,9 @@ zw &= (ac-bd)+(ad+bc)i, \\ :::: -::::{dropdown} Proof of {prf:ref}`Thm:ComplexNumbers:ops` +::::{admonition} Proof of {prf:ref}`Thm:ComplexNumbers:ops` +:class: dropdown, myproof +<!-- ::::{dropdown} Proof of {prf:ref}`Thm:ComplexNumbers:ops` --> We prove the four results by working each out separately. We start with the _addition_: @@ -268,7 +272,9 @@ If $z$ and $w$ are a complex numbers, then the following identities hold: :::: -::::{dropdown} Proof of {prf:ref}`Thm:ComplexNumbers:conjops` +::::{admonition} Proof of {prf:ref}`Thm:ComplexNumbers:conjops` +:class: dropdown, myproof +<!-- ::::{dropdown} Proof of {prf:ref}`Thm:ComplexNumbers:conjops` --> We show each of the identities, one after the other, where we assume $z=a+bi$ and $w=c+di$, $a,b,c,d\in\mathbb{R}$: @@ -340,7 +346,9 @@ z\overline{z} &= \Re{z}^2+\Im{z}^2. :::: -::::{dropdown} Proof of {prf:ref}`Thm:ComplexNumbers:conjparts` +::::{admonition} Proof of {prf:ref}`Thm:ComplexNumbers:conjparts` +:class: dropdown, myproof +<!-- ::::{dropdown} Proof of {prf:ref}`Thm:ComplexNumbers:conjparts` --> We show each of the identities, one after the other, where we assume $z=a+bi$, $a,b\in\mathbb{R}$: @@ -382,7 +390,9 @@ Assume $z\in\mathbb{C}$. $z\in\mathbb{R}$ if and only if $z=\overline{z}$. :::: -::::{dropdown} Proof of {prf:ref}`Thm:ComplexNumbers:realz` +::::{admonition} Proof of {prf:ref}`Thm:ComplexNumbers:realz` +:class: dropdown, myproof +<!-- ::::{dropdown} Proof of {prf:ref}`Thm:ComplexNumbers:realz` --> Assume $z\in\mathbb{C}$. @@ -422,12 +432,9 @@ The reason for introducing complex numbers is to ensure that more equations have We already solved quadratic equations using a new technique called _completing the square_ and in this section you will learn more ways to solve equations. -You may think that introducing a new set of numbers as solutions to certain equations can be a never-ending process. When you introduce more numbers, you get more equations (now we need not only solve $x^2=-1$, but also $x^2=i$), which need new solutions, etcetera. -It turns out that if you restrict yourself to polynomial equations, this is not the case. This statement is the Fundamental Theorem of Algebra: - -**Fundamental Theorem of algebra** +We introduced complex numbers to give the equation $x^2+1 = 0$ a solution. It appears that something much stronger holds, namely, that every polynomial equation with coefficients in $\mathbb{C}$, for instance $(1+i)x^4 - 2x^2 + x = 10i$, has solutions in $\mathbb{C}$. This is the content of the following theorem. -::::{prf:theorem} +::::{prf:theorem} Fundamental Theorem of algebra :label: Thm:ComplexNumbers:fundamental Consider a polynomial $p(z)$ of degree $n$, @@ -488,7 +495,9 @@ $$ :::: -::::{dropdown} Proof of {prf:ref}`Thm:ComplexNumbers:uniquezeros` +::::{admonition} Proof of {prf:ref}`Thm:ComplexNumbers:uniquezeros` +:class: dropdown, myproof +<!-- ::::{dropdown} Proof of {prf:ref}`Thm:ComplexNumbers:uniquezeros` --> Assume $\{z_1,z_2,\ldots,z_k\}$ is the set of _unique_ zeros of a polynomial $p$ of degree $n$. Then following {prf:ref}`Thm:ComplexNumbers:fundamental`, we can write @@ -506,7 +515,7 @@ Because $p(z_1)=0$ for $j\in\{1,\ldots,k\}$, we must have that $\alpha_1\in\{1,\ :::{math} :label: Eq:ComplexNumbers:factorsb1 -$p(z) = a_n (z-z_1)^{\alpha_1}(z-b*{\alpha_1+1}) \cdots (z-b_n).$ +p(z) = a_n (z-z_1)^{\alpha_1}(z-b*{\alpha_1+1}) \cdots (z-b_n). ::: @@ -515,7 +524,7 @@ We can repeat the above argument for $z_2$: we must have that $\alpha_2\in\{1,\l :::{math} :label: Eq:ComplexNumbers:factorsb2 -$p(z) = a_n (z-z_1)^{\alpha_1}(z-z_2)^{\alpha_2}(z-b_{\alpha_1+\alpha_2+1}) \cdots (z-b_n).$ +p(z) = a_n (z-z_1)^{\alpha_1}(z-z_2)^{\alpha_2}(z-b_{\alpha_1+\alpha_2+1}) \cdots (z-b_n). ::: @@ -545,7 +554,9 @@ If $p(z)=0$, then $p(\overline{z})=0$ as well, and the algebraic multiplicities :::: -::::{dropdown} Proof of {prf:ref}`Thm:ComplexNumbers:realpoly` +::::{admonition} Proof of {prf:ref}`Thm:ComplexNumbers:realpoly` +:class: dropdown, myproof +<!-- ::::{dropdown} Proof of {prf:ref}`Thm:ComplexNumbers:realpoly` --> Consider a polynomial $p$ of degree $n$, $\sum_{j=0}^n a_j z^j$, where the coefficients $a_n, a_{n-1}, \ldots, a_0$ are real valued numbers and $a_n\neq 0$. @@ -670,7 +681,7 @@ The polar coordinates of a point in the complex plane $\C$ are the distance $r=| ::: Notice that the argument is not uniquely defined, as you can always go a full circle extra and add $2\pi$ radians to the angle. For example, the number $1$ has argument 0 (as it is on the positive real axis), but also $2\pi$, $4\pi$, and $-2\pi$ (etc.). In order to make a uniform choice, we sometimes work with the principal value of the argument, which is by definition the unique value of the argument between $-\pi$ and $\pi$. -We write the principal value using a capital A. Thus we have $-\pi < \text{Arg} z \leq \pi$. +We write the principal value using a capital A. Thus we have $-\pi < \Arg{z} \leq \pi$. :::: {prf:example} @@ -791,17 +802,33 @@ We recognize this product as the number with modulus $|zw|=rs$ and argument $\ar If you take the complex conjugate of a complex number $z$, the modulus remains the same and the argument is negated: <ul> -<li>$|\overline{z}| = |z|$,</li> +<li> + +$|\overline{z}| = |z|$, -<li>$\arg(\overline{z}) = -\arg(z)$.</li> +</li> + +<li> + +$\arg(\overline{z}) = -\arg(z)$. + +</li> </ul> If you multiply two complex numbers $z$ and $w$, you multiply the moduli and add the arguments: <ul> -<li>$|zw| = |z| \cdot |w|$,</li> +<li> + +$|zw| = |z| \cdot |w|$, + +</li> + +<li> -<li>$\arg(zw) = \arg(z) + \arg(w)$.</li> +$\arg(zw) = \arg(z) + \arg(w)$. + +</li> </ul> If you divide the complex number $z$ by the complex number $w\neq0$ you divide the modulus of $z$ by the modulus of $w$ and subtract the argument of $w$ from the argument of $z$: @@ -822,7 +849,9 @@ $\arg\left(\frac{z}{w}\right) = \arg(z) - \arg(w)$. :::: -::::{dropdown} Proof of {prf:ref}`Thm:ComplexNumbers:polarmultdiv` +::::{admonition} Proof of {prf:ref}`Thm:ComplexNumbers:polarmultdiv` +:class: dropdown, myproof +<!-- ::::{dropdown} Proof of {prf:ref}`Thm:ComplexNumbers:polarmultdiv` --> _Proof for conjugation_ @@ -901,7 +930,9 @@ $$ :::: -::::{dropdown} Proof of {prf:ref}`Thm:ComplexNumbers:re` +::::{admonition} Proof of {prf:ref}`Thm:ComplexNumbers:re` +:class: dropdown, myproof +<!-- ::::{dropdown} Proof of {prf:ref}`Thm:ComplexNumbers:re` --> The proof is relatively straight forward: @@ -924,7 +955,9 @@ $$ :::: -::::{dropdown} Proof of {prf:ref}`Thm:ComplexNumbers:re` +::::{admonition} Proof of {prf:ref}`Thm:ComplexNumbers:re_diff` +:class: dropdown, myproof +<!-- ::::{dropdown} Proof of {prf:ref}`Thm:ComplexNumbers:re_diff` --> The proof is again straight forward: @@ -1061,15 +1094,6 @@ The three solutions from {prf:ref}`Ex:ComplexNumbers:threesolutions`. We can generalize the method for solving $z^n=w$ from the example above: -```{applet} -:url: appendix/complex_numbers -:fig: Images/Fig-ComplexNumbers-threesolfig.svg -:name: Fig:ComplexNumbers:general -:position: 0, -1 - -The n solutions from {prf:ref}`Ex:ComplexNumbers:threesolutions` generalized. -``` - ```{prf:algorithm} Solving $z^n=w$ <ol> @@ -1584,7 +1608,8 @@ $z^3=4\cos(\frac{\pi}{6})+4i\sin(\frac{\pi}{6})$ ## Solutions -::::{dropdown} Solution to {numref}`Exc:ComplexNumbers:eval_aplusbi` (_click to show_) +::::{admonition} Solution to {numref}`Exc:ComplexNumbers:eval_aplusbi` +:class: solution, dropdown <ol type="a"> @@ -1652,7 +1677,8 @@ $3 + 4i$ :::: -::::{dropdown} Solution to {numref}`Exc:ComplexNumbers:complete` (_click to show_) +::::{admonition} Solution to {numref}`Exc:ComplexNumbers:complete` +:class: solution, dropdown <ol type="a"> @@ -1678,7 +1704,8 @@ $2, -6$ ::::: -:::::{dropdown} Solution to {numref}`Exc:ComplexNumbers:division` (_click to show_) +:::::{admonition} Solution to {numref}`Exc:ComplexNumbers:division` +:class: solution, dropdown <ol type="a"> @@ -1704,7 +1731,8 @@ $h(z)$ is not a polynomial. ::::: -:::::{dropdown} Solution to {numref}`Exc:ComplexNumbers:roots` (_click to show_) +:::::{admonition} Solution to {numref}`Exc:ComplexNumbers:roots` +:class: solution, dropdown <ol type="a"> @@ -1730,7 +1758,8 @@ The roots of $p(z)$ are $3+i, 3-i, 1, -2$, all with multiplicity 1. ::::: -:::::{dropdown} Solution to {numref}`Exc:ComplexNumbers:argmod` (_click to show_) +:::::{admonition} Solution to {numref}`Exc:ComplexNumbers:argmod` +:class: solution, dropdown <ol type="a"> @@ -1750,7 +1779,8 @@ $|z|=2\sqrt{3}$ and $\Arg{z}=\frac{\pi}{6}$ or $\arg(z)=\frac{\pi}{6}+2k\pi$ for ::::: -:::::{dropdown} Solution to {numref}`Exc:ComplexNumbers:polarform` (_click to show_) +:::::{admonition} Solution to {numref}`Exc:ComplexNumbers:polarform` +:class: solution, dropdown <ol type="a"> @@ -1770,7 +1800,8 @@ $6 \cos(\frac{-\pi}{6})+ i 6 \sin(\frac{-\pi}{6})$ ::::: -:::::{dropdown} Solution to {numref}`Exc:ComplexNumbers:polar_abi` (_click to show_) +:::::{admonition} Solution to {numref}`Exc:ComplexNumbers:polar_abi` +:class: solution, dropdown <ol type="a"> @@ -1808,7 +1839,8 @@ $1-\sqrt{3} i$ ::::: -:::::{dropdown} Solution to {numref}`Exc:ComplexNumbers:polarform_calc` (_click to show_) +:::::{admonition} Solution to {numref}`Exc:ComplexNumbers:polarform_calc` +:class: solution, dropdown <ol type="a"> @@ -1828,7 +1860,8 @@ $z=4e^{-\frac16\pi i}$ and $w=2\sqrt{2}e^{-\frac14\pi i}$, thus $zw=8 \sqrt{2} \ ::::: -::::{dropdown} Solution to {numref}`Exc:ComplexNumbers:solve_aplusbi` (_click to show_) +::::{admonition} Solution to {numref}`Exc:ComplexNumbers:solve_aplusbi` +:class: solution, dropdown <ol type="a"> @@ -1848,7 +1881,8 @@ $i, -\frac{1}{2}\sqrt{3}-i\frac{1}{2}, \frac{1}{2}\sqrt{3}-i\frac{1}{2}$ :::: -:::::{dropdown} Solution to {numref}`Exc:ComplexNumbers:DeMoivre` (_click to show_) +:::::{admonition} Solution to {numref}`Exc:ComplexNumbers:DeMoivre` +:class: solution, dropdown $\cos(4\theta)=\cos^4(\theta)+\sin^4(\theta)-6\cos^2(\theta)\sin^2(\theta)$ @@ -1858,7 +1892,8 @@ $\sin(4\theta)=4\cos^3(\theta)\sin(\theta)-4\cos(\theta)\sin^3(\theta)$. ::::: -:::::{dropdown} Solution to {numref}`Exc:ComplexNumbers:solve_euler` (_click to show_) +:::::{admonition} Solution to {numref}`Exc:ComplexNumbers:solve_euler` +:class: solution, dropdown <ol type="a"> diff --git a/Appendices/InverseMatrixTheorem.md b/Appendices/InverseMatrixTheorem.md index 6d5f840..c21e9cd 100644 --- a/Appendices/InverseMatrixTheorem.md +++ b/Appendices/InverseMatrixTheorem.md @@ -15,7 +15,7 @@ For an $n\times n$ matrix $A$, the following are equivalent: \label{It:Appendices:InvDef} \item There exists a matrix $B$ with $AB=I$. -\item There esists a matrix $B$ with $BA=I$. +\item There exists a matrix $B$ with $BA=I$. \item The linear system $A\vect{x}=\vect{b}$ has a unique solution for any $\vect{b}$ in $\R^{n}$. \item $A$ is row equivalent to the identity matrix. \item $A$ has linearly independent columns. @@ -36,7 +36,8 @@ For an $n\times n$ matrix $A$, the following are equivalent: :::: -:::{prf:proof} +:::{admonition} Proof of {prf:ref}`Thm:Appendices:InverseMatrixTheorem` +:class: myproof For the equivalence of {itemref}`It:Appendices:InvDef` through {itemref}`It:Appendices:InvDefColSpanRn`, see {prf:ref}`Thm:MatrixInv:InvertibilityCharacterizations` and {numref}`Exc:BasisDim:RankABLeqRankA`. Statement {itemref}`It:Appendices:InvIffFullRank` is part of {prf:ref}`Thm:BasisDim:RankThm`. {prf:ref}`Thm:DetRowReduction:Invertibility` says precisely that invertibility is equivalent to {itemref}`It:Appendices:InvIffDetNeq0`. For {itemref}`It:Appendices:InvIffZeroNoEV`, see {prf:ref}`Prop:EigenValues:SingularMatrix`. diff --git a/Appendices/SVDProof.md b/Appendices/SVDProof.md deleted file mode 100644 index 87c342f..0000000 --- a/Appendices/SVDProof.md +++ /dev/null @@ -1,100 +0,0 @@ -(Sec:ProofSVD)= - -# Proof of the existence of SVD - -This appendix is devoted to construct the proof of {prf:ref}`Thm:SVD:ExistenceSVD`. Some new definitions will be given. - -::::{prf:definition} Norm of a Linear Transformation - -Let $T:\mathbb{R}^n\to \mathbb{R}^m$ be a linear transformation with standard matrix $A$. We define the **matrix norm** of $A$ as - -$$ -\norm{A} = \max_{{\mathbf{v}\in \mathbb{R}^n},\norm{\mathbf{v}}=1} \norm{A\mathbf{v}}. -$$ - -We define the the **norm of a linear transformation** $T$ -as the norm of its standard matrix. That is - -$$\norm{T} = \norm{A}$$ - -:::: - -Observe that the matrix norm is defined by finding a maximum. We will leave to the reader (and for a calculus course) to prove that the function - -\begin{align*} -f:\mathbb{R}^n &&\to&&& \mathbb{R}\\ -\mathbf{v} &&\mapsto&&& f(\mathbf{v}) = \norm{\mathbf{v}} -\end{align*} - -is a continuous function. - -:::{prf:remark} - -The matrix norm is sometimes called **induced norm**. -::: - -:::{prf:definition} - -Suppose that $T:V\subset\mathbb{R}^n \to \mathbb{R}^m$ is a linear transformation with standard matrix $A$. Then we define $\norm{T}$ restricted in $V$ as - -$$ - \norm{T_{|V}} = \max_{\mathbf{v}\in V,\norm{\mathbf{v}}=1} \norm{A\mathbf{v}} -$$ - -::: - -We will proof {prf:ref}`Thm:SVD:ExistenceSVD` by using a similar algorithm to {prf:ref}`Alg:SVD:SVDalgorithm`. The proof follows the geometric interpretation described in {numref}`Subsec:SVDGeometrically`. If the reader is not familiar with it, we recommend understanding the idea before continuing. - -## Construction of $V$ and $U$ - -Suppose that $A$ is the standard matrix of a linear transformation $T:\mathbb{R}^n \to \mathbb{R}^m$ with rank $p$. - -Since the construction will be iterative we will define, for convenience, $V^{(1)} = \mathbb{R}^n$. - -Let's consider "the unit sphere" in $V^{(1)}$. That is - -$$ -S^{(1)} = \lbrace \mathbf{v} \in V^{(1)} \,|\, \norm{\mathbf{v}}=1\rbrace -$$ - -Now choose $\mathbf{v}_1\in V^{(1)}$ such that $\norm{T} = \norm{A\mathbf{v}_1} = s_1$ - -If $s_1=0$ then we are done as $A\mathbf{v}=\mathbf{0}$ for all $\mathbf{v}\in V^{(1)}$. - -Let's suppose that $s_1>0$ and define $\mathbf{u}_1 = \frac{1}{s_1}A\mathbf{v}_1$. Notice that $\mathbf{u}_1\in \mathbb{R}^m$. - -Next, consider the unit sphere in the subspace $V^{(2)}=\Span{\mathbf{v}_1}^\perp$: - -$$ -S_2 = \lbrace \mathbf{v}\in V^{(2)}\subset\mathbb{R}^n\,|\, \norm{\mathbf{v}}=1\rbrace, -$$ - -and the restriction of $T$ onto the subspace $V^{(2)}$. Then choose $\mathbf{v}_2$ such that $s_2 = \norm{T_{|V^{(2)}}} = \norm{A\mathbf{v}_2}$. - -Notice that, by construction, $\mathbf{v}_1 \perp \mathbf{v}_2$. If $s_2=0$ then we are done, as $A\mathbf{v} = \mathbf{0}$ for all $\mathbf{v}\in V^{(2)}$. Suppose that $s_2 >0$, and define $\mathbf{u}_2 = \frac{1}{s_2}A\mathbf{v}_2$. - -Observe that since $S^{(2)} \subset S^{(1)}$ we have that $\displaystyle\max_{\mathbf{v}\in S^{(2)},\norm{\mathbf{v}}=1} \norm{A\mathbf{v}} \le \max_{\mathbf{v}\in S^{(1)},\norm{\mathbf{v}}=1}\norm{A\mathbf{v}}$. Therefore, $s_2 \le s_1$. - -In addition, we can prove that $\mathbf{u}_1\perp \mathbf{u}_2$. - -:::{exercise} - -Prove that $\mathbf{u}_1\perp \mathbf{u}_2$. Notice that we cannot use the same argument as in {numref}`Subsec:SVD:Algorithm` since we can not use {prf:ref}`Propo:SVD:singularvalues` (it assumes that the singular value decomposition exists, and this is what we are trying to prove). - -::: - -Suppose that we repeat this process $r$ times. That is, we found $\mathbf{v}_1, \dots, \mathbf{v}_r$, and $\mathbf{u}_1,\dots,\mathbf{u}_r$, and the values $s_1>s_2>\cdots>s_r>0$. Now we define $V^{(r+1)} = \Span{\mathbf{v}_1,\dots,\mathbf{v}_r}^{\perp}$ and we consider again the unit sphere in this subspace: - -$$ -S^{(r+1)} = \lbrace \mathbf{v}\in V^{(r+1)}\,|\, \norm{\mathbf{v}}=1\rbrace. -$$ - -Choose $s_{r+1} = \norm{T_{|V^{(r+1)}}}$. If $s_{r+1}=0$ we are done as $A\mathbf{v}=\mathbf{0}$ for all $\mathbf{v}\in V^{(r+1)}$. Else, we continue the process until either $s_{r}=0$ for some $r$, or until we find a basis for $\mathbb{R}^n$, i.e., $r=n$. - -Now we take the vectors $\lbrace\mathbf{v}_1,\dots,\mathbf{v}_r\rbrace$. If $r < n$, we complete the set until we have an orthonormal basis $\mathcal{V}$ of $\mathbb{R}^n$. Then we do the same with the vectors $\lbrace\mathbf{u}_1,\dots,\mathbf{u}_r\rbrace$ by completing the set, if needed, to an orthonormal basis $\mathcal{U}$ of $\mathbb{R}^m$. - -The values $s_1 > s_2 > \cdots > s_r > 0$ are the singular values (and 0 if we had to complete the set of vectors). - -What remains to prove is that we have exactly $p$ non-zero singular values. - -To see that, we consider the set $\lbrace \mathbf{u}_1, \dots, \mathbf{u}_r \rbrace$. diff --git a/Chapter1/Cross_Product.md b/Chapter1/Cross_Product.md index 7a58198..2e6ea9b 100644 --- a/Chapter1/Cross_Product.md +++ b/Chapter1/Cross_Product.md @@ -45,6 +45,7 @@ This is no coincidence, as we will see in {prf:ref}`Prop:CrossProduct:Cportho`. :::: ::::{grasple} +:iframeclass: dark-light :url: https://embed.grasple.com/exercises/c5058abb-3d5b-4e8c-b836-40aeff08a301?id=65634 :label: grasple_exercise_1_3_A :dropdown: @@ -61,7 +62,8 @@ If $\mathbf{u}$ and $\mathbf{v}$ are vectors in $\mathbb{R}^3$, then $\mathbf{u} :::: -::::{prf:proof} +::::{admonition} Proof of {prf:ref}`Prop:CrossProduct:Cportho` +:class: myproof Let $\mathbf{u}$ and $\mathbf{v}$ be vectors in $\mathbb{R}^3$ such that @@ -87,6 +89,7 @@ Knowing that the cross product of two vectors is orthogonal to these vectors doe ::::{figure} Images/Fig-CrossProduct-Righthandrule.svg :name: Fig:CrossProduct:RightHandRule +:class: dark-light-same The right-hand rule. Adapted from Acdx, CC BY-SA 3.0 http://creativecommons.org/licenses/by-sa/3.0/, via Wikimedia Commons. :::: @@ -108,7 +111,8 @@ where $\theta$ is the angle between $\mathbf{u}$ and $\mathbf{v}$. :::: -::::{prf:proof} +::::{admonition} Proof of {prf:ref}`Prop:CrossProduct:NormCrossProduct` +:class: myproof Let $\mathbf{u}$ and $\mathbf{v}$ be vectors in $\mathbb{R}^3$ such that @@ -147,23 +151,27 @@ Notice some similarities between the formula for the length of the cross product We can derive some interesting geometrical results from {prf:ref}`Prop:CrossProduct:NormCrossProduct`. ::::{prf:proposition} +:label: Prop:CrossProduct:Parallel Two non-zero vectors $\mathbf{u}$ and $\mathbf{v}$ are parallel if and only if $\mathbf{u}\cp \mathbf{v}=\mathbf{0}$. :::: -::::{prf:proof} +::::{admonition} Proof of {prf:ref}`Prop:CrossProduct:Parallel` +:class: myproof Let $\mathbf{u}$ and $\mathbf{v}$ be two non-zero vectors. First of all, the vector $\mathbf{u}\cp \mathbf{v}$ is equal to the zero vector if and only if $\norm{\mathbf{u} \cp \mathbf{v}}=0$. Since $\norm{\mathbf{u}}$ and $\norm{\mathbf{v}}$ are both not equal to zero, it follows from {prf:ref}`Prop:CrossProduct:NormCrossProduct` that $\norm{\mathbf{u} \cp \mathbf{v}}=0$ if and only if $\sin(\theta)=0$, where $\theta$ is the angle between the vectors. This means that $\mathbf{u}\cp \mathbf{v}=\mathbf{0}$ if and only if $\theta$ is equal to either $0$ or $\pi$, which is equivalent to saying that $\mathbf{u}$ and $\mathbf{v}$ have the same direction or the opposite direction. In both cases the vectors are parallel. :::: ::::{prf:proposition} +:label: Prop:CrossProduct:AreaParallelogram If $\mathbf{u}$ and $\mathbf{v}$ are vectors in $\mathbb{R}^3$, then $\norm{\mathbf{u} \cp \mathbf{v}}$ is equal to the area of the parallelogram spanned by $\mathbf{u}$ and $\mathbf{v}$. :::{figure} Images/Fig-CrossProduct-Area.svg :name: Fig:CrossProduct:AreaParallelogram +:class: dark-light Parallelogram spanned by two vectors. @@ -171,7 +179,8 @@ Parallelogram spanned by two vectors. :::: -::::{prf:proof} +::::{admonition} Proof of {prf:ref}`Prop:CrossProduct:AreaParallelogram` +:class: myproof The area of a parallelogram is equal to the product of the length of its base and its height. As we can see in {numref}`Figure %s <Fig:CrossProduct:AreaParallelogram>` the length of the base of the parallelogram is equal to $\norm{\mathbf{u}}$ and the height is equal to $\norm{\mathbf{h}}$. If we look at the right-angled triangle $OPP'$ we see that $\norm{\mathbf{h}}=\norm{\mathbf{v}}\sin{\theta}$. This means that the area of the parallelogram is equal to $\norm{\mathbf{u}} \norm{\mathbf{v}} \sin(\theta)$ (because we use an angle between $0$ and $\pi$ we can omit the absolute-value signs) and thus to $\norm{\mathbf{u} \cp \mathbf{v}}$. @@ -205,6 +214,7 @@ What is the area of the triangle with vertices $(2,1,0)$, $(2,2,2)$ and $(3, 1, :::{figure} Images/Fig-CrossProduct-TrianglePQR.svg :name: Fig:CrossProduct:AreaTriangle +:class: dark-light Area of the triangle $PQR$. @@ -257,7 +267,8 @@ $(\mathbf{v_1}+\mathbf{v_2})\cp\mathbf{v_3} = \mathbf{v_1}\cp\mathbf{v_3}+\mathb :::: -::::{prf:proof} +::::{admonition} Proof of {prf:ref}`Prop:CrossProduct:RulesCrossProduct` +:class: myproof Let $\mathbf{v_1}$, $\mathbf{v_2}$ and $\mathbf{v_3}$ be vectors in $\mathbb{R}^3$ such that @@ -319,6 +330,7 @@ is equal to the value $ad-bc$. Such an expression is called a _determinant_. The entries of the cross product of two vectors can also be computed using determinants. ::::{prf:proposition} +:label: Prop:CrossProduct:dets Let $\mathbf{u}$ and $\mathbf{v}$ be vectors in $\mathbb{R}^3$ such that @@ -340,7 +352,8 @@ $$ :::: -::::{prf:proof} +::::{admonition} Proof of {prf:ref}`Prop:CrossProduct:dets` +:class: myproof This follows from the definition. @@ -383,6 +396,7 @@ $$ ## Grasple Exercises ::::{grasple} +:iframeclass: dark-light :url: https://embed.grasple.com/exercises/c5058abb-3d5b-4e8c-b836-40aeff08a301?id=65634 :label: grasple_exercise_1_3_1 :dropdown: @@ -391,6 +405,7 @@ $$ :::: ::::{grasple} +:iframeclass: dark-light :url: https://embed.grasple.com/exercises/529702ff-6fc3-46ab-a148-7d93d081870b?id=63138 :label: grasple_exercise_1_3_2 :dropdown: @@ -399,6 +414,7 @@ $$ :::: ::::{grasple} +:iframeclass: dark-light :url: https://embed.grasple.com/exercises/48448d89-c286-45c5-9af4-780329a8821f?id=65637 :label: grasple_exercise_1_3_3 :dropdown: @@ -407,6 +423,7 @@ $$ :::: ::::{grasple} +:iframeclass: dark-light :url: https://embed.grasple.com/exercises/f6c1bb4b-e63e-492e-910a-5a8c433de281?id=75093 :label: grasple_exercise_1_3_4 :dropdown: @@ -415,6 +432,7 @@ $$ :::: ::::{grasple} +:iframeclass: dark-light :url: https://embed.grasple.com/exercises/84b635e4-2278-4882-915d-6f8b253213a3?id=78749 :label: grasple_exercise_1_3_5 :dropdown: @@ -423,6 +441,7 @@ $$ :::: ::::{grasple} +:iframeclass: dark-light :url: https://embed.grasple.com/exercises/6b660feb-fc36-47a0-bf86-e424d28edf6f?id=63354 :label: grasple_exercise_1_3_6 :dropdown: @@ -431,6 +450,7 @@ $$ :::: ::::{grasple} +:iframeclass: dark-light :url: https://embed.grasple.com/exercises/8a0fc383-dd10-4f31-931a-c62c0d650bd9?id=63479 :label: grasple_exercise_1_3_7 :dropdown: @@ -439,6 +459,7 @@ $$ :::: ::::{grasple} +:iframeclass: dark-light :url: https://embed.grasple.com/exercises/3e62cc2d-5860-43c2-b8aa-e54ab3a9a981?id=79268 :label: grasple_exercise_1_3_8 :dropdown: @@ -447,6 +468,7 @@ $$ :::: ::::{grasple} +:iframeclass: dark-light :url: https://embed.grasple.com/exercises/122013a2-1012-4203-99c7-ed5deafd82a4?id=78786 :label: grasple_exercise_1_3_9 :dropdown: diff --git a/Chapter1/Images/Fig-InnerProduct-SameProj.svg b/Chapter1/Images/Fig-InnerProduct-SameProj.svg index e7e842b..eaa3ef8 100644 --- a/Chapter1/Images/Fig-InnerProduct-SameProj.svg +++ b/Chapter1/Images/Fig-InnerProduct-SameProj.svg @@ -1,21 +1,43 @@ <?xml version="1.0" encoding="UTF-8" standalone="no"?> <svg - xmlns:dc="http://purl.org/dc/elements/1.1/" - xmlns:cc="http://creativecommons.org/ns#" - xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#" - xmlns:svg="http://www.w3.org/2000/svg" - xmlns="http://www.w3.org/2000/svg" - viewBox="0 0 816 1056" - height="1056" - width="816" + viewBox="0 0 378.43271 386.04504" + height="386.04504" + width="378.43271" xml:space="preserve" id="svg2" - version="1.1"><metadata + version="1.1" + sodipodi:docname="Fig-InnerProduct-SameProj.svg" + inkscape:version="1.3 (0e150ed6c4, 2023-07-21)" + xmlns:inkscape="http://www.inkscape.org/namespaces/inkscape" + xmlns:sodipodi="http://sodipodi.sourceforge.net/DTD/sodipodi-0.dtd" + xmlns="http://www.w3.org/2000/svg" + xmlns:svg="http://www.w3.org/2000/svg" + xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#" + xmlns:cc="http://creativecommons.org/ns#" + xmlns:dc="http://purl.org/dc/elements/1.1/"><sodipodi:namedview + id="namedview1" + pagecolor="#ffffff" + bordercolor="#000000" + borderopacity="0.25" + inkscape:showpageshadow="2" + inkscape:pageopacity="0.0" + inkscape:pagecheckerboard="0" + inkscape:deskcolor="#d1d1d1" + inkscape:zoom="0.77746212" + inkscape:cx="269.4665" + inkscape:cy="378.79659" + inkscape:window-width="1920" + inkscape:window-height="1017" + inkscape:window-x="-8" + inkscape:window-y="-8" + inkscape:window-maximized="1" + inkscape:current-layer="svg2" + inkscape:clip-to-page="false" /><metadata id="metadata8"><rdf:RDF><cc:Work rdf:about=""><dc:format>image/svg+xml</dc:format><dc:type rdf:resource="http://purl.org/dc/dcmitype/StillImage" /></cc:Work></rdf:RDF></metadata><defs id="defs6" /><g - transform="matrix(1.3333333,0,0,-1.3333333,0,1056)" + transform="matrix(1.3333333,0,0,-1.3333333,-138.90421,907.58073)" id="g10"><g transform="translate(161.05,419.855)" id="g12"><g @@ -27,33 +49,33 @@ d="m -56.69362,-28.3468 283.4681,141.73404" /></g><g id="g22"><path id="path24" - style="fill:none;stroke:#ff8000;stroke-width:1.19553006;stroke-linecap:butt;stroke-linejoin:miter;stroke-miterlimit:10;stroke-dasharray:none;stroke-opacity:1" + style="fill:none;stroke:#ff8000;stroke-width:1.19553;stroke-linecap:butt;stroke-linejoin:miter;stroke-miterlimit:10;stroke-dasharray:none;stroke-opacity:1" d="M 0,0 138.08766,138.08766" /><g transform="matrix(0.7071,0.7071,-0.7071,0.7071,135.81647,135.81647)" id="g26"><g id="g28"><path id="path30" - style="fill:#ff8000;fill-opacity:1;fill-rule:nonzero;stroke:#ff8000;stroke-width:1.19553006;stroke-linecap:butt;stroke-linejoin:miter;stroke-miterlimit:10;stroke-dasharray:none;stroke-opacity:1" + style="fill:#ff8000;fill-opacity:1;fill-rule:nonzero;stroke:#ff8000;stroke-width:1.19553;stroke-linecap:butt;stroke-linejoin:miter;stroke-miterlimit:10;stroke-dasharray:none;stroke-opacity:1" d="M 6.66628,0 1.93044,1.79556 3.5108,0 1.93044,-1.79556 Z" /></g></g></g><g id="g32"><path id="path34" - style="fill:none;stroke:#ff8000;stroke-width:1.19553006;stroke-linecap:butt;stroke-linejoin:miter;stroke-miterlimit:10;stroke-dasharray:none;stroke-opacity:1" + style="fill:none;stroke:#ff8000;stroke-width:1.19553;stroke-linecap:butt;stroke-linejoin:miter;stroke-miterlimit:10;stroke-dasharray:none;stroke-opacity:1" d="M 0,0 83.4098,250.22937" /><g transform="matrix(0.31621,0.94864,-0.94864,0.31621,82.39418,247.18242)" id="g36"><g id="g38"><path id="path40" - style="fill:#ff8000;fill-opacity:1;fill-rule:nonzero;stroke:#ff8000;stroke-width:1.19553006;stroke-linecap:butt;stroke-linejoin:miter;stroke-miterlimit:10;stroke-dasharray:none;stroke-opacity:1" + style="fill:#ff8000;fill-opacity:1;fill-rule:nonzero;stroke:#ff8000;stroke-width:1.19553;stroke-linecap:butt;stroke-linejoin:miter;stroke-miterlimit:10;stroke-dasharray:none;stroke-opacity:1" d="M 6.66628,0 1.93044,1.79556 3.5108,0 1.93044,-1.79556 Z" /></g></g></g><g id="g42"><path id="path44" - style="fill:none;stroke:#008080;stroke-width:1.19553006;stroke-linecap:butt;stroke-linejoin:miter;stroke-miterlimit:10;stroke-dasharray:none;stroke-opacity:1" + style="fill:none;stroke:#008080;stroke-width:1.19553;stroke-linecap:butt;stroke-linejoin:miter;stroke-miterlimit:10;stroke-dasharray:none;stroke-opacity:1" d="M 141.73404,141.73404 87.34639,250.50926" /><g transform="matrix(-0.44717,0.89436,-0.89436,-0.44717,88.78268,247.63663)" id="g46"><g id="g48"><path id="path50" - style="fill:#008080;fill-opacity:1;fill-rule:nonzero;stroke:#008080;stroke-width:1.19553006;stroke-linecap:butt;stroke-linejoin:miter;stroke-miterlimit:10;stroke-dasharray:none;stroke-opacity:1" + style="fill:#008080;fill-opacity:1;fill-rule:nonzero;stroke:#008080;stroke-width:1.19553;stroke-linecap:butt;stroke-linejoin:miter;stroke-miterlimit:10;stroke-dasharray:none;stroke-opacity:1" d="M 6.66628,0 1.93044,1.79556 3.5108,0 1.93044,-1.79556 Z" /></g></g></g><g id="g52"><path id="path54" @@ -61,33 +83,33 @@ d="M 85.04042,255.12128 170.08086,85.04042" /></g><g id="g56"><path id="path58" - style="fill:none;stroke:#0000ff;stroke-width:1.19553006;stroke-linecap:butt;stroke-linejoin:miter;stroke-miterlimit:10;stroke-dasharray:none;stroke-opacity:1" + style="fill:none;stroke:#0000ff;stroke-width:1.19553;stroke-linecap:butt;stroke-linejoin:miter;stroke-miterlimit:10;stroke-dasharray:none;stroke-opacity:1" d="M 0,-0.56705 108.7752,53.82057" /><g transform="matrix(0.89436,0.44717,-0.44717,0.89436,105.90259,52.3843)" id="g60"><g id="g62"><path id="path64" - style="fill:#0000ff;fill-opacity:1;fill-rule:nonzero;stroke:#0000ff;stroke-width:1.19553006;stroke-linecap:butt;stroke-linejoin:miter;stroke-miterlimit:10;stroke-dasharray:none;stroke-opacity:1" + style="fill:#0000ff;fill-opacity:1;fill-rule:nonzero;stroke:#0000ff;stroke-width:1.19553;stroke-linecap:butt;stroke-linejoin:miter;stroke-miterlimit:10;stroke-dasharray:none;stroke-opacity:1" d="M 6.66628,0 1.93044,1.79556 3.5108,0 1.93044,-1.79556 Z" /></g></g></g><g id="g66"><path id="path68" - style="fill:none;stroke:#0000ff;stroke-width:1.19553006;stroke-linecap:butt;stroke-linejoin:miter;stroke-miterlimit:10;stroke-dasharray:none;stroke-opacity:1" + style="fill:none;stroke:#0000ff;stroke-width:1.19553;stroke-linecap:butt;stroke-linejoin:miter;stroke-miterlimit:10;stroke-dasharray:none;stroke-opacity:1" d="M 0,0.56705 108.7752,54.95468" /><g transform="matrix(0.89436,0.44717,-0.44717,0.89436,105.90259,53.5184)" id="g70"><g id="g72"><path id="path74" - style="fill:#0000ff;fill-opacity:1;fill-rule:nonzero;stroke:#0000ff;stroke-width:1.19553006;stroke-linecap:butt;stroke-linejoin:miter;stroke-miterlimit:10;stroke-dasharray:none;stroke-opacity:1" + style="fill:#0000ff;fill-opacity:1;fill-rule:nonzero;stroke:#0000ff;stroke-width:1.19553;stroke-linecap:butt;stroke-linejoin:miter;stroke-miterlimit:10;stroke-dasharray:none;stroke-opacity:1" d="M 6.66628,0 1.93044,1.79556 3.5108,0 1.93044,-1.79556 Z" /></g></g></g><g id="g76"><path id="path78" - style="fill:none;stroke:#ff0000;stroke-width:1.19553006;stroke-linecap:butt;stroke-linejoin:miter;stroke-miterlimit:10;stroke-dasharray:none;stroke-opacity:1" + style="fill:none;stroke:#ff0000;stroke-width:1.19553;stroke-linecap:butt;stroke-linejoin:miter;stroke-miterlimit:10;stroke-dasharray:none;stroke-opacity:1" d="M 0,0 165.46883,82.73445" /><g transform="matrix(0.89436,0.44717,-0.44717,0.89436,162.5962,81.29817)" id="g80"><g id="g82"><path id="path84" - style="fill:#ff0000;fill-opacity:1;fill-rule:nonzero;stroke:#ff0000;stroke-width:1.19553006;stroke-linecap:butt;stroke-linejoin:miter;stroke-miterlimit:10;stroke-dasharray:none;stroke-opacity:1" + style="fill:#ff0000;fill-opacity:1;fill-rule:nonzero;stroke:#ff0000;stroke-width:1.19553;stroke-linecap:butt;stroke-linejoin:miter;stroke-miterlimit:10;stroke-dasharray:none;stroke-opacity:1" d="M 6.66628,0 1.93044,1.79556 3.5108,0 1.93044,-1.79556 Z" /></g></g></g><path id="path86" style="fill:none;stroke:#000000;stroke-width:0.3985;stroke-linecap:butt;stroke-linejoin:miter;stroke-miterlimit:10;stroke-dasharray:none;stroke-opacity:1" @@ -99,15 +121,14 @@ id="g94"><g transform="translate(-255.892,-453.517)" id="g96"><text - id="text100" - style="font-variant:normal;font-weight:normal;font-size:14.34619999px;font-family:CMBX12;-inkscape-font-specification:CMBX12;writing-mode:lr-tb;fill:#0000ff;fill-opacity:1;fill-rule:nonzero;stroke:none" - transform="matrix(1,0,0,-1,255.892,453.517)"><tspan - id="tspan98" - y="0" - x="0">v</tspan></text> -<g - transform="translate(255.892,453.517)" - id="g102" /></g></g><g + id="text100" + style="font-variant:normal;font-weight:normal;font-size:14.3462px;font-family:CMBX12;-inkscape-font-specification:CMBX12;writing-mode:lr-tb;fill:#0000ff;fill-opacity:1;fill-rule:nonzero;stroke:none" + transform="matrix(1,0,0,-1,255.892,453.517)"><tspan + id="tspan98" + y="0" + x="0">v</tspan></text> <g + transform="translate(255.892,453.517)" + id="g102" /></g></g><g transform="translate(-94.842,-33.662)" id="g104" /></g></g></g><g id="g106"><g @@ -117,22 +138,20 @@ id="g112"><g transform="translate(-302.718,-559.475)" id="g114"><text - id="text118" - style="font-variant:normal;font-weight:normal;font-size:14.34619999px;font-family:CMBX12;-inkscape-font-specification:CMBX12;writing-mode:lr-tb;fill:#ff8000;fill-opacity:1;fill-rule:nonzero;stroke:none" - transform="matrix(1,0,0,-1,302.718,559.475)"><tspan - id="tspan116" - y="0" - x="0">w</tspan></text> -<text - id="text122" - style="font-variant:normal;font-weight:normal;font-size:9.96259975px;font-family:CMR10;-inkscape-font-specification:CMR10;writing-mode:lr-tb;fill:#ff8000;fill-opacity:1;fill-rule:nonzero;stroke:none" - transform="matrix(1,0,0,-1,314.375,557.323)"><tspan - id="tspan120" - y="0" - x="0">2</tspan></text> -<g - transform="translate(302.718,559.475)" - id="g124" /></g></g><g + id="text118" + style="font-variant:normal;font-weight:normal;font-size:14.3462px;font-family:CMBX12;-inkscape-font-specification:CMBX12;writing-mode:lr-tb;fill:#ff8000;fill-opacity:1;fill-rule:nonzero;stroke:none" + transform="matrix(1,0,0,-1,302.718,559.475)"><tspan + id="tspan116" + y="0" + x="0">w</tspan></text> <text + id="text122" + style="font-variant:normal;font-weight:normal;font-size:9.9626px;font-family:CMR10;-inkscape-font-specification:CMR10;writing-mode:lr-tb;fill:#ff8000;fill-opacity:1;fill-rule:nonzero;stroke:none" + transform="matrix(1,0,0,-1,314.375,557.323)"><tspan + id="tspan120" + y="0" + x="0">2</tspan></text> <g + transform="translate(302.718,559.475)" + id="g124" /></g></g><g transform="translate(-141.668,-139.62)" id="g126" /></g></g></g><g id="g128"><g @@ -142,43 +161,38 @@ id="g134"><g transform="translate(-276.879,-615.171)" id="g136"><text - id="text140" - style="font-variant:normal;font-weight:normal;font-size:14.34619999px;font-family:CMBX12;-inkscape-font-specification:CMBX12;writing-mode:lr-tb;fill:#008080;fill-opacity:1;fill-rule:nonzero;stroke:none" - transform="matrix(1,0,0,-1,276.879,615.171)"><tspan - id="tspan138" - y="0" - x="0">w</tspan></text> -<text - id="text144" - style="font-variant:normal;font-weight:normal;font-size:9.96259975px;font-family:CMR10;-inkscape-font-specification:CMR10;writing-mode:lr-tb;fill:#008080;fill-opacity:1;fill-rule:nonzero;stroke:none" - transform="matrix(1,0,0,-1,288.536,613.019)"><tspan - id="tspan142" - y="0" - x="0">1</tspan></text> -<text - id="text148" - style="font-variant:normal;font-weight:normal;font-size:14.34619999px;font-family:CMSY10;-inkscape-font-specification:CMSY10;writing-mode:lr-tb;fill:#008080;fill-opacity:1;fill-rule:nonzero;stroke:none" - transform="matrix(1,0,0,-1,297.203,615.171)"><tspan - id="tspan146" - y="0" - x="0">−</tspan></text> -<text - id="text152" - style="font-variant:normal;font-weight:normal;font-size:14.34619999px;font-family:CMBX12;-inkscape-font-specification:CMBX12;writing-mode:lr-tb;fill:#008080;fill-opacity:1;fill-rule:nonzero;stroke:none" - transform="matrix(1,0,0,-1,311.549,615.171)"><tspan - id="tspan150" - y="0" - x="0">w</tspan></text> -<text - id="text156" - style="font-variant:normal;font-weight:normal;font-size:9.96259975px;font-family:CMR10;-inkscape-font-specification:CMR10;writing-mode:lr-tb;fill:#008080;fill-opacity:1;fill-rule:nonzero;stroke:none" - transform="matrix(1,0,0,-1,323.206,613.019)"><tspan - id="tspan154" - y="0" - x="0">2</tspan></text> -<g - transform="translate(276.879,615.171)" - id="g158" /></g></g><g + id="text140" + style="font-variant:normal;font-weight:normal;font-size:14.3462px;font-family:CMBX12;-inkscape-font-specification:CMBX12;writing-mode:lr-tb;fill:#008080;fill-opacity:1;fill-rule:nonzero;stroke:none" + transform="matrix(1,0,0,-1,276.879,615.171)"><tspan + id="tspan138" + y="0" + x="0">w</tspan></text> <text + id="text144" + style="font-variant:normal;font-weight:normal;font-size:9.9626px;font-family:CMR10;-inkscape-font-specification:CMR10;writing-mode:lr-tb;fill:#008080;fill-opacity:1;fill-rule:nonzero;stroke:none" + transform="matrix(1,0,0,-1,288.536,613.019)"><tspan + id="tspan142" + y="0" + x="0">1</tspan></text> <text + id="text148" + style="font-variant:normal;font-weight:normal;font-size:14.3462px;font-family:CMSY10;-inkscape-font-specification:CMSY10;writing-mode:lr-tb;fill:#008080;fill-opacity:1;fill-rule:nonzero;stroke:none" + transform="matrix(1,0,0,-1,297.203,615.171)"><tspan + id="tspan146" + y="0" + x="0">−</tspan></text> <text + id="text152" + style="font-variant:normal;font-weight:normal;font-size:14.3462px;font-family:CMBX12;-inkscape-font-specification:CMBX12;writing-mode:lr-tb;fill:#008080;fill-opacity:1;fill-rule:nonzero;stroke:none" + transform="matrix(1,0,0,-1,311.549,615.171)"><tspan + id="tspan150" + y="0" + x="0">w</tspan></text> <text + id="text156" + style="font-variant:normal;font-weight:normal;font-size:9.9626px;font-family:CMR10;-inkscape-font-specification:CMR10;writing-mode:lr-tb;fill:#008080;fill-opacity:1;fill-rule:nonzero;stroke:none" + transform="matrix(1,0,0,-1,323.206,613.019)"><tspan + id="tspan154" + y="0" + x="0">2</tspan></text> <g + transform="translate(276.879,615.171)" + id="g158" /></g></g><g transform="translate(-115.829,-195.316)" id="g160" /></g></g></g><g id="g162"><g @@ -188,22 +202,20 @@ id="g168"><g transform="translate(-248.86,-672.861)" id="g170"><text - id="text174" - style="font-variant:normal;font-weight:normal;font-size:14.34619999px;font-family:CMBX12;-inkscape-font-specification:CMBX12;writing-mode:lr-tb;fill:#ff8000;fill-opacity:1;fill-rule:nonzero;stroke:none" - transform="matrix(1,0,0,-1,248.86,672.861)"><tspan - id="tspan172" - y="0" - x="0">w</tspan></text> -<text - id="text178" - style="font-variant:normal;font-weight:normal;font-size:9.96259975px;font-family:CMR10;-inkscape-font-specification:CMR10;writing-mode:lr-tb;fill:#ff8000;fill-opacity:1;fill-rule:nonzero;stroke:none" - transform="matrix(1,0,0,-1,260.516,670.709)"><tspan - id="tspan176" - y="0" - x="0">1</tspan></text> -<g - transform="translate(248.86,672.861)" - id="g180" /></g></g><g + id="text174" + style="font-variant:normal;font-weight:normal;font-size:14.3462px;font-family:CMBX12;-inkscape-font-specification:CMBX12;writing-mode:lr-tb;fill:#ff8000;fill-opacity:1;fill-rule:nonzero;stroke:none" + transform="matrix(1,0,0,-1,248.86,672.861)"><tspan + id="tspan172" + y="0" + x="0">w</tspan></text> <text + id="text178" + style="font-variant:normal;font-weight:normal;font-size:9.9626px;font-family:CMR10;-inkscape-font-specification:CMR10;writing-mode:lr-tb;fill:#ff8000;fill-opacity:1;fill-rule:nonzero;stroke:none" + transform="matrix(1,0,0,-1,260.516,670.709)"><tspan + id="tspan176" + y="0" + x="0">1</tspan></text> <g + transform="translate(248.86,672.861)" + id="g180" /></g></g><g transform="translate(-87.81,-253.006)" id="g182" /></g></g></g><g id="g184"><g @@ -213,50 +225,44 @@ id="g190"><g transform="translate(-326.083,-489.969)" id="g192"><text - id="text196" - style="font-variant:normal;font-weight:normal;font-size:14.34619999px;font-family:CMR12;-inkscape-font-specification:CMR12;writing-mode:lr-tb;fill:#ff0000;fill-opacity:1;fill-rule:nonzero;stroke:none" - transform="matrix(1,0,0,-1,326.083,489.969)"><tspan - id="tspan194" - y="0" - x="0 7.8043327 13.267365 21.06596">proj</tspan></text> -<text - id="text200" - style="font-variant:normal;font-weight:normal;font-size:14.34619999px;font-family:CMBX12;-inkscape-font-specification:CMBX12;writing-mode:lr-tb;fill:#0000ff;fill-opacity:1;fill-rule:nonzero;stroke:none" - transform="matrix(1,0,0,-1,351.446,486.681)"><tspan - id="tspan198" - y="0" - x="0">v</tspan></text> -<text - id="text204" - style="font-variant:normal;font-weight:normal;font-size:14.34619999px;font-family:CMR12;-inkscape-font-specification:CMR12;writing-mode:lr-tb;fill:#ff0000;fill-opacity:1;fill-rule:nonzero;stroke:none" - transform="matrix(1,0,0,-1,360.686,489.969)"><tspan - id="tspan202" - y="0" - x="0">(</tspan></text> -<text - id="text208" - style="font-variant:normal;font-weight:normal;font-size:14.34619999px;font-family:CMBX12;-inkscape-font-specification:CMBX12;writing-mode:lr-tb;fill:#ff8000;fill-opacity:1;fill-rule:nonzero;stroke:none" - transform="matrix(1,0,0,-1,366.149,489.969)"><tspan - id="tspan206" - y="0" - x="0">w</tspan></text> -<text - id="text212" - style="font-variant:normal;font-weight:normal;font-size:9.96259975px;font-family:CMMI10;-inkscape-font-specification:CMMI10;writing-mode:lr-tb;fill:#ff8000;fill-opacity:1;fill-rule:nonzero;stroke:none" - transform="matrix(1,0,0,-1,377.805,487.817)"><tspan - id="tspan210" - y="0" - x="0">i</tspan></text> -<text - id="text216" - style="font-variant:normal;font-weight:normal;font-size:14.34619999px;font-family:CMR12;-inkscape-font-specification:CMR12;writing-mode:lr-tb;fill:#ff0000;fill-opacity:1;fill-rule:nonzero;stroke:none" - transform="matrix(1,0,0,-1,381.735,489.969)"><tspan - id="tspan214" - y="0" - x="0">)</tspan></text> -<g - transform="translate(326.083,489.969)" - id="g218" /></g></g><g + id="text196" + style="font-variant:normal;font-weight:normal;font-size:14.3462px;font-family:CMR12;-inkscape-font-specification:CMR12;writing-mode:lr-tb;fill:#ff0000;fill-opacity:1;fill-rule:nonzero;stroke:none" + transform="matrix(1,0,0,-1,326.083,489.969)"><tspan + id="tspan194" + y="0" + x="0 7.8043327 13.267365 21.06596">proj</tspan></text> <text + id="text200" + style="font-variant:normal;font-weight:normal;font-size:14.3462px;font-family:CMBX12;-inkscape-font-specification:CMBX12;writing-mode:lr-tb;fill:#0000ff;fill-opacity:1;fill-rule:nonzero;stroke:none" + transform="matrix(1,0,0,-1,351.446,486.681)"><tspan + id="tspan198" + y="0" + x="0">v</tspan></text> <text + id="text204" + style="font-variant:normal;font-weight:normal;font-size:14.3462px;font-family:CMR12;-inkscape-font-specification:CMR12;writing-mode:lr-tb;fill:#ff0000;fill-opacity:1;fill-rule:nonzero;stroke:none" + transform="matrix(1,0,0,-1,360.686,489.969)"><tspan + id="tspan202" + y="0" + x="0">(</tspan></text> <text + id="text208" + style="font-variant:normal;font-weight:normal;font-size:14.3462px;font-family:CMBX12;-inkscape-font-specification:CMBX12;writing-mode:lr-tb;fill:#ff8000;fill-opacity:1;fill-rule:nonzero;stroke:none" + transform="matrix(1,0,0,-1,366.149,489.969)"><tspan + id="tspan206" + y="0" + x="0">w</tspan></text> <text + id="text212" + style="font-variant:normal;font-weight:normal;font-size:9.9626px;font-family:CMMI10;-inkscape-font-specification:CMMI10;writing-mode:lr-tb;fill:#ff8000;fill-opacity:1;fill-rule:nonzero;stroke:none" + transform="matrix(1,0,0,-1,377.805,487.817)"><tspan + id="tspan210" + y="0" + x="0">i</tspan></text> <text + id="text216" + style="font-variant:normal;font-weight:normal;font-size:14.3462px;font-family:CMR12;-inkscape-font-specification:CMR12;writing-mode:lr-tb;fill:#ff0000;fill-opacity:1;fill-rule:nonzero;stroke:none" + transform="matrix(1,0,0,-1,381.735,489.969)"><tspan + id="tspan214" + y="0" + x="0">)</tspan></text> <g + transform="translate(326.083,489.969)" + id="g218" /></g></g><g transform="translate(-165.033,-70.114)" id="g220" /></g></g></g><g id="g222"><g @@ -266,15 +272,14 @@ id="g228"><g transform="translate(-158.061,-417.198)" id="g230"><text - id="text234" - style="font-variant:normal;font-weight:normal;font-size:11.9552002px;font-family:CMSY10;-inkscape-font-specification:CMSY10;writing-mode:lr-tb;fill:#000000;fill-opacity:1;fill-rule:nonzero;stroke:none" - transform="matrix(1,0,0,-1,158.061,417.198)"><tspan - id="tspan232" - y="0" - x="0">•</tspan></text> -<g - transform="translate(158.061,417.198)" - id="g236" /></g></g><g + id="text234" + style="font-variant:normal;font-weight:normal;font-size:11.9552px;font-family:CMSY10;-inkscape-font-specification:CMSY10;writing-mode:lr-tb;fill:#000000;fill-opacity:1;fill-rule:nonzero;stroke:none" + transform="matrix(1,0,0,-1,158.061,417.198)"><tspan + id="tspan232" + y="0" + x="0">•</tspan></text> <g + transform="translate(158.061,417.198)" + id="g236" /></g></g><g transform="translate(2.989,2.657)" id="g238" /></g></g></g><g id="g240"><g @@ -284,23 +289,13 @@ id="g246"><g transform="translate(-159.85,-406.728)" id="g248"><text - id="text252" - style="font-variant:normal;font-weight:normal;font-size:14.34619999px;font-family:CMBX12;-inkscape-font-specification:CMBX12;writing-mode:lr-tb;fill:#000000;fill-opacity:1;fill-rule:nonzero;stroke:none" - transform="matrix(1,0,0,-1,159.85,406.728)"><tspan - id="tspan250" - y="0" - x="0">0</tspan></text> -<g - transform="translate(159.85,406.728)" - id="g254" /></g></g><g + id="text252" + style="font-variant:normal;font-weight:normal;font-size:14.3462px;font-family:CMBX12;-inkscape-font-specification:CMBX12;writing-mode:lr-tb;fill:#000000;fill-opacity:1;fill-rule:nonzero;stroke:none" + transform="matrix(1,0,0,-1,159.85,406.728)"><tspan + id="tspan250" + y="0" + x="0">0</tspan></text> <g + transform="translate(159.85,406.728)" + id="g254" /></g></g><g transform="translate(1.2,13.127)" - id="g256" /></g></g></g></g></g><g - transform="translate(-161.05,-419.855)" - id="g258"><text - id="text262" - style="font-variant:normal;font-weight:normal;font-size:11.9552002px;font-family:CMR12;-inkscape-font-specification:CMR12;writing-mode:lr-tb;fill:#000000;fill-opacity:1;fill-rule:nonzero;stroke:none" - transform="matrix(1,0,0,-1,288.673,34.57)"><tspan - id="tspan260" - y="0" - x="0">1</tspan></text> -</g></g></g></svg> \ No newline at end of file + id="g256" /></g></g></g></g></g></g></g></svg> diff --git a/Chapter1/Inner_Product.md b/Chapter1/Inner_Product.md index 075afe5..3c8e934 100644 --- a/Chapter1/Inner_Product.md +++ b/Chapter1/Inner_Product.md @@ -28,8 +28,9 @@ in the plane, which we denote by $\norm{\mathbf{v}}$, can be computed using the :::{figure} Images/Fig-InnerProduct-Length-2D.svg :name: Fig:InnerProduct:Length-2D +:class: dark-light -The length of a vector via Pythagoras' Theorem +The length of a vector via Pythagoras' Theorem. ::: :::{applet} @@ -37,8 +38,9 @@ The length of a vector via Pythagoras' Theorem :fig: Images/Fig-InnerProduct-length-3D.svg :name: Fig:InnerProduct:length-3D :status: approved +:class: dark-light -The length of a vector via Pythagoras' Theorem +The length of a vector via Pythagoras' Theorem. ::: Using this theorem twice we find a similar formula for the length of a vector @@ -74,8 +76,9 @@ we find that :::{figure} Images/Fig-InnerProduct-perp-non-perp.svg :name: Fig:InnerProduct:perp-non-perp +:class: dark-light -Perpendicular versus non-perpendicular +Perpendicular versus non-perpendicular. ::: Let us now turn our attention to another important geometric concept, namely that of @@ -95,18 +98,14 @@ There is another way to look at this, which will be useful for the definition of % \norm{\mathbf{v}+\mathbf{w}} \neq \norm{\mathbf{v}-\mathbf{w}}. %$$ -:::{figure} Images/Fig-InnerProduct-diagonal-parallelogram.svg +```{applet} +:url: dot_product/diagonal_parallelogram +:fig: Images/Fig-InnerProduct-diagonal-parallelogram.svg :name: Fig:InnerProduct:diagonal-parallelogram +:class: dark-light The parallelogram spanned by $\vect{v}$ and $\vect{w}$ and its diagonals. How should you choose $\vect{v}$ and $\vect{w}$ such that the diagonals have the same length? -::: - -%::: OLD: two figures rectangle / non-rectangle -%:::{figure} Images/Fig-InnerProduct-diagonal-parallelogram.svg -%:name: Fig:InnerProduct:diagonal-parallelogram% -% -%Diagonal of a rectangle versus diagonal of a parallelogram -%::: +``` In the picture on the right the vectors are not perpendicular and @@ -155,7 +154,7 @@ The derivation is completely analogous to the one above, only now we have one ex So to check 'algebraically' whether two vectors are perpendicular we just have to compute $a_1b_1 +a_2b_2\, (\,+\,a_3b_3\,)$ and see whether this is equal to 0. -This expression is called the *dot product* (or *inner product*) of the vectors $\mathbf{v}$ and $\mathbf{w}$. We denote it by $\mathbf{v}\ip\mathbf{w}$. +This expression is called the _dot product_ (or _inner product_) of the vectors $\mathbf{v}$ and $\mathbf{w}$. We denote it by $\mathbf{v}\ip\mathbf{w}$. Note that the dot product of a general vector $\mathbf{v}=\begin{bmatrix} a_{1}\\a_{2}\\a_{3}\end{bmatrix}$ in $\mathbb{R}^3$ with itself gives $$ @@ -182,7 +181,7 @@ Using the dot product the concepts length and perpendicular easily carry over to ::::{prf:definition} :label: Dfn:InnerProduct:DotProduct -The **dot product** (or *inner product*) of two vectors +The **dot product** (or _inner product_) of two vectors $\mathbf{v}=\begin{bmatrix}a_{1}\\a_{2}\\ \vdots\\a_{n}\end{bmatrix}$ and $\mathbf{w}=\begin{bmatrix}b_{1}\\b_{2}\\ \vdots\\b_{n}\end{bmatrix}$ in $\mathbb{R}^n$ is defined as @@ -242,7 +241,8 @@ iii. $(\mathbf{v}_1+\mathbf{v}_2)\ip\mathbf{v}_3 = \mathbf{v}_1\ip\mathbf{v}_3+\ iv. $\mathbf{v}\ip\mathbf{v} \geq 0$, and $\mathbf{v}\ip\mathbf{v} = 0 \iff \mathbf{v} = \mathbf{0}$. ::: -:::{prf:proof} +:::{admonition} Proof of {prf:ref}`Prop:RulesInnerProduct` +:class: myproof The first three properties follow from the corresponding properties of real numbers. For instance, for the first rule we simply use that $ab = ba$ holds for the product of real numbers $a$ and $b$. @@ -305,7 +305,8 @@ if and only if all the squares are 0, which only happens if each entry $a_i$ is Prove property iii. ::: -:::{dropdown} Solution to {numref}`Exc:InnerProduct:CheckPropInnerProd` (_click to show_) +:::{admonition} Solution to {numref}`Exc:InnerProduct:CheckPropInnerProd` +:class: solution, dropdown Let @@ -349,7 +350,8 @@ $$ ::: -:::{dropdown} Solution to {numref}`Exc:InnerProduct:(v-w)(v+w)` (_click to show_) +:::{admonition} Solution to {numref}`Exc:InnerProduct:(v-w)(v+w)` +:class: solution, dropdown First of all, because of rule i. and rule iii. of {prf:ref}`Prop:RulesInnerProduct` it holds that @@ -393,7 +395,8 @@ and explain why it is called the _parallelogram rule_. ::: -:::{dropdown} Solution to {numref}`Exc:InnerProduct:PargramRule` (_click to show_) +:::{admonition} Solution to {numref}`Exc:InnerProduct:PargramRule` +:class: solution, dropdown Again it's a chain of identities using basic properties of the dot product. @@ -458,6 +461,7 @@ and conclude that $\mathbf{u}$ and $\mathbf{v}$ are orthogonal, $\mathbf{u}$ and ::: ::::{grasple} +:iframeclass: dark-light :url: https://embed.grasple.com/exercises/59912254-6fc8-43c7-9c44-1ea7eab1c236?id=62409 :label: grasple_exercise_1_2_1T :dropdown: @@ -476,7 +480,8 @@ Suppose $\mathbf{v} \in \mathbb{R}^n$. Then $\mathbf{v}\perp\mathbf{v} \i ::: -:::{prf:proof} +:::{admonition} Proof of {prf:ref}`Prop:InnerProduct:vDotv=0Impliesv=0` +:class: myproof By definition @@ -499,11 +504,14 @@ Let $\mathbf{n}$ be any nonzero vector in the plane. The set of vectors that are orthogonal to $\mathbf{n}$ all lie on a line through the origin. (See {numref}`Figure %s <Fig:InnerProduct:PerpendicularLine>`.) If we agree that $\mathbf{0}\perp\mathbf{n}$, it will be the whole line. The vector $\mathbf{n}$ is often said to be a _normal_ vector to the line. -:::{figure} Images/Fig-InnerProduct-PerpendicularLine.svg +```{applet} +:url: dot_product/perpendicularline +:fig: Images/Fig-InnerProduct-PerpendicularLine.svg :name: Fig:InnerProduct:PerpendicularLine +:class: dark-light -Vectors orthogonal to a nonzero vector $\mathbf{n}$ in the plane -::: +Vectors orthogonal to a nonzero vector $\mathbf{n}$ in the plane. +``` :::: @@ -534,8 +542,9 @@ $$ :url: dot_product/innerproduct_projectionvectorline :fig: Images/Fig-InnerProduct-ProjectionVectorLine.svg :name: Fig:InnerProduct:ProjectionVectorLine +:class: dark-light -Projection of a vector $\mathbf{w}$ onto a nonzero vector $\mathbf{v}$ +Projection of a vector $\mathbf{w}$ onto a nonzero vector $\mathbf{v}$. ::: :::{prf:proposition} @@ -551,7 +560,8 @@ $$ ::: -:::{prf:proof} +:::{admonition} Proof of {prf:ref}`Prop:InnerProduct:UniqueProjection` +:class: myproof With the rules of the dot product the vector $\mathbf{w}$ is easily constructed. <BR> Starting from @@ -631,6 +641,7 @@ as required. ::: ::::{grasple} +:iframeclass: dark-light :url: https://embed.grasple.com/exercises/88c460cd-36ee-49b0-8fb8-d29b55ad253a?id=84822 :label: grasple_exercise_1_2_2T :dropdown: @@ -656,7 +667,8 @@ $$ ::: -::::{dropdown} Solution to {numref}`Exc:InnerProduct:SameProjectionThenWhat` (_click to show_) +::::{admonition} Solution to {numref}`Exc:InnerProduct:SameProjectionThenWhat` +:class: solution, dropdown Suppose $\text{proj}_{\mathbf{v}}(\mathbf{w}_1) = \text{proj}_{\mathbf{v}}(\mathbf{w}_2) $. Thus $\dfrac{\mathbf{w}_1\ip\mathbf{v}}{\mathbf{v}\ip\mathbf{v}} \mathbf{v} = \dfrac{\mathbf{w}_2\ip\mathbf{v}}{\mathbf{v}\ip\mathbf{v}} \mathbf{v}$. @@ -692,6 +704,7 @@ so indeed $(\mathbf{w}_1 - \mathbf{w}_2)$ and $\vect{v}$ are orthogonal. :::{figure} Images/Fig-InnerProduct-SameProj.svg :name: Fig:InnerProduct:SameProj +:class: dark-light Two vectors $\vect{w}_1$, $\vect{w}_2 $ with the same projection onto $\vect{v}$. @@ -769,8 +782,9 @@ The first two of these properties are very easy to prove. The proof of the trian :fig: Images/Fig-InnerProduct-TriangleInequality.svg :name: Fig:InnerProduct:TriangleInequality :position: 2,2 +:class: dark-light -The Triangle Inequality +The Triangle Inequality. ::: ::::{prf:example} @@ -835,11 +849,13 @@ $$ :::{figure} Images/Fig-InnerProduct-Distance.svg :name: Fig:InnerProduct:Distance +:class: dark-light -The distance between two vectors +The distance between two vectors. ::: ::::{grasple} +:iframeclass: dark-light :url: https://embed.grasple.com/exercises/5bc4274c-56a0-461b-bd3d-9f8bdb8f44e0?id=69740 :label: grasple_exercise_1_2_2 :dropdown: @@ -912,7 +928,8 @@ $$ ::: -:::{prf:proof} +:::{admonition} Proof of {prf:ref}`Prop:InnerProduct:UnitVectorForv` +:class: myproof Assume that $\mathbf{v} \neq \mathbf{0}$. For $\mathbf{u} = k\mathbf{v}$, with $\norm{\mathbf{u}} = 1$ and $k > 0$ to hold, we must have @@ -957,14 +974,6 @@ $$ ::: -%\begin{figure} -%\begin{center} -%\includegraphics{Images/Fig-InnerProduct-TriangleInequality.pdf} -%\caption{The Triangle Inequality} -%\label{Fig:InnerProduct:TriangleInequality} -%\end{center} -%\end{figure} - Interestingly, Pythagoras' theorem also holds in $\mathbb{R}^n$. :::{prf:theorem} @@ -980,7 +989,8 @@ $$ ::: -:::{prf:proof} +:::{admonition} Proof of {prf:ref}`Thm:InnerProduct:PythagorasInRn` +:class: myproof This follows quite straightforwardly from the properties of the dot product. @@ -1068,7 +1078,8 @@ $$ ::: -:::{prf:proof} +:::{admonition} Proof of {prf:ref}`Thm:InnerProduct:Cauchy-Schwarz` ({prf:ref}`Cauchy-Schwarz Inequality <Thm:InnerProduct:Cauchy-Schwarz>`) +:class: myproof There are many ways to prove the Cauchy-Schwarz inequality. There is even a whole book devoted to it: "Cauchy Schwarz master class" by J.M. Steele. @@ -1172,6 +1183,7 @@ With this inequality established, the Triangle Inequality {eq}`Item:Prop:InnerProduct:TriangleInequality` is easily proved. Let's repeat it, and prove it. :::{prf:theorem} +:label: Thm:InnerProduct:TriangleInequality For any two vectors in $\mathbb{R}^n$, @@ -1182,7 +1194,8 @@ $$ ::: -:::{prf:proof} +:::{admonition} Proof of {prf:ref}`Thm:InnerProduct:TriangleInequality` +:class: myproof Since all terms involved are non-negative we may as well show that the inequality holds for the squares: @@ -1227,13 +1240,16 @@ $$ The first motivation to consider the dot product came from the question of perpendicularity of two vectors in the plane or in $\R^3$. Perpendicularity of two vectors means that the angle between them is equal to $\frac12\pi$. -Below we will show that it is possible to express the angle between *any* two (nonzero) vectors into dot products. And use this to define the concept of angle in a general space $\R^n$. +Below we will show that it is possible to express the angle between _any_ two (nonzero) vectors into dot products. And use this to define the concept of angle in a general space $\R^n$. -:::{figure} Images/Fig-InnerProduct-AngleAndProjection.svg +```{applet} +:url: dot_product/angleandprojection :name: Fig:InnerProduct:AngleAndProjection +:fig: Images/Fig-InnerProduct-AngleAndProjection.svg +:class: dark-light -Angle between two vectors -::: +Angle between two vectors. +``` First we will show a geometrical characterization of the dot product that holds in $\mathbb{R}^2$ as well as in $\mathbb{R}^3$. @@ -1278,11 +1294,12 @@ $$ ::: -::::{prf:proof} +::::{admonition} Proof of {prf:ref}`Prop:InnerProduct:DotProdGeometric` +:class: myproof We will derive formula {eq}`Eq:InnerProduct:GeometricDefinition`. Assume that $\mathbf{v}$ and $\mathbf{w}$ are nonzero vectors. -Recall the formula of the orthogonal projection of $\mathbf{w}$ onto $\mathbf{v}$, +Recall the formula of the orthogonal projection of $\mathbf{w}$ onto $\mathbf{v}$, $$ @@ -1353,7 +1370,7 @@ is the length of the orthogonal projection of $\vect{w}$ onto $\vect{v}$. :::: -:::{exercise} +:::{prf:example} :label: Ex:InnerProduct:AnglesInMethaneMolecule In a methane molecule $\ce{CH_4}$ the four $\ce{H}$-atoms are positioned in a perfectly symmetrical way around the $\ce{C}$-atom. @@ -1399,7 +1416,7 @@ $$ \varphi = \angle(\mathbf{v},\mathbf{w}) = \arccos\left(\dfrac{\mathbf{v}\ip\mathbf{w}}{\norm{\mathbf{v}} \norm{\mathbf{w}}} \right). $$ -This definition makes sense, since the Cauchy-Schwarz inequality ({prf:ref}`Thm:InnerProduct:Cauchy-Schwarz`) +This definition makes sense, since the Cauchy-Schwarz inequality ({prf:ref}`Thm:InnerProduct:Cauchy-Schwarz`) implies $$ @@ -1443,6 +1460,7 @@ we may conclude that for large $n$ in $\mathbb{R}^n$ the two vectors are 'almost ## Grasple Exercises ::::{grasple} +:iframeclass: dark-light :url: https://embed.grasple.com/exercises/59912254-6fc8-43c7-9c44-1ea7eab1c236?id=62409 :label: grasple_exercise_1_2_3 :dropdown: @@ -1451,6 +1469,7 @@ we may conclude that for large $n$ in $\mathbb{R}^n$ the two vectors are 'almost :::: ::::{grasple} +:iframeclass: dark-light :url: https://embed.grasple.com/exercises/7b49e0f5-ae8b-4e92-8878-665dc080b7ee?id=65601 :label: grasple_exercise_1_2_4 :dropdown: @@ -1459,6 +1478,7 @@ we may conclude that for large $n$ in $\mathbb{R}^n$ the two vectors are 'almost :::: ::::{grasple} +:iframeclass: dark-light :url: https://embed.grasple.com/exercises/c8b4eed4-179f-42ab-9ec9-07f66445c960?id=69482 :label: grasple_exercise_1_2_5 :dropdown: @@ -1467,6 +1487,7 @@ we may conclude that for large $n$ in $\mathbb{R}^n$ the two vectors are 'almost :::: ::::{grasple} +:iframeclass: dark-light :url: https://embed.grasple.com/exercises/b5a4e1c0-92ca-4307-9eb0-25a3a5807fc7?id=62415 :label: grasple_exercise_1_2_6 :dropdown: @@ -1475,6 +1496,7 @@ we may conclude that for large $n$ in $\mathbb{R}^n$ the two vectors are 'almost :::: ::::{grasple} +:iframeclass: dark-light :url: https://embed.grasple.com/exercises/34bbb9e1-207e-4c06-8686-1c32b3f3d0aa?id=78751 :label: grasple_exercise_1_2_8 :dropdown: @@ -1483,6 +1505,7 @@ we may conclude that for large $n$ in $\mathbb{R}^n$ the two vectors are 'almost :::: ::::{grasple} +:iframeclass: dark-light :url: https://embed.grasple.com/exercises/30a7abfe-9d40-4faa-a848-83bd67e024a0?id=62406 :label: grasple_exercise_1_2_7 :dropdown: @@ -1491,6 +1514,7 @@ we may conclude that for large $n$ in $\mathbb{R}^n$ the two vectors are 'almost :::: ::::{grasple} +:iframeclass: dark-light :url: https://embed.grasple.com/exercises/7dc339bb-fe79-4eb9-914c-ea1a7ca85a85?id=69737 :label: grasple_exercise_1_2_9 :dropdown: @@ -1499,6 +1523,7 @@ we may conclude that for large $n$ in $\mathbb{R}^n$ the two vectors are 'almost :::: ::::{grasple} +:iframeclass: dark-light :url: https://embed.grasple.com/exercises/8de90b0e-e89a-49a6-aa63-1b1e39f6e98e?id=79262 :label: grasple_exercise_1_2_10 :dropdown: @@ -1507,6 +1532,7 @@ we may conclude that for large $n$ in $\mathbb{R}^n$ the two vectors are 'almost :::: ::::{grasple} +:iframeclass: dark-light :url: https://embed.grasple.com/exercises/d4dd1154-a3ec-497e-bc73-1cd96529f0e7?id=69741 :label: grasple_exercise_1_2_11 :dropdown: @@ -1515,6 +1541,7 @@ we may conclude that for large $n$ in $\mathbb{R}^n$ the two vectors are 'almost :::: ::::{grasple} +:iframeclass: dark-light :url: https://embed.grasple.com/exercises/c2242315-7e4f-463b-b3cf-09e9e15c8b2b?id=69739 :label: grasple_exercise_1_2_12 :dropdown: @@ -1523,14 +1550,16 @@ we may conclude that for large $n$ in $\mathbb{R}^n$ the two vectors are 'almost :::: ::::{grasple} +:iframeclass: dark-light :url: https://embed.grasple.com/exercises/67334454-d109-45a2-b640-545041ff896d?id=62416 :label: grasple_exercise_1_2_13 :dropdown: -:description: Find $\text{proj}*{\mathbf{v}}(\mathbf{w})$ in $\R^2$. +:description: Find $\text{proj}_{\mathbf{v}}(\mathbf{w})$ in $\R^2$. :::: ::::{grasple} +:iframeclass: dark-light :url: https://embed.grasple.com/exercises/9705b078-6c91-42c6-9768-8a043115b881?id=62658 :label: grasple_exercise_1_2_14 :dropdown: @@ -1539,6 +1568,7 @@ we may conclude that for large $n$ in $\mathbb{R}^n$ the two vectors are 'almost :::: ::::{grasple} +:iframeclass: dark-light :url: https://embed.grasple.com/exercises/531d3be2-dd62-4c21-b023-70e0b63809be?id=78747 :label: grasple_exercise_1_2_15 :dropdown: @@ -1547,6 +1577,7 @@ we may conclude that for large $n$ in $\mathbb{R}^n$ the two vectors are 'almost :::: ::::{grasple} +:iframeclass: dark-light :url: https://embed.grasple.com/exercises/161ecdf6-4cfb-41ba-bc16-685fe8532471?id=62414 :label: grasple_exercise_1_2_16 :dropdown: @@ -1555,6 +1586,7 @@ we may conclude that for large $n$ in $\mathbb{R}^n$ the two vectors are 'almost :::: ::::{grasple} +:iframeclass: dark-light :url: https://embed.grasple.com/exercises/c4d2743f-5f14-4812-9531-1a40c28c15cb?id=62413 :label: grasple_exercise_1_2_17 :dropdown: @@ -1563,6 +1595,7 @@ we may conclude that for large $n$ in $\mathbb{R}^n$ the two vectors are 'almost :::: ::::{grasple} +:iframeclass: dark-light :url: https://embed.grasple.com/exercises/407cb45d-2baf-4b0d-a1eb-6e51186e19f3?id=69738 :label: grasple_exercise_1_2_18 :dropdown: @@ -1571,6 +1604,7 @@ we may conclude that for large $n$ in $\mathbb{R}^n$ the two vectors are 'almost :::: ::::{grasple} +:iframeclass: dark-light :url: https://embed.grasple.com/exercises/c4c1c609-b1dd-4588-865f-53d7e8221f88?id=62689 :label: grasple_exercise_1_2_19 :dropdown: @@ -1579,10 +1613,10 @@ we may conclude that for large $n$ in $\mathbb{R}^n$ the two vectors are 'almost :::: ::::{grasple} +:iframeclass: dark-light :url: https://embed.grasple.com/exercises/2a2423c3-0907-40b7-bd5f-7607baf7cc09?id=62668 -:label: grasple*exercise_1_2_20 +:label: grasple_exercise_1_2_20 :dropdown: -:description: What to conclude -from $\text{proj}_{\mathbf{v}}(\mathbf{w}_1 ) = \text{proj}_{\mathbf{v}}(\mathbf{w}\_2)$? +:description: What to conclude from $\text{proj}_{\mathbf{v}}(\mathbf{w}_1 ) = \text{proj}_{\mathbf{v}}(\mathbf{w}\_2)$? :::: diff --git a/Chapter1/Lines_and_Planes.md b/Chapter1/Lines_and_Planes.md index 25d315e..77706d8 100644 --- a/Chapter1/Lines_and_Planes.md +++ b/Chapter1/Lines_and_Planes.md @@ -27,6 +27,7 @@ The point $(4, 1)$, for example, is a point on the line with equation $2x-3y=5$ ::::{figure} Images/Fig-LinesAndPlanes-LineInPlane.svg :name: Fig:LinesAndPlanes:LineInPlane +:class: dark-light The line $2x-3y=5$ in the plane. :::: @@ -37,6 +38,7 @@ Two lines can have a point of intersection. Let $\mathcal{L}_1$ and $\mathcal{L} ::::{figure} Images/Fig-LinesAndPlanes-PointIntersection.svg :name: Fig:LinesAndPlanes:PointIntersection +:class: dark-light Intersecting lines. :::: @@ -45,6 +47,7 @@ In the previous example there was exactly one point of intersection. This is not ::::{figure} Images/Fig-LinesAndPlanes-ParallelLines.svg :name: Fig:LinesAndPlanes:ParallelLines +:class: dark-light Parallel lines. :::: @@ -53,6 +56,7 @@ Finally, let us take a look at the line $\mathcal{L}_2$, which was defined by th ::::{figure} Images/Fig-LinesAndPlanes-CoincidingLines.svg :name: Fig:LinesAndPlanes:CoincidingLines +:class: dark-light Coinciding lines. :::: @@ -90,11 +94,14 @@ $$ is a vector parallel to the same line. -::::{figure} Images/Fig-LinesAndPlanes-VectorEquation.svg +```{applet} +:url: lines_and_planes/vector_equation +:fig: Images/Fig-LinesAndPlanes-VectorEquation.svg :name: Fig:LinesAndPlanes:VectorEquation +:class: dark-light The line $\mathcal{L}_1$: $\vect{x} = \vect{v}_0 + r\vect{u}$. -:::: +``` How do we obtain all vectors on the line $\mathcal{L}_1$? Let us start with the vector @@ -159,6 +166,7 @@ $$ :::: ::::{grasple} +:iframeclass: dark-light :url: https://embed.grasple.com/exercises/b110d6af-8cf7-4385-92f4-6f0ee364c860?id=63490 :label: grasple_exercise_1_4_1 :dropdown: @@ -185,6 +193,7 @@ $$ ::::{figure} Images/Fig-LinesAndPlanes-NormalEquationLine.svg :name: Fig:LinesAndPlanes:NormalEquationLine +:class: dark-light Line $\mathcal{L}$ with normal vector $\vect{n}$. :::: @@ -220,6 +229,7 @@ Let us try to find a Cartesian equation for the line $\mathcal{L}$ through the p :::{figure} Images/Fig-LinesAndPlanes-OrthogonalLines.svg :name: Fig:LinesAndPlanes:OrthogonalLines +:class: dark-light A line orthogonal to $\mathcal{L}_1$. ::: @@ -270,6 +280,7 @@ As we can see in {numref}`Figure %s <Fig:LinesAndPlanes:NormalEquationPlaneOrigi :fig: Images/Fig-LinesAndPlanes-NormalEquationPlaneOrigin.svg :name: Fig:LinesAndPlanes:NormalEquationPlaneOrigin :status: approved +:class: dark-light A plane through the origin. :::: @@ -281,6 +292,7 @@ Now let $P$ be the point with coordinates $(0, 2, 1)$ and take an arbitrary poin :fig: Images/Fig-LinesAndPlanes-NormalEquationPlane.svg :name: Fig:LinesAndPlanes:NormalEquationPlane :status: approved +:class: dark-light A plane through the point $P$. :::: @@ -296,6 +308,7 @@ What is the Cartesian equation of this plane? If the coordinates of $Q$ are $(x, This means that $Q$ is on the plane $\mathcal{P}$ through $P$ and orthogonal to $\mathbf{n}$ if and only if its coordinates satisfy $2x+y+3z-5=0$ or $2x+y+3z=5$. Hence, we obtain a Cartesian equation of $\mathcal{P}$. ::::{grasple} +:iframeclass: dark-light :url: https://embed.grasple.com/exercises/9b9d1faa-013e-4c46-8863-53c3fdfeff4a?id=79284 :label: grasple_exercise_1_4_2 :dropdown: @@ -390,6 +403,7 @@ We can find directional vectors of a plane by taking vectors that connects two d :fig: Images/Fig-LinesAndPlanes-DirectionalVectorsPlane.svg :name: Fig:LinesAndPlanes:DirectionalVectorsPlane :status: approved +:class: dark-light A parametric vector equation of a plane. ::: @@ -461,8 +475,9 @@ It is of course possible that two planes have no points in common at all. Take a :fig: Images/Fig-LinesAndPlanes-TwoDisjointPlanes.svg :name: Fig:LinesAndPlanes:TwoDisjointPlanes :status: approved +:class: dark-light -Two planes without a common point in common. +Two planes without a point in common. ::: Two planes in $\mathbb{R}^3$ can never have a single point of intersection. They can, however, have infinitely many common points. This can occur when the two planes have a line of intersection, as we can see in {numref}`Figure %s <Fig:LinesAndPlanes:TwoPlanesLineIntersection>`. On the other hand, it is also possible that two planes coincide, see {numref}`Figure %s <Fig:LinesAndPlanes:TwoPlanesCoincide>`. In this case each point on one of the two planes is an intersection point. @@ -472,6 +487,7 @@ Two planes in $\mathbb{R}^3$ can never have a single point of intersection. They :fig: Images/Fig-LinesAndPlanes-TwoPlanesLineIntersection.svg :name: Fig:LinesAndPlanes:TwoPlanesLineIntersection :status: approved +:class: dark-light Two planes with a line of intersection. ::: @@ -481,6 +497,7 @@ Two planes with a line of intersection. :fig: Images/Fig-LinesAndPlanes-TwoPlanesCoincide.svg :name: Fig:LinesAndPlanes:TwoPlanesCoincide :status: approved +:class: dark-light Two planes that coincide. ::: @@ -494,6 +511,7 @@ First of all, it is possible that there are no points that are on $\mathcal{P}_1 :fig: Images/Fig-LinesAndPlanes-DisjointPlanes.svg :name: Fig:LinesAndPlanes:DisjointPlanes :status: approved +:class: dark-light Three planes without a point in common. ::: @@ -505,6 +523,7 @@ In {numref}`Figure %s <Fig:LinesAndPlanes:PlanesPointIntersection>` we see three :fig: Images/Fig-LinesAndPlanes-PlanesPointIntersection.svg :name: Fig:LinesAndPlanes:PlanesPointIntersection :status: approved +:class: dark-light Three planes with one point in common. ::: @@ -516,6 +535,7 @@ There are several circumstances where three planes have an infinite number of po :fig: Images/Fig-LinesAndPlanes-PlanesLineIntersection.svg :name: Fig:LinesAndPlanes:PlanesLineIntersection :status: approved +:class: dark-light Three planes with line of intersection. ::: @@ -538,6 +558,7 @@ Let $\mathcal{L}$ be a line in $\mathbb{R}^3$, $\mathbf{v_0}$ a vector that conn :fig: Images/Fig-LinesAndPlanes-ParametricLineSpace.svg :name: Fig:LinesAndPlanes:ParametricLineSpace :status: approved +:class: dark-light The line $\mathcal{L}$ in $\mathbb{R}^3$. ::: @@ -573,6 +594,7 @@ is thus a possible parametric vector equation of $\mathcal{L}$. ## Grasple Exercises ::::{grasple} +:iframeclass: dark-light :url: https://embed.grasple.com/exercises/d9a13ea7-786d-4935-8531-2ba3ec41c930?id=67061 :label: grasple_exercise_1_4_3 :dropdown: @@ -581,6 +603,7 @@ is thus a possible parametric vector equation of $\mathcal{L}$. :::: ::::{grasple} +:iframeclass: dark-light :url: https://embed.grasple.com/exercises/a96fb8c3-000c-4d62-be3c-36dc47ced610?id=67694 :label: grasple_exercise_1_4_4 :dropdown: @@ -589,6 +612,7 @@ is thus a possible parametric vector equation of $\mathcal{L}$. :::: ::::{grasple} +:iframeclass: dark-light :url: https://embed.grasple.com/exercises/1c6242a7-85e4-4bef-b05b-4c6693170bfc?id=67268 :label: grasple_exercise_1_4_5 :dropdown: @@ -597,6 +621,7 @@ is thus a possible parametric vector equation of $\mathcal{L}$. :::: ::::{grasple} +:iframeclass: dark-light :url: https://embed.grasple.com/exercises/74dbf343-63db-46cf-9517-ab2694d616fb?id=71058 :label: grasple_exercise_1_4_6 :dropdown: @@ -605,6 +630,7 @@ is thus a possible parametric vector equation of $\mathcal{L}$. :::: ::::{grasple} +:iframeclass: dark-light :url: https://embed.grasple.com/exercises/c86f64d5-5d64-403e-98f7-9d8e8c4b90fb?id=78903 :label: grasple_exercise_1_4_7 :dropdown: @@ -613,6 +639,7 @@ is thus a possible parametric vector equation of $\mathcal{L}$. :::: ::::{grasple} +:iframeclass: dark-light :url: https://embed.grasple.com/exercises/42d254e8-e577-4bb1-b365-110f9805c1cf?id=78848 :label: grasple_exercise_1_4_8 :dropdown: @@ -621,6 +648,7 @@ is thus a possible parametric vector equation of $\mathcal{L}$. :::: ::::{grasple} +:iframeclass: dark-light :url: https://embed.grasple.com/exercises/2b9cb96e-caa3-4f1c-8f65-a77be3f70050?id=67065 :label: grasple_exercise_1_4_9 :dropdown: @@ -629,6 +657,7 @@ is thus a possible parametric vector equation of $\mathcal{L}$. :::: ::::{grasple} +:iframeclass: dark-light :url: https://embed.grasple.com/exercises/35559ca4-9c46-4d25-a6ed-d44c4eb6d33b?id=67067 :label: grasple_exercise_1_4_10 :dropdown: @@ -637,6 +666,7 @@ is thus a possible parametric vector equation of $\mathcal{L}$. :::: ::::{grasple} +:iframeclass: dark-light :url: https://embed.grasple.com/exercises/67cbf60d-ce34-49f0-b833-715784647873?id=67257 :label: grasple_exercise_1_4_11 :dropdown: @@ -645,6 +675,7 @@ is thus a possible parametric vector equation of $\mathcal{L}$. :::: ::::{grasple} +:iframeclass: dark-light :url: https://embed.grasple.com/exercises/bbb3c082-b8d1-42d6-b718-b37d5ba26363?id=67260 :label: grasple_exercise_1_4_12 :dropdown: @@ -653,6 +684,7 @@ is thus a possible parametric vector equation of $\mathcal{L}$. :::: ::::{grasple} +:iframeclass: dark-light :url: https://embed.grasple.com/exercises/23faf686-3fb3-4280-aa26-f14be36f5aae?id=78870 :label: grasple_exercise_1_4_13 :dropdown: @@ -660,6 +692,7 @@ is thus a possible parametric vector equation of $\mathcal{L}$. :::: ::::{grasple} +:iframeclass: dark-light :url: https://embed.grasple.com/exercises/0b29e241-4c23-4321-be4c-9a7f8cd80b5c?id=67697 :label: grasple_exercise_1_4_14 :dropdown: @@ -668,8 +701,9 @@ is thus a possible parametric vector equation of $\mathcal{L}$. :::: ::::{grasple} +:iframeclass: dark-light :url: https://embed.grasple.com/exercises/f02eebc1-b919-4070-a87a-f04bb620cc8d?id=80872 -:label: grasple_exercise_1_4_14 +:label: grasple_exercise_1_4_15 :dropdown: :description: To give a cartesian equation for a plane containing a given point $A$ and with a given normal vector $\vect{n}$. diff --git a/Chapter1/Vectors.md b/Chapter1/Vectors.md index c77e2fb..1a991b3 100644 --- a/Chapter1/Vectors.md +++ b/Chapter1/Vectors.md @@ -18,6 +18,7 @@ Consider an arrow $\mathbf{v}_{1}$ in the plane as in {numref}`Figure %s <Fig:Ve ```{figure} Images/Fig-Vectors-ArrowinPlane.svg :name: Fig:Vectors:ArrowinPlane +:class: dark-light Two arrows in the plane. ``` @@ -28,6 +29,7 @@ Of course, such route plans can be combined. Take a look at {numref}`Figure %s < ```{figure} Images/Fig-Vectors-AdditionPlane.svg :name: Fig:Vectors:AdditionPlane +:class: dark-light Geometrical interpretation of addition in the plane. ``` @@ -90,6 +92,7 @@ which is precisely $2\mathbf{v}_{3}$. We have found that the geometrical notion of an arrow in the plane with a certain length pointing in a certain direction is captured perfectly by the algebraic notion of its vector. Moreover, the natural operations of stretching and combining arrows can easily be done algebraically. In fact, there is no reason why we should restrict ourselves to arrows in the plane. We can just as well take arrows in three dimensional space and glue them together or stretch them. In {numref}`Subsection %s <Subsec:Vectors:ndim>` we will formalize this notion to $n$ dimensions -- and we will see that it is not so strange to have more than $3$ dimensions! ::::{grasple} +:iframeclass: dark-light :url: https://embed.grasple.com/exercises/553450f1-e960-4bac-9bb4-074fe8106369?id=78688 :label: grasple_exercise_1_1_1 :dropdown: @@ -172,6 +175,7 @@ We will sometimes call real numbers *scalars*, because we use them to scale vect :url: vectors/3Daddition :fig: Images/Fig-Vectors-3Daddition.svg :status: approved +:class: dark-light Geometrical interpretation of addition for three-dimensional vectors. ``` @@ -186,15 +190,8 @@ Note that we only define the sum of two vectors if they have the same size! This might look a bit scary, but is really just what we did in the plane, just with more numbers now. We now use the term vector instead of arrow. Adding two vectors is again just gluing the second one to the tip of the first one, and taking a scalar multiple of a vector is just stretching it again (or perhaps shrinking it). -%\begin{app} -%More than three dimensions? How does that make sense? Well, it is actually not so strange at all! Consider for example a (digital) picture. In order to describe one point of the image, we not only have to give its location but also its colour. The location is given by two numbers: how far along the $x$-axis and how far up the $y$-axis our point is. The colour is usually given in terms of primary colours. Typical primary colours would be red, green, and blue. Other colours are made by mixing certain amounts of red, green, and blue. You can get magenta, for example, by mixing red and blue in equal amounts. To fully describe a point in our picture, we therefore need a vector of length 5: two entries for the location, and three for the colour. -%\begin{figure} -%\missingfigure{Applet with e.g. 20x10 squares and five changeable dimensions.} -%\caption{A 20x10 picture. Every point is described by two numbers giving its location and three numbers giving its colour.} -%\end{figure} -%\end{app} - ::::{grasple} +:iframeclass: dark-light :url: https://embed.grasple.com/exercises/a962fb8c-89b0-4b97-b76e-8f53335cf301?id=70140 :label: grasple_exercise_1_1_2 :dropdown: @@ -235,13 +232,12 @@ Suppose $\mathbf{v}_{1},\mathbf{v}_{2},\mathbf{v}_{3}$ are vectors in $\mathbb{R ```` -```{prf:proof} - -Exercise. +::::{admonition} Proof of {prf:ref}`Prop:Vectors:BasicRules` +:class: myproof -%(Grasple 62390) +See {numref}`grasple_exercise_1_1_11`. -``` +:::: For example, the equation {eq}`Item:Vectors:Associativity` tells us that we do not have to worry about bracketing when adding vectors. That is, we can first add $\mathbf{v}_{1}$ to $\mathbf{v}_{2}$ and then add $\mathbf{v}_{3}$ to the result or we can first add $\mathbf{v}_{2}$ to $\mathbf{v}_{3}$ and then add the result to $\mathbf{v}_{1}$. In both cases, we will get the same answer. @@ -262,7 +258,7 @@ Note that for every molecule of sodium sulfate we need two molecules of carbon i ```{figure} Images/Fig-Vectors-ChemRec.svg :name: Fig:Vectors:ChemRec -The chemical reaction given in {eq}`Eq:Vectors:ChemReac` +The chemical reaction given in {eq}`Eq:Vectors:ChemReac`. ``` There are four different chemical elements involved in this reaction: sodium ($\ce{Na}$), sulfide ($\ce{S}$), oxygen ($\ce{O}$), and carbon. Each of our molecules can be written as a vector of size four with the entries giving the number of sodium, sulfide, oxygen, and carbon atoms (in that order) in the molecule. This gives: @@ -315,6 +311,7 @@ Suppose we fix an arbitrary point in the plane. Let us call it the _origin_ and ```{figure} Images/Fig-Vectors-PointandVec.svg :name: Fig:Vectors:PointandVect +:class: dark-light The point $P=(-1,2)$ and its associated vector $\mathbf{v}=\begin{bmatrix}-1\\2\end{bmatrix}$. ``` @@ -351,6 +348,7 @@ $$ ## Grasple Exercises ::::{grasple} +:iframeclass: dark-light :url: https://embed.grasple.com/exercises/670148b0-07cb-4f0c-861f-0ac6fbc83fb2?id=70141 :label: grasple_exercise_1_1_3 :dropdown: @@ -359,6 +357,7 @@ $$ :::: ::::{grasple} +:iframeclass: dark-light :url: https://embed.grasple.com/exercises/f85678d3-21f1-484f-a589-4e2fc5b0f76d?id=73610 :label: grasple_exercise_1_1_4 :dropdown: @@ -367,6 +366,7 @@ $$ :::: ::::{grasple} +:iframeclass: dark-light :url: https://embed.grasple.com/exercises/9c3a037d-7bcb-49c7-a167-baffbae14d46?id=70142 :label: grasple_exercise_1_1_5 :dropdown: @@ -375,6 +375,7 @@ $$ :::: ::::{grasple} +:iframeclass: dark-light :url: https://embed.grasple.com/exercises/a33e81af-5670-421f-96a0-d4ed40f5e79b?id=74451 :label: grasple_exercise_1_1_6 :dropdown: @@ -383,6 +384,7 @@ $$ :::: ::::{grasple} +:iframeclass: dark-light :url: https://embed.grasple.com/exercises/b212a5ff-ea16-47a9-bc71-8e2b21944c9d?id=69732 :label: grasple_exercise_1_1_7 :dropdown: @@ -391,6 +393,7 @@ $$ :::: ::::{grasple} +:iframeclass: dark-light :url: https://embed.grasple.com/exercises/a56eb5e4-62c9-4dfa-9f9c-e53c1f1c913a?id=69479 :label: grasple_exercise_1_1_8 :dropdown: @@ -399,6 +402,7 @@ $$ :::: ::::{grasple} +:iframeclass: dark-light :url: https://embed.grasple.com/exercises/e1df17bf-cfb6-4dde-ae63-c424b5e149ba?id=73622 :label: grasple_exercise_1_1_9 :dropdown: @@ -407,6 +411,7 @@ $$ :::: ::::{grasple} +:iframeclass: dark-light :url: https://embed.grasple.com/exercises/ff44880f-1ce0-428e-8bb2-42898b66e76f?id=78691 :label: grasple_exercise_1_1_10 :dropdown: @@ -415,6 +420,7 @@ $$ :::: ::::{grasple} +:iframeclass: dark-light :url: https://embed.grasple.com/exercises/65b17e6e-b9e1-44de-9445-578c5ee1f633?id=62390 :label: grasple_exercise_1_1_11 :dropdown: diff --git a/Chapter2/Images/Fig-LinInd-Examplein2D.svg b/Chapter2/Images/Fig-LinInd-Examplein2D.svg index 26b11b4..1bd7580 100644 --- a/Chapter2/Images/Fig-LinInd-Examplein2D.svg +++ b/Chapter2/Images/Fig-LinInd-Examplein2D.svg @@ -20,6 +20,9 @@ <symbol overflow="visible" id="glyph1-3"> <path style="stroke:none;" d="M 2.015625 -2.65625 C 2.640625 -2.65625 3.03125 -2.1875 3.03125 -1.359375 C 3.03125 -0.359375 2.46875 -0.078125 2.046875 -0.078125 C 1.609375 -0.078125 1.015625 -0.234375 0.734375 -0.65625 C 1.03125 -0.65625 1.21875 -0.828125 1.21875 -1.09375 C 1.21875 -1.34375 1.046875 -1.53125 0.78125 -1.53125 C 0.578125 -1.53125 0.34375 -1.390625 0.34375 -1.078125 C 0.34375 -0.328125 1.15625 0.171875 2.0625 0.171875 C 3.125 0.171875 3.859375 -0.5625 3.859375 -1.359375 C 3.859375 -2.015625 3.328125 -2.625 2.53125 -2.796875 C 3.15625 -3.015625 3.625 -3.5625 3.625 -4.1875 C 3.625 -4.828125 2.90625 -5.28125 2.078125 -5.28125 C 1.234375 -5.28125 0.59375 -4.8125 0.59375 -4.21875 C 0.59375 -3.921875 0.78125 -3.796875 0.984375 -3.796875 C 1.234375 -3.796875 1.390625 -3.96875 1.390625 -4.203125 C 1.390625 -4.5 1.140625 -4.609375 0.96875 -4.609375 C 1.296875 -5.046875 1.90625 -5.078125 2.0625 -5.078125 C 2.265625 -5.078125 2.859375 -5.015625 2.859375 -4.1875 C 2.859375 -3.640625 2.640625 -3.296875 2.53125 -3.171875 C 2.28125 -2.921875 2.109375 -2.90625 1.625 -2.875 C 1.46875 -2.875 1.40625 -2.859375 1.40625 -2.765625 C 1.40625 -2.65625 1.46875 -2.65625 1.609375 -2.65625 Z M 2.015625 -2.65625 "/> </symbol> +<symbol overflow="visible" id="glyph1-4"> +<path style="stroke:none;" d="M 3.125 -5.140625 C 3.125 -5.296875 3.125 -5.359375 2.953125 -5.359375 C 2.859375 -5.359375 2.84375 -5.34375 2.765625 -5.234375 L 0.234375 -1.5625 L 0.234375 -1.296875 L 2.46875 -1.296875 L 2.46875 -0.640625 C 2.46875 -0.34375 2.453125 -0.265625 1.84375 -0.265625 L 1.65625 -0.265625 L 1.65625 0 C 2.328125 -0.03125 2.34375 -0.03125 2.796875 -0.03125 C 3.25 -0.03125 3.265625 -0.03125 3.9375 0 L 3.9375 -0.265625 L 3.765625 -0.265625 C 3.15625 -0.265625 3.125 -0.34375 3.125 -0.640625 L 3.125 -1.296875 L 3.96875 -1.296875 L 3.96875 -1.5625 L 3.125 -1.5625 Z M 2.53125 -4.5 L 2.53125 -1.5625 L 0.515625 -1.5625 Z M 2.53125 -4.5 "/> +</symbol> </g> <clipPath id="clip1"> <path d="M 3 0 L 161 0 L 161 142.054688 L 3 142.054688 Z M 3 0 "/> @@ -34,22 +37,22 @@ <g style="fill:rgb(0%,65.098572%,83.921814%);fill-opacity:1;"> <use xlink:href="#glyph1-1" x="84.70515" y="132.514296"/> </g> -<path style="fill:none;stroke-width:1.59404;stroke-linecap:round;stroke-linejoin:miter;stroke:rgb(64.704895%,0%,20.391846%);stroke-opacity:1;stroke-miterlimit:10;" d="M 23.057998 23.056696 L 23.057998 134.555185 " transform="matrix(0.996685,0,0,-0.996685,3.096557,144.32402)"/> -<path style=" stroke:none;fill-rule:nonzero;fill:rgb(64.704895%,0%,20.391846%);fill-opacity:1;" d="M 26.078125 6.445313 L 23.058594 12.480469 L 26.078125 10.214844 L 29.09375 12.480469 "/> -<g style="fill:rgb(64.704895%,0%,20.391846%);fill-opacity:1;"> +<path style="fill:none;stroke-width:1.59404;stroke-linecap:round;stroke-linejoin:miter;stroke:rgb(0%,60.78186%,46.665955%);stroke-opacity:1;stroke-miterlimit:10;" d="M 23.057998 23.056696 L 23.057998 134.555185 " transform="matrix(0.996685,0,0,-0.996685,3.096557,144.32402)"/> +<path style=" stroke:none;fill-rule:nonzero;fill:rgb(0%,60.78186%,46.665955%);fill-opacity:1;" d="M 26.078125 6.445313 L 23.058594 12.480469 L 26.078125 10.214844 L 29.09375 12.480469 "/> +<g style="fill:rgb(0%,60.78186%,46.665955%);fill-opacity:1;"> <use xlink:href="#glyph0-1" x="10.197939" y="65.648672"/> </g> -<g style="fill:rgb(64.704895%,0%,20.391846%);fill-opacity:1;"> +<g style="fill:rgb(0%,60.78186%,46.665955%);fill-opacity:1;"> <use xlink:href="#glyph1-2" x="17.272412" y="67.435728"/> </g> <g clip-path="url(#clip1)" clip-rule="nonzero"> -<path style="fill:none;stroke-width:1.59404;stroke-linecap:round;stroke-linejoin:miter;stroke:rgb(0%,60.78186%,46.665955%);stroke-opacity:1;stroke-miterlimit:10;" d="M 23.057998 23.056696 L 135.661713 135.660411 " transform="matrix(0.996685,0,0,-0.996685,3.096557,144.32402)"/> +<path style="fill:none;stroke-width:1.59404;stroke-linecap:round;stroke-linejoin:miter;stroke:rgb(64.704895%,0%,20.391846%);stroke-opacity:1;stroke-miterlimit:10;" d="M 23.057998 23.056696 L 135.661713 135.660411 " transform="matrix(0.996685,0,0,-0.996685,3.096557,144.32402)"/> </g> -<path style=" stroke:none;fill-rule:nonzero;fill:rgb(0%,60.78186%,46.665955%);fill-opacity:1;" d="M 140.976563 6.445313 L 134.574219 8.578125 L 138.308594 9.113281 L 138.84375 12.847656 "/> -<g style="fill:rgb(0%,60.78186%,46.665955%);fill-opacity:1;"> +<path style=" stroke:none;fill-rule:nonzero;fill:rgb(64.704895%,0%,20.391846%);fill-opacity:1;" d="M 140.976563 6.445313 L 134.574219 8.578125 L 138.308594 9.113281 L 138.84375 12.847656 "/> +<g style="fill:rgb(64.704895%,0%,20.391846%);fill-opacity:1;"> <use xlink:href="#glyph0-1" x="67.646881" y="58.020042"/> </g> -<g style="fill:rgb(0%,60.78186%,46.665955%);fill-opacity:1;"> +<g style="fill:rgb(64.704895%,0%,20.391846%);fill-opacity:1;"> <use xlink:href="#glyph1-3" x="74.72235" y="59.807099"/> </g> <path style="fill:none;stroke-width:1.59404;stroke-linecap:round;stroke-linejoin:miter;stroke:rgb(64.704895%,0%,20.391846%);stroke-opacity:1;stroke-miterlimit:10;" d="M 23.057594 21.904439 L 249.836639 21.904439 " transform="matrix(0.996685,0,0,-0.996685,204.671178,144.32402)"/> @@ -58,7 +61,7 @@ <use xlink:href="#glyph0-1" x="394.104179" y="130.727239"/> </g> <g style="fill:rgb(64.704895%,0%,20.391846%);fill-opacity:1;"> - <use xlink:href="#glyph1-2" x="401.178651" y="132.514296"/> + <use xlink:href="#glyph1-4" x="401.178651" y="132.514296"/> </g> <path style="fill:none;stroke-width:1.59404;stroke-linecap:round;stroke-linejoin:miter;stroke:rgb(0%,65.098572%,83.921814%);stroke-opacity:1;stroke-miterlimit:10;" d="M 23.057594 23.056696 L 134.552164 23.056696 " transform="matrix(0.996685,0,0,-0.996685,204.671178,144.32402)"/> <path style=" stroke:none;fill-rule:nonzero;fill:rgb(0%,65.098572%,83.921814%);fill-opacity:1;" d="M 342.550781 121.34375 L 336.515625 118.324219 L 338.777344 121.34375 L 336.515625 124.363281 "/> @@ -74,7 +77,7 @@ <use xlink:href="#glyph0-1" x="211.772561" y="65.648672"/> </g> <g style="fill:rgb(0%,60.78186%,46.665955%);fill-opacity:1;"> - <use xlink:href="#glyph1-3" x="218.847033" y="67.435728"/> + <use xlink:href="#glyph1-2" x="218.847033" y="67.435728"/> </g> </g> </svg> diff --git a/Chapter2/Images/Fig-LinInd-Examplein3D.svg b/Chapter2/Images/Fig-LinInd-Examplein3D.svg index 43cc254..0d8d899 100644 --- a/Chapter2/Images/Fig-LinInd-Examplein3D.svg +++ b/Chapter2/Images/Fig-LinInd-Examplein3D.svg @@ -1,111 +1,111 @@ <?xml version="1.0" encoding="UTF-8"?> -<svg xmlns="http://www.w3.org/2000/svg" xmlns:xlink="http://www.w3.org/1999/xlink" width="175.836pt" height="111.861pt" viewBox="0 0 175.836 111.861" version="1.2"> +<svg xmlns="http://www.w3.org/2000/svg" xmlns:xlink="http://www.w3.org/1999/xlink" width="1709.812pt" height="1017.64pt" viewBox="0 0 1709.812 1017.64" version="1.2"> <defs> <g> <symbol overflow="visible" id="glyph0-0"> <path style="stroke:none;" d=""/> </symbol> <symbol overflow="visible" id="glyph0-1"> -<path style="stroke:none;" d="M 2.484375 -4.984375 C 1.875 -5.140625 1.34375 -5.734375 1.34375 -6.5 C 1.34375 -7.328125 2 -8.078125 2.9375 -8.078125 C 4.890625 -8.078125 5.15625 -6.140625 5.234375 -5.640625 C 5.25 -5.484375 5.25 -5.4375 5.375 -5.4375 C 5.5 -5.4375 5.5 -5.5 5.5 -5.71875 L 5.5 -8.125 C 5.5 -8.34375 5.5 -8.40625 5.390625 -8.40625 C 5.34375 -8.40625 5.296875 -8.40625 5.21875 -8.25 L 4.828125 -7.515625 C 4.25 -8.265625 3.46875 -8.40625 2.9375 -8.40625 C 1.609375 -8.40625 0.640625 -7.34375 0.640625 -6.125 C 0.640625 -5.546875 0.84375 -5.03125 1.296875 -4.546875 C 1.703125 -4.078125 2.125 -3.96875 2.96875 -3.765625 C 3.390625 -3.671875 4.046875 -3.5 4.21875 -3.421875 C 4.78125 -3.15625 5.140625 -2.5 5.140625 -1.84375 C 5.140625 -0.9375 4.515625 -0.09375 3.515625 -0.09375 C 2.984375 -0.09375 2.25 -0.234375 1.65625 -0.734375 C 0.96875 -1.359375 0.921875 -2.21875 0.90625 -2.609375 C 0.890625 -2.703125 0.796875 -2.703125 0.78125 -2.703125 C 0.640625 -2.703125 0.640625 -2.65625 0.640625 -2.4375 L 0.640625 -0.03125 C 0.640625 0.1875 0.640625 0.25 0.765625 0.25 C 0.828125 0.25 0.84375 0.234375 0.9375 0.078125 C 0.984375 -0.015625 1.234375 -0.453125 1.328125 -0.625 C 1.75 -0.15625 2.5 0.25 3.53125 0.25 C 4.875 0.25 5.84375 -0.890625 5.84375 -2.203125 C 5.84375 -2.921875 5.5625 -3.46875 5.234375 -3.859375 C 4.796875 -4.390625 4.265625 -4.53125 3.796875 -4.640625 Z M 2.484375 -4.984375 "/> +<path style="stroke:none;" d="M 24.859375 -49.84375 C 18.765625 -51.390625 13.390625 -57.375 13.390625 -65.015625 C 13.390625 -73.375 20.078125 -80.90625 29.40625 -80.90625 C 49 -80.90625 51.625 -61.546875 52.34375 -56.40625 C 52.59375 -54.984375 52.59375 -54.5 53.78125 -54.5 C 55.09375 -54.5 55.09375 -55.09375 55.09375 -57.25 L 55.09375 -81.390625 C 55.09375 -83.546875 55.09375 -84.140625 53.90625 -84.140625 C 53.546875 -84.140625 53.0625 -84.140625 52.234375 -82.578125 L 48.28125 -75.296875 C 42.546875 -82.703125 34.65625 -84.140625 29.40625 -84.140625 C 16.140625 -84.140625 6.453125 -73.5 6.453125 -61.3125 C 6.453125 -55.578125 8.484375 -50.3125 12.90625 -45.53125 C 17.09375 -40.875 21.28125 -39.796875 29.765625 -37.640625 C 33.9375 -36.6875 40.515625 -35.015625 42.1875 -34.296875 C 47.8125 -31.546875 51.515625 -25.09375 51.515625 -18.40625 C 51.515625 -9.4375 45.171875 -0.953125 35.25 -0.953125 C 29.875 -0.953125 22.46875 -2.265625 16.609375 -7.40625 C 9.6875 -13.625 9.203125 -22.234375 9.078125 -26.171875 C 8.96875 -27.125 8 -27.125 7.765625 -27.125 C 6.453125 -27.125 6.453125 -26.53125 6.453125 -24.375 L 6.453125 -0.234375 C 6.453125 1.90625 6.453125 2.515625 7.65625 2.515625 C 8.359375 2.515625 8.484375 2.265625 9.328125 0.84375 C 9.796875 -0.125 12.3125 -4.546875 13.265625 -6.328125 C 17.5625 -1.546875 25.09375 2.515625 35.375 2.515625 C 48.765625 2.515625 58.4375 -8.84375 58.4375 -21.984375 C 58.4375 -29.28125 55.6875 -34.65625 52.46875 -38.609375 C 48.046875 -43.984375 42.671875 -45.296875 38 -46.484375 Z M 24.859375 -49.84375 "/> </symbol> <symbol overflow="visible" id="glyph0-2"> -<path style="stroke:none;" d="M 2.921875 1.96875 C 2.15625 1.96875 2.015625 1.96875 2.015625 1.4375 L 2.015625 -0.640625 C 2.234375 -0.34375 2.71875 0.125 3.484375 0.125 C 4.859375 0.125 6.0625 -1.03125 6.0625 -2.578125 C 6.0625 -4.09375 4.9375 -5.265625 3.640625 -5.265625 C 2.59375 -5.265625 2.03125 -4.515625 2 -4.46875 L 2 -5.265625 L 0.328125 -5.140625 L 0.328125 -4.78125 C 1.171875 -4.78125 1.234375 -4.703125 1.234375 -4.171875 L 1.234375 1.4375 C 1.234375 1.96875 1.109375 1.96875 0.328125 1.96875 L 0.328125 2.3125 C 0.640625 2.296875 1.296875 2.296875 1.625 2.296875 C 1.96875 2.296875 2.609375 2.296875 2.921875 2.3125 Z M 2.015625 -3.8125 C 2.015625 -4.03125 2.015625 -4.046875 2.15625 -4.234375 C 2.5 -4.78125 3.09375 -5 3.546875 -5 C 4.4375 -5 5.15625 -3.921875 5.15625 -2.578125 C 5.15625 -1.15625 4.34375 -0.125 3.421875 -0.125 C 3.0625 -0.125 2.703125 -0.28125 2.46875 -0.5 C 2.203125 -0.78125 2.015625 -1.015625 2.015625 -1.34375 Z M 2.015625 -3.8125 "/> +<path style="stroke:none;" d="M 29.28125 19.71875 C 21.625 19.71875 20.203125 19.71875 20.203125 14.34375 L 20.203125 -6.453125 C 22.34375 -3.46875 27.25 1.1875 34.90625 1.1875 C 48.640625 1.1875 60.71875 -10.390625 60.71875 -25.8125 C 60.71875 -41 49.484375 -52.703125 36.453125 -52.703125 C 25.9375 -52.703125 20.3125 -45.171875 19.953125 -44.703125 L 19.953125 -52.703125 L 3.34375 -51.390625 L 3.34375 -47.921875 C 11.71875 -47.921875 12.421875 -47.09375 12.421875 -41.828125 L 12.421875 14.34375 C 12.421875 19.71875 11.109375 19.71875 3.34375 19.71875 L 3.34375 23.1875 C 6.453125 22.953125 12.90625 22.953125 16.25 22.953125 C 19.71875 22.953125 26.171875 22.953125 29.28125 23.1875 Z M 20.203125 -38.125 C 20.203125 -40.390625 20.203125 -40.515625 21.515625 -42.421875 C 25.09375 -47.8125 30.953125 -50.078125 35.5 -50.078125 C 44.453125 -50.078125 51.625 -39.203125 51.625 -25.8125 C 51.625 -11.59375 43.5 -1.1875 34.296875 -1.1875 C 30.59375 -1.1875 27.125 -2.75 24.734375 -5.015625 C 21.984375 -7.765625 20.203125 -10.15625 20.203125 -13.5 Z M 20.203125 -38.125 "/> </symbol> <symbol overflow="visible" id="glyph0-3"> -<path style="stroke:none;" d="M 4.609375 -3.1875 C 4.609375 -3.828125 4.609375 -4.3125 4.078125 -4.78125 C 3.671875 -5.15625 3.125 -5.328125 2.609375 -5.328125 C 1.625 -5.328125 0.875 -4.671875 0.875 -3.90625 C 0.875 -3.5625 1.09375 -3.390625 1.375 -3.390625 C 1.65625 -3.390625 1.859375 -3.59375 1.859375 -3.875 C 1.859375 -4.375 1.4375 -4.375 1.25 -4.375 C 1.53125 -4.875 2.09375 -5.078125 2.578125 -5.078125 C 3.125 -5.078125 3.828125 -4.625 3.828125 -3.5625 L 3.828125 -3.078125 C 1.4375 -3.046875 0.53125 -2.046875 0.53125 -1.125 C 0.53125 -0.171875 1.625 0.125 2.359375 0.125 C 3.140625 0.125 3.671875 -0.359375 3.90625 -0.9375 C 3.953125 -0.375 4.328125 0.0625 4.828125 0.0625 C 5.078125 0.0625 5.78125 -0.109375 5.78125 -1.0625 L 5.78125 -1.734375 L 5.515625 -1.734375 L 5.515625 -1.0625 C 5.515625 -0.375 5.234375 -0.28125 5.0625 -0.28125 C 4.609375 -0.28125 4.609375 -0.921875 4.609375 -1.09375 Z M 3.828125 -1.6875 C 3.828125 -0.515625 2.953125 -0.125 2.453125 -0.125 C 1.859375 -0.125 1.375 -0.546875 1.375 -1.125 C 1.375 -2.703125 3.40625 -2.84375 3.828125 -2.859375 Z M 3.828125 -1.6875 "/> +<path style="stroke:none;" d="M 46.140625 -31.90625 C 46.140625 -38.359375 46.140625 -43.140625 40.875 -47.8125 C 36.6875 -51.625 31.3125 -53.296875 26.046875 -53.296875 C 16.25 -53.296875 8.71875 -46.84375 8.71875 -39.078125 C 8.71875 -35.609375 11 -33.9375 13.75 -33.9375 C 16.609375 -33.9375 18.640625 -35.96875 18.640625 -38.84375 C 18.640625 -43.75 14.34375 -43.75 12.546875 -43.75 C 15.296875 -48.765625 21.03125 -50.90625 25.8125 -50.90625 C 31.3125 -50.90625 38.359375 -46.375 38.359375 -35.609375 L 38.359375 -30.828125 C 14.34375 -30.46875 5.265625 -20.4375 5.265625 -11.234375 C 5.265625 -1.796875 16.25 1.1875 23.546875 1.1875 C 31.4375 1.1875 36.8125 -3.578125 39.078125 -9.328125 C 39.5625 -3.703125 43.265625 0.59375 48.40625 0.59375 C 50.90625 0.59375 57.84375 -1.078125 57.84375 -10.640625 L 57.84375 -17.328125 L 55.21875 -17.328125 L 55.21875 -10.640625 C 55.21875 -3.828125 52.34375 -2.875 50.671875 -2.875 C 46.140625 -2.875 46.140625 -9.203125 46.140625 -11 Z M 38.359375 -16.859375 C 38.359375 -5.140625 29.640625 -1.1875 24.5 -1.1875 C 18.640625 -1.1875 13.75 -5.5 13.75 -11.234375 C 13.75 -27.015625 34.0625 -28.4375 38.359375 -28.6875 Z M 38.359375 -16.859375 "/> </symbol> <symbol overflow="visible" id="glyph0-4"> -<path style="stroke:none;" d="M 5.3125 -2.90625 C 5.3125 -4.015625 5.3125 -4.34375 5.03125 -4.734375 C 4.6875 -5.1875 4.125 -5.265625 3.71875 -5.265625 C 2.5625 -5.265625 2.109375 -4.28125 2.015625 -4.03125 L 2 -4.03125 L 2 -5.265625 L 0.375 -5.140625 L 0.375 -4.78125 C 1.1875 -4.78125 1.296875 -4.703125 1.296875 -4.125 L 1.296875 -0.890625 C 1.296875 -0.34375 1.15625 -0.34375 0.375 -0.34375 L 0.375 0 C 0.6875 -0.03125 1.34375 -0.03125 1.671875 -0.03125 C 2.015625 -0.03125 2.65625 -0.03125 2.96875 0 L 2.96875 -0.34375 C 2.203125 -0.34375 2.0625 -0.34375 2.0625 -0.890625 L 2.0625 -3.109375 C 2.0625 -4.359375 2.890625 -5.03125 3.625 -5.03125 C 4.375 -5.03125 4.53125 -4.421875 4.53125 -3.6875 L 4.53125 -0.890625 C 4.53125 -0.34375 4.40625 -0.34375 3.625 -0.34375 L 3.625 0 C 3.9375 -0.03125 4.578125 -0.03125 4.921875 -0.03125 C 5.265625 -0.03125 5.90625 -0.03125 6.21875 0 L 6.21875 -0.34375 C 5.625 -0.34375 5.328125 -0.34375 5.3125 -0.703125 Z M 5.3125 -2.90625 "/> +<path style="stroke:none;" d="M 53.1875 -29.046875 C 53.1875 -40.15625 53.1875 -43.5 50.4375 -47.328125 C 46.96875 -51.984375 41.359375 -52.703125 37.28125 -52.703125 C 25.703125 -52.703125 21.15625 -42.78125 20.203125 -40.390625 L 20.078125 -40.390625 L 20.078125 -52.703125 L 3.828125 -51.390625 L 3.828125 -47.921875 C 11.953125 -47.921875 12.90625 -47.09375 12.90625 -41.234375 L 12.90625 -8.84375 C 12.90625 -3.46875 11.59375 -3.46875 3.828125 -3.46875 L 3.828125 0 C 6.9375 -0.234375 13.390625 -0.234375 16.734375 -0.234375 C 20.203125 -0.234375 26.65625 -0.234375 29.765625 0 L 29.765625 -3.46875 C 22.109375 -3.46875 20.671875 -3.46875 20.671875 -8.84375 L 20.671875 -31.078125 C 20.671875 -43.625 28.921875 -50.3125 36.328125 -50.3125 C 43.75 -50.3125 45.421875 -44.21875 45.421875 -36.9375 L 45.421875 -8.84375 C 45.421875 -3.46875 44.09375 -3.46875 36.328125 -3.46875 L 36.328125 0 C 39.4375 -0.234375 45.890625 -0.234375 49.234375 -0.234375 C 52.703125 -0.234375 59.15625 -0.234375 62.265625 0 L 62.265625 -3.46875 C 56.296875 -3.46875 53.296875 -3.46875 53.1875 -7.046875 Z M 53.1875 -29.046875 "/> </symbol> <symbol overflow="visible" id="glyph1-0"> <path style="stroke:none;" d=""/> </symbol> <symbol overflow="visible" id="glyph1-1"> -<path style="stroke:none;" d="M 3.375 -7.359375 C 3.375 -7.84375 3.6875 -8.609375 4.984375 -8.6875 C 5.046875 -8.703125 5.09375 -8.75 5.09375 -8.828125 C 5.09375 -8.953125 5 -8.953125 4.875 -8.953125 C 3.671875 -8.953125 2.59375 -8.34375 2.578125 -7.46875 L 2.578125 -4.734375 C 2.578125 -4.28125 2.578125 -3.890625 2.09375 -3.5 C 1.6875 -3.15625 1.234375 -3.125 0.96875 -3.109375 C 0.90625 -3.109375 0.859375 -3.0625 0.859375 -2.984375 C 0.859375 -2.859375 0.9375 -2.859375 1.046875 -2.859375 C 1.84375 -2.8125 2.40625 -2.375 2.546875 -1.796875 C 2.578125 -1.65625 2.578125 -1.640625 2.578125 -1.203125 L 2.578125 1.15625 C 2.578125 1.65625 2.578125 2.046875 3.15625 2.5 C 3.609375 2.859375 4.40625 2.984375 4.875 2.984375 C 5 2.984375 5.09375 2.984375 5.09375 2.859375 C 5.09375 2.734375 5.03125 2.734375 4.90625 2.71875 C 4.15625 2.671875 3.5625 2.296875 3.421875 1.6875 C 3.375 1.578125 3.375 1.546875 3.375 1.125 L 3.375 -1.390625 C 3.375 -1.9375 3.28125 -2.140625 2.90625 -2.515625 C 2.65625 -2.765625 2.296875 -2.890625 1.96875 -2.984375 C 2.953125 -3.265625 3.375 -3.8125 3.375 -4.5 Z M 3.375 -7.359375 "/> +<path style="stroke:none;" d="M 33.828125 -73.734375 C 33.828125 -78.515625 36.9375 -86.171875 49.953125 -87 C 50.5625 -87.125 51.03125 -87.609375 51.03125 -88.328125 C 51.03125 -89.640625 50.078125 -89.640625 48.765625 -89.640625 C 36.8125 -89.640625 25.9375 -83.546875 25.8125 -74.703125 L 25.8125 -47.453125 C 25.8125 -42.78125 25.8125 -38.96875 21.03125 -35.015625 C 16.859375 -31.546875 12.3125 -31.3125 9.6875 -31.1875 C 9.078125 -31.078125 8.609375 -30.59375 8.609375 -29.875 C 8.609375 -28.6875 9.328125 -28.6875 10.515625 -28.5625 C 18.40625 -28.09375 24.140625 -23.78125 25.453125 -17.921875 C 25.8125 -16.609375 25.8125 -16.375 25.8125 -12.078125 L 25.8125 11.59375 C 25.8125 16.609375 25.8125 20.4375 31.546875 24.984375 C 36.21875 28.5625 44.09375 29.875 48.765625 29.875 C 50.078125 29.875 51.03125 29.875 51.03125 28.5625 C 51.03125 27.375 50.3125 27.375 49.125 27.25 C 41.59375 26.765625 35.734375 22.953125 34.1875 16.859375 C 33.828125 15.78125 33.828125 15.53125 33.828125 11.234375 L 33.828125 -13.859375 C 33.828125 -19.359375 32.859375 -21.390625 29.046875 -25.21875 C 26.53125 -27.734375 23.0625 -28.921875 19.71875 -29.875 C 29.515625 -32.625 33.828125 -38.125 33.828125 -45.0625 Z M 33.828125 -73.734375 "/> </symbol> <symbol overflow="visible" id="glyph1-2"> -<path style="stroke:none;" d="M 2.578125 1.390625 C 2.578125 1.875 2.265625 2.640625 0.96875 2.71875 C 0.90625 2.734375 0.859375 2.78125 0.859375 2.859375 C 0.859375 2.984375 0.984375 2.984375 1.09375 2.984375 C 2.25 2.984375 3.359375 2.40625 3.375 1.5 L 3.375 -1.234375 C 3.375 -1.6875 3.375 -2.078125 3.859375 -2.46875 C 4.28125 -2.8125 4.734375 -2.84375 4.984375 -2.859375 C 5.046875 -2.859375 5.09375 -2.90625 5.09375 -2.984375 C 5.09375 -3.109375 5.03125 -3.109375 4.90625 -3.109375 C 4.125 -3.15625 3.546875 -3.59375 3.421875 -4.171875 C 3.375 -4.3125 3.375 -4.328125 3.375 -4.765625 L 3.375 -7.125 C 3.375 -7.625 3.375 -8.015625 2.8125 -8.46875 C 2.328125 -8.828125 1.5 -8.953125 1.09375 -8.953125 C 0.984375 -8.953125 0.859375 -8.953125 0.859375 -8.828125 C 0.859375 -8.703125 0.9375 -8.703125 1.046875 -8.6875 C 1.796875 -8.640625 2.390625 -8.265625 2.546875 -7.65625 C 2.578125 -7.546875 2.578125 -7.515625 2.578125 -7.09375 L 2.578125 -4.578125 C 2.578125 -4.03125 2.671875 -3.828125 3.0625 -3.453125 C 3.3125 -3.203125 3.65625 -3.078125 3.984375 -2.984375 C 3.015625 -2.703125 2.578125 -2.15625 2.578125 -1.46875 Z M 2.578125 1.390625 "/> +<path style="stroke:none;" d="M 25.8125 13.984375 C 25.8125 18.765625 22.703125 26.40625 9.6875 27.25 C 9.078125 27.375 8.609375 27.84375 8.609375 28.5625 C 8.609375 29.875 9.921875 29.875 11 29.875 C 22.59375 29.875 33.703125 24.015625 33.828125 14.9375 L 33.828125 -12.3125 C 33.828125 -16.96875 33.828125 -20.796875 38.609375 -24.734375 C 42.78125 -28.203125 47.328125 -28.4375 49.953125 -28.5625 C 50.5625 -28.6875 51.03125 -29.15625 51.03125 -29.875 C 51.03125 -31.078125 50.3125 -31.078125 49.125 -31.1875 C 41.234375 -31.671875 35.5 -35.96875 34.1875 -41.828125 C 33.828125 -43.140625 33.828125 -43.390625 33.828125 -47.6875 L 33.828125 -71.34375 C 33.828125 -76.375 33.828125 -80.1875 28.09375 -84.734375 C 23.3125 -88.4375 15.0625 -89.640625 11 -89.640625 C 9.921875 -89.640625 8.609375 -89.640625 8.609375 -88.328125 C 8.609375 -87.125 9.328125 -87.125 10.515625 -87 C 18.046875 -86.53125 23.90625 -82.703125 25.453125 -76.609375 C 25.8125 -75.53125 25.8125 -75.296875 25.8125 -71 L 25.8125 -45.890625 C 25.8125 -40.390625 26.765625 -38.359375 30.59375 -34.546875 C 33.109375 -32.03125 36.578125 -30.828125 39.921875 -29.875 C 30.125 -27.125 25.8125 -21.625 25.8125 -14.703125 Z M 25.8125 13.984375 "/> </symbol> <symbol overflow="visible" id="glyph2-0"> <path style="stroke:none;" d=""/> </symbol> <symbol overflow="visible" id="glyph2-1"> -<path style="stroke:none;" d="M 5.90625 -4.515625 C 6 -4.6875 6.046875 -4.78125 6.796875 -4.78125 L 6.796875 -5.296875 C 6.359375 -5.28125 6.34375 -5.28125 5.84375 -5.28125 C 5.53125 -5.28125 5.5 -5.28125 4.828125 -5.296875 L 4.828125 -4.78125 C 5.140625 -4.78125 5.40625 -4.734375 5.40625 -4.640625 C 5.40625 -4.625 5.40625 -4.625 5.34375 -4.5 L 3.953125 -1.4375 L 2.40625 -4.78125 L 3.0625 -4.78125 L 3.0625 -5.296875 C 2.796875 -5.28125 1.953125 -5.28125 1.640625 -5.28125 C 1.296875 -5.28125 0.59375 -5.28125 0.28125 -5.296875 L 0.28125 -4.78125 L 1.03125 -4.78125 L 3.140625 -0.234375 C 3.25 0 3.265625 0.0625 3.546875 0.0625 C 3.734375 0.0625 3.828125 0.03125 3.9375 -0.203125 Z M 5.90625 -4.515625 "/> +<path style="stroke:none;" d="M 86.046875 -45.0625 C 86.890625 -47.09375 87.25 -47.921875 94.171875 -47.921875 L 94.171875 -53.0625 C 90.71875 -52.828125 89.15625 -52.828125 84.859375 -52.828125 C 79.953125 -52.828125 78.40625 -52.828125 74.09375 -53.0625 L 74.09375 -47.921875 C 75.171875 -47.921875 81.03125 -47.921875 81.03125 -46.375 C 81.03125 -46.25 81.03125 -46.140625 80.546875 -44.9375 L 68 -13.859375 L 54.265625 -47.921875 L 61.078125 -47.921875 L 61.078125 -53.0625 C 58.203125 -52.828125 51.15625 -52.828125 47.921875 -52.828125 C 41.828125 -52.828125 41.59375 -52.828125 35.609375 -53.0625 L 35.609375 -47.921875 L 42.671875 -47.921875 C 43.03125 -46.96875 43.625 -45.421875 44.09375 -44.34375 C 44.453125 -43.625 45.65625 -40.75 45.65625 -40.15625 C 45.65625 -39.921875 45.296875 -39.078125 45.171875 -38.71875 L 36.09375 -16.140625 L 23.1875 -47.921875 L 30 -47.921875 L 30 -53.0625 C 27.25 -52.828125 19.125 -52.828125 15.890625 -52.828125 C 12.078125 -52.828125 6.328125 -52.828125 2.75 -53.0625 L 2.75 -47.921875 L 9.796875 -47.921875 L 28.09375 -2.390625 C 28.921875 -0.234375 29.40625 0.59375 32.03125 0.59375 C 33.34375 0.59375 34.78125 0.59375 35.734375 -1.796875 L 48.40625 -33.46875 L 61.078125 -2.03125 C 62.140625 0.59375 63.46875 0.59375 64.890625 0.59375 C 67.53125 0.59375 67.890625 -0.125 68.71875 -2.265625 Z M 86.046875 -45.0625 "/> </symbol> <symbol overflow="visible" id="glyph3-0"> <path style="stroke:none;" d=""/> </symbol> <symbol overflow="visible" id="glyph3-1"> -<path style="stroke:none;" d="M 2.5 -5.0625 C 2.5 -5.28125 2.484375 -5.28125 2.265625 -5.28125 C 1.9375 -4.96875 1.515625 -4.78125 0.765625 -4.78125 L 0.765625 -4.515625 C 0.984375 -4.515625 1.40625 -4.515625 1.875 -4.734375 L 1.875 -0.65625 C 1.875 -0.359375 1.84375 -0.265625 1.09375 -0.265625 L 0.8125 -0.265625 L 0.8125 0 C 1.140625 -0.03125 1.828125 -0.03125 2.171875 -0.03125 C 2.53125 -0.03125 3.234375 -0.03125 3.5625 0 L 3.5625 -0.265625 L 3.28125 -0.265625 C 2.515625 -0.265625 2.5 -0.359375 2.5 -0.65625 Z M 2.5 -5.0625 "/> +<path style="stroke:none;" d="M 25.015625 -50.75 C 25.015625 -52.90625 24.859375 -52.984375 22.703125 -52.984375 C 19.4375 -49.796875 15.21875 -47.875 7.65625 -47.875 L 7.65625 -45.25 C 9.796875 -45.25 14.109375 -45.25 18.71875 -47.40625 L 18.71875 -6.53125 C 18.71875 -3.578125 18.484375 -2.625 10.921875 -2.625 L 8.125 -2.625 L 8.125 0 C 11.390625 -0.234375 18.25 -0.234375 21.828125 -0.234375 C 25.421875 -0.234375 32.34375 -0.234375 35.609375 0 L 35.609375 -2.625 L 32.828125 -2.625 C 25.25 -2.625 25.015625 -3.578125 25.015625 -6.53125 Z M 25.015625 -50.75 "/> </symbol> <symbol overflow="visible" id="glyph3-2"> -<path style="stroke:none;" d="M 2.25 -1.625 C 2.375 -1.734375 2.703125 -2 2.828125 -2.109375 C 3.328125 -2.5625 3.796875 -3 3.796875 -3.734375 C 3.796875 -4.671875 3 -5.28125 2 -5.28125 C 1.046875 -5.28125 0.421875 -4.5625 0.421875 -3.859375 C 0.421875 -3.46875 0.734375 -3.40625 0.84375 -3.40625 C 1.015625 -3.40625 1.25 -3.53125 1.25 -3.828125 C 1.25 -4.25 0.859375 -4.25 0.765625 -4.25 C 1 -4.828125 1.53125 -5.03125 1.921875 -5.03125 C 2.65625 -5.03125 3.03125 -4.390625 3.03125 -3.734375 C 3.03125 -2.90625 2.453125 -2.296875 1.515625 -1.34375 L 0.515625 -0.296875 C 0.421875 -0.21875 0.421875 -0.203125 0.421875 0 L 3.5625 0 L 3.796875 -1.421875 L 3.546875 -1.421875 C 3.515625 -1.265625 3.453125 -0.859375 3.359375 -0.71875 C 3.3125 -0.65625 2.71875 -0.65625 2.578125 -0.65625 L 1.171875 -0.65625 Z M 2.25 -1.625 "/> +<path style="stroke:none;" d="M 22.46875 -16.25 C 23.75 -17.453125 27.09375 -20.078125 28.359375 -21.1875 C 33.296875 -25.734375 38 -30.109375 38 -37.359375 C 38 -46.84375 30.03125 -52.984375 20.078125 -52.984375 C 10.515625 -52.984375 4.21875 -45.734375 4.21875 -38.640625 C 4.21875 -34.734375 7.328125 -34.171875 8.4375 -34.171875 C 10.125 -34.171875 12.59375 -35.375 12.59375 -38.40625 C 12.59375 -42.546875 8.609375 -42.546875 7.65625 -42.546875 C 9.953125 -48.359375 15.296875 -50.359375 19.203125 -50.359375 C 26.609375 -50.359375 30.4375 -44.0625 30.4375 -37.359375 C 30.4375 -29.078125 24.625 -23.03125 15.21875 -13.390625 L 5.171875 -3.03125 C 4.21875 -2.15625 4.21875 -1.984375 4.21875 0 L 35.6875 0 L 38 -14.265625 L 35.53125 -14.265625 C 35.296875 -12.671875 34.65625 -8.6875 33.703125 -7.171875 C 33.21875 -6.53125 27.171875 -6.53125 25.890625 -6.53125 L 11.71875 -6.53125 Z M 22.46875 -16.25 "/> </symbol> <symbol overflow="visible" id="glyph3-3"> -<path style="stroke:none;" d="M 3.140625 -5.140625 C 3.140625 -5.3125 3.140625 -5.375 2.96875 -5.375 C 2.859375 -5.375 2.859375 -5.359375 2.78125 -5.25 L 0.234375 -1.5625 L 0.234375 -1.296875 L 2.484375 -1.296875 L 2.484375 -0.640625 C 2.484375 -0.34375 2.453125 -0.265625 1.84375 -0.265625 L 1.65625 -0.265625 L 1.65625 0 C 2.34375 -0.03125 2.359375 -0.03125 2.8125 -0.03125 C 3.265625 -0.03125 3.28125 -0.03125 3.953125 0 L 3.953125 -0.265625 L 3.765625 -0.265625 C 3.15625 -0.265625 3.140625 -0.34375 3.140625 -0.640625 L 3.140625 -1.296875 L 3.984375 -1.296875 L 3.984375 -1.5625 L 3.140625 -1.5625 Z M 2.53125 -4.5 L 2.53125 -1.5625 L 0.515625 -1.5625 Z M 2.53125 -4.5 "/> +<path style="stroke:none;" d="M 31.390625 -51.546875 C 31.390625 -53.140625 31.390625 -53.78125 29.71875 -53.78125 C 28.6875 -53.78125 28.609375 -53.703125 27.8125 -52.578125 L 2.390625 -15.703125 L 2.390625 -13.0625 L 24.859375 -13.0625 L 24.859375 -6.453125 C 24.859375 -3.5 24.625 -2.625 18.484375 -2.625 L 16.65625 -2.625 L 16.65625 0 C 23.421875 -0.234375 23.578125 -0.234375 28.125 -0.234375 C 32.671875 -0.234375 32.828125 -0.234375 39.59375 0 L 39.59375 -2.625 L 37.765625 -2.625 C 31.625 -2.625 31.390625 -3.5 31.390625 -6.453125 L 31.390625 -13.0625 L 39.828125 -13.0625 L 39.828125 -15.703125 L 31.390625 -15.703125 Z M 25.421875 -45.09375 L 25.421875 -15.703125 L 5.171875 -15.703125 Z M 25.421875 -45.09375 "/> </symbol> <symbol overflow="visible" id="glyph4-0"> <path style="stroke:none;" d=""/> </symbol> <symbol overflow="visible" id="glyph4-1"> -<path style="stroke:none;" d="M 2.328125 0.046875 C 2.328125 -0.640625 2.09375 -1.15625 1.609375 -1.15625 C 1.234375 -1.15625 1.03125 -0.84375 1.03125 -0.578125 C 1.03125 -0.328125 1.21875 0 1.625 0 C 1.78125 0 1.90625 -0.046875 2.015625 -0.15625 C 2.046875 -0.171875 2.046875 -0.171875 2.0625 -0.171875 C 2.09375 -0.171875 2.09375 -0.015625 2.09375 0.046875 C 2.09375 0.4375 2.015625 1.21875 1.328125 2 C 1.1875 2.140625 1.1875 2.15625 1.1875 2.1875 C 1.1875 2.25 1.25 2.296875 1.3125 2.296875 C 1.40625 2.296875 2.328125 1.421875 2.328125 0.046875 Z M 2.328125 0.046875 "/> +<path style="stroke:none;" d="M 23.3125 0.484375 C 23.3125 -6.453125 21.03125 -11.59375 16.140625 -11.59375 C 12.3125 -11.59375 10.390625 -8.484375 10.390625 -5.859375 C 10.390625 -3.234375 12.1875 0 16.25 0 C 17.8125 0 19.125 -0.484375 20.203125 -1.546875 C 20.4375 -1.796875 20.5625 -1.796875 20.671875 -1.796875 C 20.921875 -1.796875 20.921875 -0.125 20.921875 0.484375 C 20.921875 4.421875 20.203125 12.1875 13.265625 19.953125 C 11.953125 21.390625 11.953125 21.625 11.953125 21.875 C 11.953125 22.46875 12.546875 23.0625 13.140625 23.0625 C 14.109375 23.0625 23.3125 14.21875 23.3125 0.484375 Z M 23.3125 0.484375 "/> </symbol> </g> <clipPath id="clip1"> - <path d="M 0.0273438 59 L 150 59 L 150 79 L 0.0273438 79 Z M 0.0273438 59 "/> + <path d="M 0.207031 541 L 1451 541 L 1451 738 L 0.207031 738 Z M 0.207031 541 "/> </clipPath> <clipPath id="clip2"> - <path d="M 21 61 L 114 61 L 114 92 L 21 92 Z M 21 61 "/> + <path d="M 168 563 L 1089 563 L 1089 862 L 168 862 Z M 168 563 "/> </clipPath> -<image id="image5" width="194" height="65" xlink:href=""/> +<image id="image5" width="1919" height="623" xlink:href=""/> </defs> <g id="surface1"> -<path style="fill:none;stroke-width:0.3985;stroke-linecap:butt;stroke-linejoin:miter;stroke:rgb(0%,0%,0%);stroke-opacity:1;stroke-miterlimit:10;" d="M 40.981053 31.044386 L 17.119408 -15.235707 " transform="matrix(0.998759,0,0,-0.998759,13.104964,84.236327)"/> -<path style=" stroke:none;fill-rule:nonzero;fill:rgb(0%,0%,0%);fill-opacity:1;" d="M 29.292969 101.222656 L 32.164063 99.121094 L 30.203125 99.453125 L 29.335938 97.664063 "/> +<path style="fill:none;stroke-width:0.3985;stroke-linecap:butt;stroke-linejoin:miter;stroke:rgb(0%,0%,0%);stroke-opacity:1;stroke-miterlimit:10;" d="M 41.030978 31.085409 L 17.141671 -15.252071 " transform="matrix(9.996464,0,0,-9.996464,80.179067,793.150415)"/> +<path style=" stroke:none;fill-rule:nonzero;fill:rgb(0%,0%,0%);fill-opacity:1;" d="M 242.410156 963.320313 L 271.175781 942.296875 L 251.535156 945.617188 L 242.847656 927.695313 "/> <g clip-path="url(#clip1)" clip-rule="nonzero"> -<path style="fill:none;stroke-width:0.3985;stroke-linecap:butt;stroke-linejoin:miter;stroke:rgb(0%,0%,0%);stroke-opacity:1;stroke-miterlimit:10;" d="M -7.227214 19.498807 L 131.288443 11.148601 " transform="matrix(0.998759,0,0,-0.998759,13.104964,84.236327)"/> +<path style="fill:none;stroke-width:0.3985;stroke-linecap:butt;stroke-linejoin:miter;stroke:rgb(0%,0%,0%);stroke-opacity:1;stroke-miterlimit:10;" d="M -7.234137 19.527025 L 131.455143 11.167819 " transform="matrix(9.996464,0,0,-9.996464,80.179067,793.150415)"/> </g> -<path style=" stroke:none;fill-rule:nonzero;fill:rgb(0%,0%,0%);fill-opacity:1;" d="M 146.21875 73.222656 L 143.132813 71.441406 L 144.230469 73.101563 L 142.941406 74.617188 "/> -<path style="fill:none;stroke-width:0.3985;stroke-linecap:butt;stroke-linejoin:miter;stroke:rgb(0%,0%,0%);stroke-opacity:1;stroke-miterlimit:10;" d="M 33.753333 -16.48726 L 33.753333 76.479681 " transform="matrix(0.998759,0,0,-0.998759,13.104964,84.236327)"/> -<path style=" stroke:none;fill-rule:nonzero;fill:rgb(0%,0%,0%);fill-opacity:1;" d="M 46.816406 5.859375 L 45.226563 9.042969 L 46.816406 7.851563 L 48.410156 9.042969 "/> +<path style=" stroke:none;fill-rule:nonzero;fill:rgb(0%,0%,0%);fill-opacity:1;" d="M 1414.144531 682.710938 L 1383.292969 664.890625 L 1394.265625 681.511719 L 1381.378906 696.699219 "/> +<path style="fill:none;stroke-width:0.3985;stroke-linecap:butt;stroke-linejoin:miter;stroke:rgb(0%,0%,0%);stroke-opacity:1;stroke-miterlimit:10;" d="M 33.79717 -16.504858 L 33.79717 76.585484 " transform="matrix(9.996464,0,0,-9.996464,80.179067,793.150415)"/> +<path style=" stroke:none;fill-rule:nonzero;fill:rgb(0%,0%,0%);fill-opacity:1;" d="M 418.03125 7.648438 L 402.09375 39.515625 L 418.03125 27.566406 L 433.964844 39.515625 "/> <g style="fill:rgb(0%,0%,0%);fill-opacity:0.8;"> - <use xlink:href="#glyph0-1" x="99.945055" y="99.17776"/> - <use xlink:href="#glyph0-2" x="106.440612" y="99.17776"/> - <use xlink:href="#glyph0-3" x="112.93617" y="99.17776"/> - <use xlink:href="#glyph0-4" x="118.782171" y="99.17776"/> + <use xlink:href="#glyph0-1" x="950.461196" y="942.727501"/> + <use xlink:href="#glyph0-2" x="1015.474485" y="942.727501"/> + <use xlink:href="#glyph0-3" x="1080.487774" y="942.727501"/> + <use xlink:href="#glyph0-4" x="1138.999734" y="942.727501"/> </g> <g style="fill:rgb(0%,0%,0%);fill-opacity:0.8;"> - <use xlink:href="#glyph1-1" x="125.276578" y="99.17776"/> + <use xlink:href="#glyph1-1" x="1204.001504" y="942.727501"/> </g> <g style="fill:rgb(0%,0%,0%);fill-opacity:0.8;"> - <use xlink:href="#glyph2-1" x="131.24616" y="99.17776"/> + <use xlink:href="#glyph2-1" x="1263.750367" y="942.727501"/> </g> <g style="fill:rgb(0%,0%,0%);fill-opacity:0.8;"> - <use xlink:href="#glyph3-1" x="138.336349" y="100.969534"/> + <use xlink:href="#glyph3-1" x="1360.856015" y="960.661157"/> </g> <g style="fill:rgb(0%,0%,0%);fill-opacity:0.8;"> - <use xlink:href="#glyph4-1" x="143.062477" y="99.17776"/> + <use xlink:href="#glyph4-1" x="1408.159281" y="942.727501"/> </g> <g style="fill:rgb(0%,0%,0%);fill-opacity:0.8;"> - <use xlink:href="#glyph2-1" x="148.299969" y="99.17776"/> + <use xlink:href="#glyph2-1" x="1460.580737" y="942.727501"/> </g> <g style="fill:rgb(0%,0%,0%);fill-opacity:0.8;"> - <use xlink:href="#glyph3-2" x="155.390158" y="100.969534"/> + <use xlink:href="#glyph3-2" x="1557.686385" y="960.661157"/> </g> <g style="fill:rgb(0%,0%,0%);fill-opacity:0.8;"> - <use xlink:href="#glyph1-2" x="160.116285" y="99.17776"/> + <use xlink:href="#glyph1-2" x="1604.989651" y="942.727501"/> </g> -<path style="fill:none;stroke-width:1.19553;stroke-linecap:round;stroke-linejoin:miter;stroke:rgb(0%,0%,0%);stroke-opacity:1;stroke-dasharray:2.98883,2.98883;stroke-miterlimit:10;" d="M 87.135991 3.490659 L 87.135991 31.419852 " transform="matrix(0.998759,0,0,-0.998759,13.104964,84.236327)"/> -<path style="fill:none;stroke-width:1.59404;stroke-linecap:round;stroke-linejoin:miter;stroke:rgb(92.939758%,40.783691%,25.881958%);stroke-opacity:1;stroke-miterlimit:10;" d="M 33.753333 17.030901 L 83.479109 30.434254 " transform="matrix(0.998759,0,0,-0.998759,13.104964,84.236327)"/> -<path style=" stroke:none;fill-rule:nonzero;fill:rgb(92.939758%,40.783691%,25.881958%);fill-opacity:1;" d="M 100.132813 52.855469 L 93.503906 51.511719 L 96.480469 53.839844 L 95.078125 57.351563 "/> +<path style="fill:none;stroke-width:1.19553;stroke-linecap:round;stroke-linejoin:miter;stroke:rgb(0%,0%,0%);stroke-opacity:1;stroke-dasharray:2.98883,2.98883;stroke-miterlimit:10;" d="M 87.245759 3.49831 L 87.245759 31.463668 " transform="matrix(9.996464,0,0,-9.996464,80.179067,793.150415)"/> +<path style="fill:none;stroke-width:1.59404;stroke-linecap:round;stroke-linejoin:miter;stroke:rgb(92.939758%,40.783691%,25.881958%);stroke-opacity:1;stroke-miterlimit:10;" d="M 33.79717 17.053885 L 83.59056 30.478554 " transform="matrix(9.996464,0,0,-9.996464,80.179067,793.150415)"/> +<path style=" stroke:none;fill-rule:nonzero;fill:rgb(92.939758%,40.783691%,25.881958%);fill-opacity:1;" d="M 952.328125 478.625 L 885.984375 465.152344 L 915.789063 488.472656 L 901.746094 523.617188 "/> <g style="fill:rgb(92.939758%,40.783691%,25.881958%);fill-opacity:1;"> - <use xlink:href="#glyph2-1" x="67.566289" y="54.156704"/> + <use xlink:href="#glyph2-1" x="612.970587" y="491.727047"/> </g> <g style="fill:rgb(92.939758%,40.783691%,25.881958%);fill-opacity:1;"> - <use xlink:href="#glyph3-3" x="74.656479" y="55.947479"/> + <use xlink:href="#glyph3-3" x="710.076235" y="509.660703"/> </g> <g clip-path="url(#clip2)" clip-rule="nonzero"> -<use xlink:href="#image5" comp-op="src" clip-to-self="true" transform="matrix(0.48,0,0,0.48,21,61)"/> +<use xlink:href="#image5" comp-op="src" clip-to-self="true" transform="matrix(0.48,0,0,0.48,168,563)"/> </g> </g> </svg> diff --git a/Chapter2/LinearCombinations.md b/Chapter2/LinearCombinations.md index 9eedcca..f6728e0 100644 --- a/Chapter2/LinearCombinations.md +++ b/Chapter2/LinearCombinations.md @@ -23,6 +23,7 @@ The vectors $\mathbf{v}_1$ and $\mathbf{v}_2$ are two vectors in the plane $\mat :fig: Images/Fig-LinearCombinations-LinComb.svg :name: Fig:LinearCombinations:LinearCombinations :status: approved +:class: dark-light Linear combinations of vectors in the plane. ``` @@ -96,6 +97,7 @@ In this case it is a lot easier to decide whether $\mathbf{b}$ is a linear combi :::: ::::{grasple} +:iframeclass: dark-light :url: https://embed.grasple.com/exercises/ac63b286-09e1-46e5-91fc-952b54436293?id=78560 :label: grasple_exercise_2_2_A :dropdown: @@ -104,6 +106,7 @@ In this case it is a lot easier to decide whether $\mathbf{b}$ is a linear combi :::: ::::{grasple} +:iframeclass: dark-light :url: https://embed.grasple.com/exercises/bd263ac1-b906-48dc-a898-d959254d9681?id=70163 :label: grasple_exercise_2_2_B :dropdown: @@ -154,6 +157,7 @@ What does the span of a single non-zero vector look like? A linear combination o :fig: Images/Fig-LinearCombinations-SpanOne.svg :name: Fig:LinearCombinations:SpanOneVectors :status: approved +:class: dark-light The span of a single non-zero vector. ``` @@ -171,16 +175,12 @@ $$ This looks like the parametric vector equation of a plane. Since the span must contain the zero vector we find that we obtain a plane through the origin like in {numref}`Figure %s <Fig:LinearCombinations:SpanTwoVectors>`. -:::{figure} -:name: - -::: - ```{applet} :url: linear_combinations/span_two_plane :fig: Images/Fig-LinearCombinations-SpanTwoPlane.svg :name: Fig:LinearCombinations:SpanTwoVectors :status: approved +:class: dark-light The span of two non-zero, non-parallel vectors. ``` @@ -196,6 +196,7 @@ The span of two non-zero vectors does not need to be a plane through the origin. :fig: Images/Fig-LinearCombinations-SpanTwoLine.svg :name: Fig:LinearCombinations:SpanTwoParallelVectors :status: approved +:class: dark-light The span of two non-zero, parallel vectors. ``` @@ -208,16 +209,13 @@ If two non-zero vectors $\mathbf{u}$ and $\mathbf{v}$ are parallel, then $\mathb If we start with three non-zero vectors in $\mathbb{R}^3$, then the resulting span may take on different forms. The span of the three vectors in {numref}`Figure %s <Fig:LinearCombinations:SpanThreeVectors1>`, for example, is equal to the entire space $\mathbb{R}^3$. In {numref}`Sec:BasisDim` we will see why this is the case. -:::{figure} -:name: - -::: ```{applet} :url: linear_combinations/span_three :fig: Images/Fig-LinearCombinations-SpanThreeR3.svg :name: Fig:LinearCombinations:SpanThreeVectors1 :status: approved +:class: dark-light The span of three vectors. ``` @@ -229,6 +227,7 @@ On the other hand, if we start with the three vectors that you can see in {numre :fig: Images/Fig-LinearCombinations-SpanThreePlane.svg :name: Fig:LinearCombinations:SpanThreeVectors2 :status: approved +:class: dark-light The span of three vectors lying in the same plane. ``` @@ -238,6 +237,7 @@ There is also a possibility where the span of three non-zero vectors in $\mathbb :::: ::::{grasple} +:iframeclass: dark-light :url: https://embed.grasple.com/exercises/676d672c-74fc-4545-99ba-6b308af566ce?id=78542 :label: grasple_exercise_2_2_C :dropdown: @@ -304,7 +304,8 @@ If $(\mathbf{e}_1, \ldots, \mathbf{e}_n)$ is the standard basis for $\mathbb{R}^ :::: -::::{prf:proof} +::::{admonition} Proof of {prf:ref}`Prop:LinearCombinations:SpanStandardBasis` +:class: myproof Take an arbitrary vector $\mathbf{v}$ in $\mathbb{R}^n$ with @@ -334,6 +335,7 @@ In {prf:ref}`Prop:LinearCombinations:SpanStandardBasis` we saw that the span of ## Grasple Exercises ::::{grasple} +:iframeclass: dark-light :url: https://embed.grasple.com/exercises/9c780d10-9a8f-4fd6-9471-3f1a0e46c009?id=70171 :label: grasple_exercise_2_2_1 :dropdown: @@ -342,6 +344,7 @@ In {prf:ref}`Prop:LinearCombinations:SpanStandardBasis` we saw that the span of :::: ::::{grasple} +:iframeclass: dark-light :url: https://embed.grasple.f74168ff-a448-4420-88d9-ebe7365a00a9?id=70172com/exercises/ :label: grasple_exercise_2_2_2 :dropdown: @@ -350,6 +353,7 @@ In {prf:ref}`Prop:LinearCombinations:SpanStandardBasis` we saw that the span of :::: ::::{grasple} +:iframeclass: dark-light :url: https://embed.grasple.com/exercises/b760d9b9-d0ba-4875-b828-397e7a045283?id=70175 :label: grasple_exercise_2_2_3 :dropdown: @@ -360,6 +364,7 @@ In {prf:ref}`Prop:LinearCombinations:SpanStandardBasis` we saw that the span of % ------------------------------------------------ ::::{grasple} +:iframeclass: dark-light :url: https://embed.grasple.com/exercises/a8175390-3844-408c-b192-c4b05f9beb7b?id=70170 :label: grasple_exercise_2_2_4 :dropdown: @@ -368,6 +373,7 @@ In {prf:ref}`Prop:LinearCombinations:SpanStandardBasis` we saw that the span of :::: ::::{grasple} +:iframeclass: dark-light :url: https://embed.grasple.com/exercises/fab5c526-91ed-407b-9faa-645f40c22b8b?id=70169 :label: grasple_exercise_2_2_5 :dropdown: @@ -376,6 +382,7 @@ In {prf:ref}`Prop:LinearCombinations:SpanStandardBasis` we saw that the span of :::: ::::{grasple} +:iframeclass: dark-light :url: https://embed.grasple.com/exercises/2167085c-2498-4694-9eac-abfeeb0ec307?id=70162 :label: grasple_exercise_2_2_6 :dropdown: @@ -386,6 +393,7 @@ In {prf:ref}`Prop:LinearCombinations:SpanStandardBasis` we saw that the span of % ------------------------------------------------ ::::{grasple} +:iframeclass: dark-light :url: https://embed.grasple.com/exercises/493831d9-ab4a-4f78-b9ea-7b707aa9f4c2?id=70174 :label: grasple_exercise_2_2_7 :dropdown: @@ -394,6 +402,7 @@ In {prf:ref}`Prop:LinearCombinations:SpanStandardBasis` we saw that the span of :::: ::::{grasple} +:iframeclass: dark-light :url: https://embed.grasple.com/exercises/c008320d-9d0e-463f-8bb7-344988f10438?id=70176 :label: grasple_exercise_2_2_8 :dropdown: @@ -402,6 +411,7 @@ In {prf:ref}`Prop:LinearCombinations:SpanStandardBasis` we saw that the span of :::: ::::{grasple} +:iframeclass: dark-light :url: https://embed.grasple.com/exercises/b4f4dc1f-4f56-41e8-b16d-a2694e90890c?id=70181 :label: grasple_exercise_2_2_9 :dropdown: @@ -412,6 +422,7 @@ In {prf:ref}`Prop:LinearCombinations:SpanStandardBasis` we saw that the span of % ------------------------------------------------ ::::{grasple} +:iframeclass: dark-light :url: https://embed.grasple.com/exercises/45bc5527-e79b-4198-b6b7-9b3168d9d1ff?id=70182 :label: grasple_exercise_2_2_10 :dropdown: @@ -422,6 +433,7 @@ In {prf:ref}`Prop:LinearCombinations:SpanStandardBasis` we saw that the span of % ------------------------------------------------ ::::{grasple} +:iframeclass: dark-light :url: https://embed.grasple.com/exercises/7fcebe18-474c-4995-9c81-f1da7ab4cc5e?id=70360 :label: grasple_exercise_2_2_11 :dropdown: diff --git a/Chapter2/LinearIndependence.md b/Chapter2/LinearIndependence.md index e600de6..22e6e7e 100644 --- a/Chapter2/LinearIndependence.md +++ b/Chapter2/LinearIndependence.md @@ -4,6 +4,7 @@ As we have seen ({prf:ref}`Ex:LinearCombinations:SpanOfOneVector` and {prf:ref}` ::::{figure} Images/Fig-LinInd-Examplein1D.svg :name: Fig:LinInd:Examplein1D +:class: dark-light The set $\left\lbrace\mathbf{v}_{1},\mathbf{v}_{2}\right\rbrace$ contains two vectors, but one of them is superfluous. Every vector one can make as a linear combination of $\mathbf{v}_{1}$ and $\mathbf{v}_{2}$ can also be made with just $\mathbf{v}_{1}$. :::: @@ -37,7 +38,8 @@ precisely two vectors, say $\mathbf{u}$ and $\mathbf{v}$. Then $S$ is linearly i :::::: -::::::{prf:proof} +::::::{admonition} Proof of {prf:ref}`Prop:LinInd:LinIndforSmallSets` +:class: myproof <ul> <li> @@ -59,7 +61,7 @@ As you can see from the proof of {prf:ref}`Prop:LinInd:LinIndforSmallSets`, our ::::::{prf:example} :label: Item:LinInd:LinDepExin2D -<ul> +<ol type="i"> <li id="Item:LinInd:LinDepExin2D"> Consider the vectors @@ -98,8 +100,8 @@ which are shown on the left in {numref}`Figure %s <Fig:LinInd:Examplein2D>`. The Indeed, if we take an arbitrary vector $\mathbf{v}$ in $\Span{S}$, we can write it as \begin{align*} -\mathbf{v}&=c*{1}\mathbf{v}_{1}+c_{2}\mathbf{v}_{2}+c_{3}\mathbf{v}_{3}\\ -&=(c_{2}-c*{1})\mathbf{v}*{2}+(c*{3}+c*{1})\mathbf{v}_{3} +\mathbf{v}&=c_{1}\mathbf{v}_{1}+c_{2}\mathbf{v}_{2}+c_{3}\mathbf{v}_{3}\\ +&=(c_{2}-c_{1})\mathbf{v}_{2}+(c_{3}+c_{1})\mathbf{v}_{3} \end{align*} in view of equation {eq}`Eq:LinInd:LinIndEx1`. This means that $\mathbf{v}$ is also in $\Span{S\setminus\left\lbrace\mathbf{v}_{1}\right\rbrace}$ and consequently that $\mathbf{v}_{1}$ is linearly dependent on $\mathbf{v}_{2}$ and $\mathbf{v}_{3}$. @@ -114,25 +116,26 @@ Consider now the vectors $$ \mathbf{v}_{1}= - \begin{bmatrix}1\\0\end{bmatrix}\quad\mathbf{v}_{2}= - \begin{bmatrix}2\\0\end{bmatrix}\quad - \mathbf{v}_{3}= - \begin{bmatrix}0\\1\end{bmatrix} + \begin{bmatrix}1\\0\end{bmatrix}\quad + \mathbf{v}_{2}= + \begin{bmatrix}0\\1\end{bmatrix}\quad\mathbf{v}_{4}= + \begin{bmatrix}2\\0\end{bmatrix} $$ which are shown on the right in {numref}`Figure %s <Fig:LinInd:Examplein2D>`. -The set $S=\left\lbrace\mathbf{v}_{1},\mathbf{v}_{2},\mathbf{v}_{3}\right\rbrace$ is again linearly dependent since +The set $S=\left\lbrace\mathbf{v}_{1},\mathbf{v}_{2},\mathbf{v}_{4}\right\rbrace$ is again linearly dependent since $$ -\mathbf{v}_{2}=2\mathbf{v}_{1}+0\mathbf{v}_{3}\nonumber +\mathbf{v}_{4}=2\mathbf{v}_{1}+0\mathbf{v}_{2}\nonumber $$ -but now the subset $\left\lbrace\mathbf{v}_{1},\mathbf{v}_{2}\right\rbrace$ is a linearly dependent subset of $S$. On the other hand, the subsets $\left\lbrace\mathbf{v}_{1},\mathbf{v}_{3}\right\rbrace$ and $\left\lbrace\mathbf{v}_{2},\mathbf{v}_{3}\right\rbrace$ are linearly independent. +but now the subset $\left\lbrace\mathbf{v}_{1},\mathbf{v}_{4}\right\rbrace$ is a linearly dependent subset of $S$. On the other hand, the subsets $\left\lbrace\mathbf{v}_{1},\mathbf{v}_{2}\right\rbrace$ and $\left\lbrace\mathbf{v}_{2},\mathbf{v}_{4}\right\rbrace$ are linearly independent. ::::{figure} Images/Fig-LinInd-Examplein2D.svg :name: Fig:LinInd:Examplein2D +:class: dark-light -The vectors from [i.](#Item:LinInd:LinDepExin2D) on the left and from [ii.](#Item:LinInd:LinDepandIndDepExin2D) on the right. On the left, there is no vector which is a multiple of another vector so every set of two vectors is linearly independent. On the right this is not the case. The vectors $\mathbf{v}_{1}$ and $\mathbf{v}_{2}$ are multiples of each other and therefore $\left\lbrace\mathbf{v}_{1},\mathbf{v}_{2}\right\rbrace$ is linearly dependent. +The vectors from [i.](#Item:LinInd:LinDepExin2D) on the left and from [ii.](#Item:LinInd:LinDepandIndDepExin2D) on the right. On the left, there is no vector which is a multiple of another vector, so every set of two vectors is linearly independent. On the right this is not the case. The vectors $\mathbf{v}_{1}$ and $\mathbf{v}_{4}$ are multiples of each other and therefore $\left\lbrace\mathbf{v}_{1},\mathbf{v}_{4}\right\rbrace$ is linearly dependent. :::: </li> @@ -141,27 +144,29 @@ The vectors from [i.](#Item:LinInd:LinDepExin2D) on the left and from [ii.](#Ite Put $$ - \mathbf{v}_{1}= - \begin{bmatrix}1\\0\\0\end{bmatrix},\quad\mathbf{v}_{2}= - \begin{bmatrix}0\\1\\0\end{bmatrix},\quad\mathbf{v}_{3}= - \begin{bmatrix}1\\2\\0\end{bmatrix},\quad \text{and}\quad\mathbf{v}_{4}= + \mathbf{w}_{1}= + \begin{bmatrix}1\\0\\0\end{bmatrix},\quad\mathbf{w}_{2}= + \begin{bmatrix}0\\1\\0\end{bmatrix},\quad\mathbf{w}_{3}= + \begin{bmatrix}1\\2\\0\end{bmatrix},\quad \text{and}\quad\mathbf{w}_{4}= \begin{bmatrix}1\\2\\1\end{bmatrix}. $$ -The set $\left\lbrace\mathbf{v}_{1},\mathbf{v}_{2},\mathbf{v}_{3}\right\rbrace$ is linearly dependent. The set $\left\lbrace\mathbf{v}_{1},\mathbf{v}_{2},\mathbf{v}_{4}\right\rbrace$, however, is not. This is illustrated in {numref}`Figure %s <Fig:LinInd:Examplein3D>`. +The set $\left\lbrace\mathbf{w}_{1},\mathbf{w}_{2},\mathbf{w}_{3}\right\rbrace$ is linearly dependent. The set $\left\lbrace\mathbf{w}_{1},\mathbf{w}_{2},\mathbf{w}_{4}\right\rbrace$, however, is not. This is illustrated in {numref}`Figure %s <Fig:LinInd:Examplein3D>`. ::::{figure} Images/Fig-LinInd-Examplein3D.svg :name: Fig:LinInd:Examplein3D +:class: dark-light -The four vectors from [iii.](#Item:LinInd:LinDepExin3D). Note that $\mathbf{v}_{3}$ lies in the plane spanned by $\mathbf{v}_{1}$ and $\mathbf{v}_{2}$ but $\mathbf{v}_{4}$ does not. This means that $\left\lbrace\mathbf{v}_{1},\mathbf{v}_{2},\mathbf{v}_{3}\right\rbrace$ is linearly dependent but $\left\lbrace\mathbf{v}_{1},\mathbf{v}_{2},\mathbf{v}_{4}\right\rbrace$ is not. +The four vectors from [iii.](#Item:LinInd:LinDepExin3D). Note that $\mathbf{w}_{3}$ lies in the plane spanned by $\mathbf{w}_{1}$ and $\mathbf{w}_{2}$ but $\mathbf{w}_{4}$ does not. This means that $\left\lbrace\mathbf{w}_{1},\mathbf{w}_{2},\mathbf{w}_{3}\right\rbrace$ is linearly dependent but $\left\lbrace\mathbf{w}_{1},\mathbf{w}_{2},\mathbf{w}_{4}\right\rbrace$ is not. :::: </li> -</ul> +</ol> :::::: ::::::{grasple} +:iframeclass: dark-light :url: https://embed.grasple.com/exercises/e7ff6fad-218f-4583-907f-514b3980698a?id=70195 :label: grasple_exercise_2_5_txt1 :dropdown: @@ -170,6 +175,7 @@ The four vectors from [iii.](#Item:LinInd:LinDepExin3D). Note that $\mathbf{v}_{ :::::: ::::::{grasple} +:iframeclass: dark-light :url: https://embed.grasple.com/exercises/96efb1e1-8994-4067-88b2-a24fb58c63cb?id=70196 :label: grasple_exercise_2_5_txt2 :dropdown: @@ -178,6 +184,7 @@ The four vectors from [iii.](#Item:LinInd:LinDepExin3D). Note that $\mathbf{v}_{ :::::: ::::::{grasple} +:iframeclass: dark-light :url: https://embed.grasple.com/exercises/956e2076-9232-4b43-aad9-ddbbf8252a71?id=70197 :label: grasple_exercise_2_5_txt3 :dropdown: @@ -214,12 +221,12 @@ If $T$ is linearly independent and $S\subseteq T$, then $S$ is linearly independ We leave the verifications of these statements to the reader. -::::::{prf:exercise} +:::{exercise} :label: Ex:LinInd:LinDepSets -Prove {prf:ref}`Prop:LinInd:LinDepSets` +Prove {prf:ref}`Prop:LinInd:LinDepSets`. -:::::: +::: But how do you determine whether a set of vectors is linearly independent or not? Like so many problems in linear algebra, it comes down to solving a system of linear equations, as {prf:ref}`Prop:LinInd:LinIndisNonTrivSol` shows. @@ -231,7 +238,7 @@ A set $\left\lbrace\mathbf{v}_{1},...,\mathbf{v}_{k}\right\rbrace$ of vectors in :::{math} :label: Eq:LinInd:VecEqisZero -c*{1}\mathbf{v}*{1}+\cdots +c*{k}\mathbf{v}*{k}=\mathbf{0} +c_{1}\mathbf{v}_{1}+\cdots +c_{k}\mathbf{v}_{k}=\mathbf{0} ::: @@ -239,7 +246,8 @@ has a non-trivial solution. That is, a solution where not all $c_i$ are equal to :::::: -::::::{prf:proof} +::::::{admonition} Proof of {prf:ref}`Prop:LinInd:LinIndisNonTrivSol` +:class: myproof If $\left\lbrace\mathbf{v}_{1},...,\mathbf{v}_{k}\right\rbrace$ is linearly dependent, one of these vectors, say $\mathbf{v}_{i}$, is linearly dependent on the others, i.e. it is in $\Span{\mathbf{v}_{1},...,\mathbf{v}_{i-1},\mathbf{v}_{i+1},...\mathbf{v}_{k}}$. Therefore, there exist some scalars $c_{1},...,c_{i-1},c_{i+1},...,c_{k}$ such that @@ -280,7 +288,7 @@ has a non-trivial solution, i.e. if $A$ has a column without a pivot. Again we leave the verification to the diligent reader. -::::::{prf:exercise} +::::::{exercise} :label: Exc:LinInd:LinDepSets Prove {prf:ref}`Cor:LinInd:LinIndisColwithoutPivot` @@ -330,6 +338,7 @@ $$ :::::: ::::::{grasple} +:iframeclass: dark-light :url: https://embed.grasple.com/exercises/4d23327b-93df-41b8-bc55-481e82ba28c0?id=70201 :label: grasple_exercise_2_5_txt4 :dropdown: @@ -338,6 +347,7 @@ $$ :::::: ::::::{grasple} +:iframeclass: dark-light :url: https://embed.grasple.com/exercises/cf7c40ff-3d18-4a98-9bc5-20a4ea263bb0?id=87417 :label: grasple_exercise_2_5_txt5 :dropdown: @@ -354,7 +364,8 @@ An ordered set $S=(\mathbf{v}_{1},...,\mathbf{v}_{n})$ is linearly dependent if :::::: -::::::{prf:proof} +::::::{admonition} Proof of {prf:ref}`Thm:LindInd:LinIndisVectDeponPrevious` +:class: myproof Let us assume $\mathbf{v}_{k}=c_{1}\mathbf{v}_{1}+\cdots+c_{k-1}\mathbf{v}_{k-1}$ for some scalars $c_{1},...,c_{k-1}$. An arbitrary element $\mathbf{v}$ of $\Span{S}$ is a linear combination of $\mathbf{v}_{1},...,\mathbf{v}_{n}$, so it is @@ -404,7 +415,8 @@ Suppose $\mathbf{u}_{1},...,\mathbf{u}_{k}$ and $\mathbf{v}_{1},...,\mathbf{v}_{ :::::: -::::::{prf:proof} +::::::{admonition} Proof of {prf:ref}`Thm:LinInd:TooManyVectsimpliesLinDep` +:class: myproof Consider the matrices @@ -435,7 +447,8 @@ Let $S$ be a subset of $\mathbb{R}^{n}$. If there are more than $n$ vectors in $ :::::: -::::::{prf:proof} +::::::{admonition} Proof of {prf:ref}`Thm:LinInd:MoreRowthanColmeansLinDep` +:class: myproof Take distinct vectors $\mathbf{v}_{1},...,\mathbf{v}_{n+1}$ in $S$. $\Span{\mathbf{v}_{1},...,\mathbf{v}_{n+1}}$ is contained in $\Span{\mathbf{e}_{1},..,\mathbf{e}_{n}}$ and $n+1>n$, so $\left\lbrace\mathbf{v}_{1},..,\mathbf{v}_{n+1}\right\rbrace$ is linearly dependent by {prf:ref}`Thm:LinInd:TooManyVectsimpliesLinDep`. Since this set is contained in $S$, $S$ must be linearly dependent, too, by {prf:ref}`Prop:LinInd:LinDepSets`. @@ -504,6 +517,7 @@ since a win yielded 2 points, a draw 1 point, and a loss 0 points. This means th ## Grasple Exercises ::::::{grasple} +:iframeclass: dark-light :url: https://embed.grasple.com/exercises/d40a884f-c356-4ba7-a777-92fd5f4fffcd?id=70202 :label: grasple_exercise_2_5_1 :dropdown: @@ -512,6 +526,7 @@ since a win yielded 2 points, a draw 1 point, and a loss 0 points. This means th :::::: ::::::{grasple} +:iframeclass: dark-light :url: https://embed.grasple.com/exercises/d40a884f-c356-4ba7-a777-92fd5f4fffcd?id=70202 :label: grasple_exercise_2_5_2 :dropdown: @@ -520,6 +535,7 @@ since a win yielded 2 points, a draw 1 point, and a loss 0 points. This means th :::::: ::::::{grasple} +:iframeclass: dark-light :url: https://embed.grasple.com/exercises/7341c27a-5482-4303-b20f-4a3965c99535?id=70209 :label: grasple_exercise_2_5_3 :dropdown: @@ -528,6 +544,7 @@ since a win yielded 2 points, a draw 1 point, and a loss 0 points. This means th :::::: ::::::{grasple} +:iframeclass: dark-light :url: https://embed.grasple.com/exercises/018f7ed5-d1ac-490b-add4-40568f525878?id=70213 :label: grasple_exercise_2_5_4 :dropdown: @@ -536,6 +553,7 @@ since a win yielded 2 points, a draw 1 point, and a loss 0 points. This means th :::::: ::::::{grasple} +:iframeclass: dark-light :url: https://embed.grasple.com/exercises/c42855ae-f0af-4b52-9a89-fab0e1bdf877?id=87321 :label: grasple_exercise_2_5_5 :dropdown: @@ -544,6 +562,7 @@ since a win yielded 2 points, a draw 1 point, and a loss 0 points. This means th :::::: ::::::{grasple} +:iframeclass: dark-light :url: https://embed.grasple.com/exercises/d78332f6-0a0b-404a-973d-adc745782ab6?id=70204 :label: grasple_exercise_2_5_6 :dropdown: @@ -552,6 +571,7 @@ since a win yielded 2 points, a draw 1 point, and a loss 0 points. This means th :::::: ::::::{grasple} +:iframeclass: dark-light :url: https://embed.grasple.com/exercises/9345f478-7f65-4239-a9ea-26929131f010?id=70205 :label: grasple_exercise_2_5_7 :dropdown: @@ -560,6 +580,7 @@ since a win yielded 2 points, a draw 1 point, and a loss 0 points. This means th :::::: ::::::{grasple} +:iframeclass: dark-light :url: https://embed.grasple.com/exercises/9345f478-7f65-4239-a9ea-26929131f010?id=70205 :label: grasple_exercise_2_5_8 :dropdown: @@ -568,6 +589,7 @@ since a win yielded 2 points, a draw 1 point, and a loss 0 points. This means th :::::: ::::::{grasple} +:iframeclass: dark-light :url: https://embed.grasple.com/exercises/fce5512f-2e50-4973-8de1-d8d569e497b4?id=70208 :label: grasple_exercise_2_5_9 :dropdown: @@ -576,6 +598,7 @@ since a win yielded 2 points, a draw 1 point, and a loss 0 points. This means th :::::: ::::::{grasple} +:iframeclass: dark-light :url: https://embed.grasple.com/exercises/fce5512f-2e50-4973-8de1-d8d569e497b4?id=70208 :label: grasple_exercise_2_5_11 :dropdown: @@ -584,6 +607,7 @@ since a win yielded 2 points, a draw 1 point, and a loss 0 points. This means th :::::: ::::::{grasple} +:iframeclass: dark-light :url: https://embed.grasple.com/exercises/5cb7db99-e91c-4f82-94ce-e69c042e14af?id=70191 :label: grasple_exercise_2_5_12 :dropdown: @@ -592,6 +616,7 @@ since a win yielded 2 points, a draw 1 point, and a loss 0 points. This means th :::::: ::::::{grasple} +:iframeclass: dark-light :url: https://embed.grasple.com/exercises/4da2f0e7-eef3-4acc-baea-ac689bda49f3?id=87426 :label: grasple_exercise_2_5_13 :dropdown: @@ -600,6 +625,7 @@ since a win yielded 2 points, a draw 1 point, and a loss 0 points. This means th :::::: ::::::{grasple} +:iframeclass: dark-light :url: https://embed.grasple.com/exercises/cd594e68-f4b5-41fa-839e-139dd5a2c428?id=70198 :label: grasple_exercise_2_5_14 :dropdown: @@ -608,6 +634,7 @@ since a win yielded 2 points, a draw 1 point, and a loss 0 points. This means th :::::: ::::::{grasple} +:iframeclass: dark-light :url: https://embed.grasple.com/exercises/221b7ec2-e749-4528-9be9-ee6138e2f13d?id=70199 :label: grasple_exercise_2_5_15 :dropdown: @@ -616,6 +643,7 @@ since a win yielded 2 points, a draw 1 point, and a loss 0 points. This means th :::::: ::::::{grasple} +:iframeclass: dark-light :url: https://embed.grasple.com/exercises/c277e508-cced-46f8-911f-4fb0dce4bd18?id=70200 :label: grasple_exercise_2_5_16 :dropdown: @@ -624,6 +652,7 @@ since a win yielded 2 points, a draw 1 point, and a loss 0 points. This means th :::::: ::::::{grasple} +:iframeclass: dark-light :url: https://embed.grasple.com/exercises/72bf1389-22c8-4588-8f73-4c7215b7cea4?id=70217 :label: grasple_exercise_2_5_17 :dropdown: @@ -632,6 +661,7 @@ since a win yielded 2 points, a draw 1 point, and a loss 0 points. This means th :::::: ::::::{grasple} +:iframeclass: dark-light :url: https://embed.grasple.com/exercises/85cbd7f9-9ab3-4e4a-9c19-152453ce0c52?id=68883 :label: grasple_exercise_2_5_18 :dropdown: @@ -640,6 +670,7 @@ since a win yielded 2 points, a draw 1 point, and a loss 0 points. This means th :::::: ::::::{grasple} +:iframeclass: dark-light :url: https://embed.grasple.com/exercises/b7fa29e0-5d17-4a74-b173-0219f69fb2a3?id=68884 :label: grasple_exercise_2_5_19 :dropdown: @@ -648,6 +679,7 @@ since a win yielded 2 points, a draw 1 point, and a loss 0 points. This means th :::::: ::::::{grasple} +:iframeclass: dark-light :url: https://embed.grasple.com/exercises/804d59bd-3813-484b-b0b9-f79a1d6921c2?id=87427 :label: grasple_exercise_2_5_20 :dropdown: @@ -656,6 +688,7 @@ since a win yielded 2 points, a draw 1 point, and a loss 0 points. This means th :::::: ::::::{grasple} +:iframeclass: dark-light :url: https://embed.grasple.com/exercises/5f21724d-6e37-456f-b661-3a7bfd83fb39?id=70219 :label: grasple_exercise_2_5_21 :dropdown: @@ -664,6 +697,7 @@ since a win yielded 2 points, a draw 1 point, and a loss 0 points. This means th :::::: ::::::{grasple} +:iframeclass: dark-light :url: https://embed.grasple.com/exercises/bcd13c4c-50e6-4c8c-be50-abd4ba71ef2f?id=70221 :label: grasple_exercise_2_5_22 :dropdown: @@ -672,6 +706,7 @@ since a win yielded 2 points, a draw 1 point, and a loss 0 points. This means th :::::: ::::::{grasple} +:iframeclass: dark-light :url: https://embed.grasple.com/exercises/274a9a74-5977-435e-8374-59e6f93c1262?id=70194 :label: grasple_exercise_2_5_23 :dropdown: @@ -680,6 +715,7 @@ since a win yielded 2 points, a draw 1 point, and a loss 0 points. This means th :::::: ::::::{grasple} +:iframeclass: dark-light :url: https://embed.grasple.com/exercises/c395902a-87aa-4858-915b-7ddc5513cb85?id=87398 :label: grasple_exercise_2_5_24 :dropdown: @@ -687,6 +723,7 @@ since a win yielded 2 points, a draw 1 point, and a loss 0 points. This means th :::::: ::::::{grasple} +:iframeclass: dark-light :url: https://embed.grasple.com/exercises/8f89db8f-777f-4f11-9e09-23ddacf7a08d?id=87428 :label: grasple_exercise_2_5_25 :dropdown: @@ -695,6 +732,7 @@ since a win yielded 2 points, a draw 1 point, and a loss 0 points. This means th :::::: ::::::{grasple} +:iframeclass: dark-light :url: https://embed.grasple.com/exercises/43810ef4-d9c7-4097-8d05-f91dd67bbb43?id=68868 :label: grasple_exercise_2_5_26 :dropdown: diff --git a/Chapter2/LinearSystems.md b/Chapter2/LinearSystems.md index 703596e..540dae3 100644 --- a/Chapter2/LinearSystems.md +++ b/Chapter2/LinearSystems.md @@ -1,8 +1,8 @@ ---- +<!-- --- csp: frame-ancestors: 'self' https://embed.grasple.com/; --- - + --> (Section:LinSystems)= # Systems of Linear Equations @@ -143,6 +143,7 @@ which are both true identities. :::: ::::{grasple} +:iframeclass: dark-light :url: https://embed.grasple.com/exercises/8159aed6-a915-4cc1-bf75-f243702de530?id=83000 :label: grasple_exercise_2_1_A :dropdown: @@ -518,7 +519,8 @@ Changing the order of the equations. :::: -::::{prf:proof} +::::{admonition} Proof of {prf:ref}`Prop:LinSystems:ElimOperations` +:class: myproof The correctness of the first operation is illustrated in {prf:ref}`Ex:LinSystems:EliminationFirst`. One example is by far not a proof, but the explanation given there can be generalized/formalized. @@ -1059,6 +1061,7 @@ Namely, in matrix $A_4$ the second row is a non-zero row that is below the all-z :::: ::::{grasple} +:iframeclass: dark-light :url: https://embed.grasple.com/exercises/a6512aec-5f2d-4e3c-9c26-a0a22815480e?id=86165 :label: grasple_exercise_2_1_D :dropdown: @@ -1141,6 +1144,7 @@ In fact we simplified the system and the matrix along parallel paths. From now o In later chapters we will also apply row reduction to matrices in other contexts, i.c. for other purposes. ::::{grasple} +:iframeclass: dark-light :url: https://embed.grasple.com/exercises/100dee65-a3fa-4747-9806-425aabb199f1?id=86189 :label: grasple_exercise_2_1_B :dropdown: @@ -1452,6 +1456,7 @@ the first and the third are echelon matrices and only the third is a reduced ech :::: ::::{grasple} +:iframeclass: dark-light :url: https://embed.grasple.com/exercises/ec78c509-6e28-441b-bace-9d2b24f14d63?id=70366 :label: grasple_exercise_2_1_C :dropdown: @@ -1600,7 +1605,7 @@ $$ \left[\begin{array}{rrrr}2 & -1 & -1 & 2\\1 & 2 & 4 & 4\\4 & -2 & -4 & 6 \end{array}\right]\begin{array}{l} [R_1] \\ -{[2R_1]} \\ +{[2R_2]} \\ {[R_3]} \\ \end{array} \quad\sim \left[\begin{array}{rrrr}2 & -1 & -1 & 2\\2 & 4 & 8 & 8\\4 & -2 & -4 & 6 @@ -1617,7 +1622,7 @@ $$ \end{array}\right]\begin{array}{l} [R_1] \\ {[R_2]} \\ -{[(-\nicefrac12)R_2]} \\ +{[(-\nicefrac12)R_3]} \\ \end{array} \quad\sim \left[\begin{array}{rrrr}2 & -1 & -1 & 2\\0 & 5 & 9 & 6\\0 & 0 & 1 & -1 \end{array}\right]\begin{array}{l} @@ -1750,6 +1755,7 @@ The word 'elimination' refers to the fact that the zeros that are created in the :::: ::::{grasple} +:iframeclass: dark-light :url: https://embed.grasple.com/exercises/c242961e-d472-49b4-88e0-80cac8c617f9?id=87134 :label: grasple_exercise_2_1_E :dropdown: @@ -1773,7 +1779,8 @@ A system of linear equations has either zero, or one, or infinitely many solutio :::: -::::{prf:proof} +::::{admonition} Proof of {prf:ref}`Thm:LinSystems:ZeroOneInfSolutions` +:class: myproof This just depends on the outcome of the elimination method (i.e. {prf:ref}`Alg:LinSystems:ElimMethod`). If iii. occurs, the number of solutions is zero; if iv. occurs and there are no free variables, there is just one solution. Lastly, if there is at least one free variable, the solution set automatically contains infinitely many solutions. @@ -1851,6 +1858,7 @@ Then the first system has a unique solution, the second system has infinitely ma :::: ::::{grasple} +:iframeclass: dark-light :url: https://embed.grasple.com/exercises/fdf71712-2d0a-4bf2-bfb5-cdcac02f55df?id=70143 :label: grasple_exercise_2_1_F :dropdown: @@ -1872,7 +1880,8 @@ A linear system of $m$ equations in $n$ unknowns can only have a unique solution :::: -::::{prf:proof} +::::{admonition} Proof of {prf:ref}`Prop:LinSystems:UniqueSolutionImpliesSize` +:class: myproof Let @@ -1912,6 +1921,7 @@ The first exercises are quite straightfordwardly computational. The remaining exercises tend to be a bit more theoretic. ::::{grasple} +:iframeclass: dark-light :url: https://embed.grasple.com/exercises/c8dee65d-a165-4534-89ee-76967d660c9c?id=69544 :label: grasple_exercise_2_1_1 :dropdown: @@ -1920,6 +1930,7 @@ The remaining exercises tend to be a bit more theoretic. :::: ::::{grasple} +:iframeclass: dark-light :url: https://embed.grasple.com/exercises/4bd179e9-99a6-436a-a178-9ad77210f86b?id=71057 :label: grasple_exercise_2_1_1B :dropdown: @@ -1928,6 +1939,7 @@ The remaining exercises tend to be a bit more theoretic. :::: ::::{grasple} +:iframeclass: dark-light :url: https://embed.grasple.com/exercises/9bb8381d-f1a2-4e58-8928-4985cce492c4?id=76019 :label: grasple_exercise_2_1_2 :dropdown: @@ -1936,6 +1948,7 @@ The remaining exercises tend to be a bit more theoretic. :::: ::::{grasple} +:iframeclass: dark-light :url: https://embed.grasple.com/exercises/42f38f80-f854-469d-b1e6-893539fd3572?id=82676 :label: grasple_exercise_2_1_3 :dropdown: @@ -1944,6 +1957,7 @@ The remaining exercises tend to be a bit more theoretic. :::: ::::{grasple} +:iframeclass: dark-light :url: https://embed.grasple.com/exercises/0d23f4f3-5798-4a7a-b40e-f163f7e2b37f?id=82667 :label: grasple_exercise_2_1_4 :dropdown: @@ -1952,6 +1966,7 @@ The remaining exercises tend to be a bit more theoretic. :::: ::::{grasple} +:iframeclass: dark-light :url: https://embed.grasple.com/exercises/99536b94-713b-4bae-874c-62958af0f5fe?id=80875 :label: grasple_exercise_2_1_5 :dropdown: @@ -1960,6 +1975,7 @@ The remaining exercises tend to be a bit more theoretic. :::: ::::{grasple} +:iframeclass: dark-light :url: https://embed.grasple.com/exercises/ff8bfe99-7a87-4711-b589-7ba70a857a39?id=80876 :label: grasple_exercise_2_1_6 :dropdown: @@ -1968,6 +1984,7 @@ The remaining exercises tend to be a bit more theoretic. :::: ::::{grasple} +:iframeclass: dark-light :url: https://embed.grasple.com/exercises/e1ffae46-da26-42b6-98ad-957478b6d58c?id=76653 :label: grasple_exercise_2_1_7 :dropdown: @@ -1976,6 +1993,7 @@ The remaining exercises tend to be a bit more theoretic. :::: ::::{grasple} +:iframeclass: dark-light :url: https://embed.grasple.com/exercises/c01e55fb-21d2-4539-a870-353a40d51db0?id=69506 :label: grasple_exercise_2_1_8 :dropdown: @@ -1984,6 +2002,7 @@ The remaining exercises tend to be a bit more theoretic. :::: ::::{grasple} +:iframeclass: dark-light :url: https://embed.grasple.com/exercises/796aca3d-2b17-4e17-bad7-a83c23c88db8?id=69545 :label: grasple_exercise_2_1_9 :dropdown: @@ -1992,6 +2011,7 @@ The remaining exercises tend to be a bit more theoretic. :::: ::::{grasple} +:iframeclass: dark-light :url: https://embed.grasple.com/exercises/447cc6ad-095e-4704-9445-8fcb4e9c4b8e?id=69587 :label: grasple_exercise_2_1_10 :dropdown: @@ -2000,6 +2020,7 @@ The remaining exercises tend to be a bit more theoretic. :::: ::::{grasple} +:iframeclass: dark-light :url: https://embed.grasple.com/exercises/204cb1ad-0608-40ce-bb56-a2a6c6e8f1af?id=69559 :label: grasple_exercise_2_1_11 :dropdown: @@ -2008,6 +2029,7 @@ The remaining exercises tend to be a bit more theoretic. :::: ::::{grasple} +:iframeclass: dark-light :url: https://embed.grasple.com/exercises/a05fdf80-1325-4e86-874e-cd858133ad46?id=69558 :label: grasple_exercise_2_1_12 :dropdown: @@ -2016,6 +2038,7 @@ The remaining exercises tend to be a bit more theoretic. :::: ::::{grasple} +:iframeclass: dark-light :url: https://embed.grasple.com/exercises/73ced8a4-d6f8-494f-b58a-9e2f4053cd5b?id=82689 :label: grasple_exercise_2_1_13 :dropdown: @@ -2024,6 +2047,7 @@ The remaining exercises tend to be a bit more theoretic. :::: ::::{grasple} +:iframeclass: dark-light :url: https://embed.grasple.com/exercises/2b25fdf4-e662-4859-9f30-8838a1a7079f?id=69562 :label: grasple_exercise_2_1_14 :dropdown: @@ -2032,6 +2056,7 @@ The remaining exercises tend to be a bit more theoretic. :::: ::::{grasple} +:iframeclass: dark-light :url: https://embed.grasple.com/exercises/1dad6770-3b71-4c80-ae78-e63d2cfd93e9?id=69563 :label: grasple_exercise_2_1_15 :dropdown: @@ -2040,6 +2065,7 @@ The remaining exercises tend to be a bit more theoretic. :::: ::::{grasple} +:iframeclass: dark-light :url: https://embed.grasple.com/exercises/8d249aed-fa38-4a70-8271-8be07187dd06?id=69541 :label: grasple_exercise_2_1_16 :dropdown: @@ -2048,6 +2074,7 @@ The remaining exercises tend to be a bit more theoretic. :::: ::::{grasple} +:iframeclass: dark-light :url: https://embed.grasple.com/exercises/8d249aed-fa38-4a70-8271-8be07187dd06?id=69541 :label: grasple_exercise_2_1_17 :dropdown: @@ -2058,6 +2085,7 @@ The remaining exercises tend to be a bit more theoretic. The remaining exercises are a bit more theoretical. ::::{grasple} +:iframeclass: dark-light :url: https://embed.grasple.com/exercises/34663755-68a2-46ec-a3e7-0ad78ba9bdcd?id=71059 :label: grasple_exercise_2_1_T1 :dropdown: @@ -2066,6 +2094,7 @@ The remaining exercises are a bit more theoretical. :::: ::::{grasple} +:iframeclass: dark-light :url: https://embed.grasple.com/exercises/3077fca5-9295-4634-a72d-18eca315de59?id=69743 :label: grasple_exercise_2_1_T2 :dropdown: @@ -2074,6 +2103,7 @@ The remaining exercises are a bit more theoretical. :::: ::::{grasple} +:iframeclass: dark-light :url: https://embed.grasple.com/exercises/e9b7c9da-fe93-46a3-bde7-6bd8c4583aa8?id=68838 :label: grasple_exercise_2_1_T3 :dropdown: @@ -2084,6 +2114,7 @@ The remaining exercises are a bit more theoretical. Four exercises about linear systems with a parameter. ::::{grasple} +:iframeclass: dark-light :url: https://embed.grasple.com/exercises/e906b587-b749-438a-a97b-4a4ef917a7b2?id=69744 :label: grasple_exercise_2_1_T4A :dropdown: @@ -2091,6 +2122,7 @@ Four exercises about linear systems with a parameter. :::: ::::{grasple} +:iframeclass: dark-light :url: https://embed.grasple.com/exercises/9a51faa0-98f0-4934-81b5-7d78d7fef7ec?id=69745 :label: grasple_exercise_2_1_T4B :dropdown: @@ -2099,6 +2131,7 @@ Four exercises about linear systems with a parameter. :::: ::::{grasple} +:iframeclass: dark-light :url: https://embed.grasple.com/exercises/12852bd2-dfc4-41e4-8e53-c0c5664d2537?id=69746 :label: grasple_exercise_2_1_T4C :dropdown: @@ -2107,6 +2140,7 @@ Four exercises about linear systems with a parameter. :::: ::::{grasple} +:iframeclass: dark-light :url: https://embed.grasple.com/exercises/69589418-544a-46c7-9d36-517b3db92bd1?id=69747 :label: grasple_exercise_2_1_T4D :dropdown: @@ -2117,6 +2151,7 @@ Four exercises about linear systems with a parameter. Three exercises about linear systems and pivots. ::::{grasple} +:iframeclass: dark-light :url: https://embed.grasple.com/exercises/9e6cf6e3-80d2-4552-b668-cfc3bcdad27a?id=69748 :label: grasple_exercise_2_1_T5B :dropdown: @@ -2125,6 +2160,7 @@ Three exercises about linear systems and pivots. :::: ::::{grasple} +:iframeclass: dark-light :url: https://embed.grasple.com/exercises/5eb59a87-6524-4563-9c86-f54e6fdca71d?id=69749 :label: grasple_exercise_2_1_T5C :dropdown: @@ -2133,6 +2169,7 @@ Three exercises about linear systems and pivots. :::: ::::{grasple} +:iframeclass: dark-light :url: https://embed.grasple.com/exercises/9fdb7774-56f2-4a04-ae4a-a28fd4d2fd97?id=69750 :label: grasple_exercise_2_1_T5D :dropdown: @@ -2141,6 +2178,7 @@ Three exercises about linear systems and pivots. :::: ::::{grasple} +:iframeclass: dark-light :url: https://embed.grasple.com/exercises/d8ed4c96-da3f-4fb4-baa4-77c99cfdfeae?id=70370 :label: grasple_exercise_2_1_T17 :dropdown: @@ -2149,6 +2187,7 @@ Three exercises about linear systems and pivots. :::: ::::{grasple} +:iframeclass: dark-light :url: https://embed.grasple.com/exercises/23a43d40-9e2d-4d92-bf63-40519dcb7d65?id=82692 :label: grasple_exercise_2_1_T18 :dropdown: @@ -2157,6 +2196,7 @@ Three exercises about linear systems and pivots. :::: ::::{grasple} +:iframeclass: dark-light :url: https://embed.grasple.com/exercises/63dd8fd-fdbd-4d59-b49e-1d52977a1a8e?id=87122 :label: grasple_exercise_2_1_T19 :dropdown: @@ -2165,6 +2205,7 @@ Three exercises about linear systems and pivots. :::: ::::{grasple} +:iframeclass: dark-light :url: https://embed.grasple.com/exercises/dbeb91c3-4834-4204-9b0f-ca7bf4bd5ecd?id=71103 :label: grasple_exercise_2_1_T20 :dropdown: diff --git a/Chapter2/MatrixVectorProduct.md b/Chapter2/MatrixVectorProduct.md index 509bd42..f2eae05 100644 --- a/Chapter2/MatrixVectorProduct.md +++ b/Chapter2/MatrixVectorProduct.md @@ -90,7 +90,8 @@ $$ :::: -::::{prf:proof} +::::{admonition} Proof of {prf:ref}`Prop:MatVecProd:Row-ColumnRule` ({prf:ref}`Row-column rule <Prop:MatVecProd:Row-ColumnRule>`) +:class: myproof The vector on the left-hand side of the identity is by definition equal to the linear combination @@ -151,6 +152,7 @@ $$ :::: ::::{grasple} +:iframeclass: dark-light :url: https://embed.grasple.com/exercises/e9b864bf-de65-4b67-92d2-7075121ae5e5?id=70222 :label: grasple_exercise_2_4_1T :dropdown: @@ -159,6 +161,7 @@ $$ :::: ::::{grasple} +:iframeclass: dark-light :url: https://embed.grasple.com/exercises/848de922-1bd5-48a2-806d-a2b94bd40a4b?id=70223 :label: grasple_exercise_2_4_2T :dropdown: @@ -167,6 +170,7 @@ $$ :::: ::::{grasple} +:iframeclass: dark-light :url: https://embed.grasple.com/exercises/8eb9d800-ebd8-4805-8d56-eac5150f405d?id=85094 :label: grasple_exercise_2_4_3 T :dropdown: @@ -267,6 +271,7 @@ $$ :::: ::::{grasple} +:iframeclass: dark-light :url: https://embed.grasple.com/exercises/d9a8f246-359c-4666-bb8c-2f573e192e5c?id=68857 :label: grasple_exercise_2_4_4T :dropdown: @@ -294,7 +299,8 @@ $A\,(c\mathbf{x}) = c\,A\mathbf{x}$. :::: -::::{prf:proof} +::::{admonition} Proof of {prf:ref}`Prop:MatVecProduct:Linearity` +:class: myproof We will prove the first of the two statements; the other statement goes in a similar fashion. There are several ways to derive the formula. Via the linear combination idea it may be the easiest. @@ -342,7 +348,8 @@ Prove statement (ii) of the previous proposition. :::: -:::{dropdown} Solution to {numref}`Exc:MatVecProduct:CheckLinearity(ii)` (_click to show_) +:::{admonition} Solution to {numref}`Exc:MatVecProduct:CheckLinearity(ii)` +:class: solution, dropdown Assume @@ -504,7 +511,8 @@ where $r_i = p_i - q_i,\,i=1,\ldots,\,m$ \, is inconsistent. :::: -:::{dropdown} Solution to {numref}`Exc:MatVecProduct:PracticeWithProp` (_click to show_) +:::{admonition} Solution to {numref}`Exc:MatVecProduct:PracticeWithProp` +:class: solution, dropdown We start with some notations. @@ -557,7 +565,8 @@ The collection $\Span{\mathbf{v}_1, \ldots, \mathbf{v}_k}$ is equal to $\mathbb{ :::: -::::{prf:proof} +::::{admonition} Proof of {prf:ref}`Prop:LinearCombinations:SpanSolution` +:class: myproof If $\Span{\mathbf{v}_1, \ldots, \mathbf{v}_k}$ is equal to $\mathbb{R}^n$, then each vector $\mathbf{b}$ is a vector in the span of the vectors $\mathbf{v}_1, \ldots, \mathbf{v}_k$. This means that we can write $\mathbf{b}$ as a linear combination @@ -590,7 +599,8 @@ The equation $A \mathbf{x}=\mathbf{b}$ has a solution for each $\mathbf{b}$ in $ :::: -::::{prf:proof} +::::{admonition} Proof of {prf:ref}`Prop:LinearCombinations:PivotInEachRow` +:class: myproof Suppose that $A$ does not contain a pivot position in each row. By definition of the reduced echelon form we know that the last row of $A$ does not have a pivot position. If $E$ is the reduced echelon form of $A$, then this means that the bottom row of $E$ contains only zeros. Let $\mathbf{e}_n$ be again the vector of which the last entry is equal to 1 and all other entries are equal to zero. @@ -632,7 +642,8 @@ The matrix $A$ has a pivot position in each row. :::: -::::{prf:proof} +::::{admonition} Proof of {prf:ref}`Prop:LinearCombinations:PivotSpanSolution` +:class: myproof This follows from {prf:ref}`Prop:LinearCombinations:SpanSolution` and {prf:ref}`Prop:LinearCombinations:PivotInEachRow`. @@ -676,12 +687,14 @@ Since there are only two pivots in the reduced echelon matrix, we know that $\ma :::: ::::{prf:proposition} +:label: Prop:LinearCombinations:SpanNotRn If $\mathbf{v}_1, \dots ,\mathbf{v}_k$ are vectors in $\mathbb{R}^n$ and $k<n$, then the span of $\mathbf{v}_1, \dots ,\mathbf{v}_k$ is not equal to $\mathbb{R}^n$. :::: -::::{prf:proof} +::::{admonition} Proof of {prf:ref}`Prop:LinearCombinations:SpanNotRn` +:class: myproof Use the vectors $\mathbf{v}_1, \dots ,\mathbf{v}_k$ as the columns for a matrix $A$. By definition, the matrix $A$ is an $n\times k$ matrix. Let $E$ be the reduced echelon form of $A$. Since $E$ has $k$ columns we know that $E$ can have at most $k$ pivots. Because $k<n$ this means that the number of pivots is less than $n$. Therefore, we find that the number of pivots is less than the number of rows in $E$. This implies that it is impossible for $E$ to have a pivot in each row. {prf:ref}`Prop:LinearCombinations:PivotSpanSolution` now tells us that the span of the vectors $\mathbf{v}_1, \dots ,\mathbf{v}_k$ cannot be equal to $\mathbb{R}^n$. @@ -690,6 +703,7 @@ Use the vectors $\mathbf{v}_1, \dots ,\mathbf{v}_k$ as the columns for a matrix ## Grasple Exercises ::::{grasple} +:iframeclass: dark-light :url: https://embed.grasple.com/exercises/5708acc0-9a35-429b-85ff-43139eed1722?id=85086 :label: grasple_exercise_2_4_1 :dropdown: @@ -698,6 +712,7 @@ Use the vectors $\mathbf{v}_1, \dots ,\mathbf{v}_k$ as the columns for a matrix :::: ::::{grasple} +:iframeclass: dark-light :url: https://embed.grasple.com/exercises/3cb73c25-fa69-4cf1-a686-1e71f2f0bf89?id=85092 :label: grasple_exercise_2_4_2 :dropdown: @@ -706,6 +721,7 @@ Use the vectors $\mathbf{v}_1, \dots ,\mathbf{v}_k$ as the columns for a matrix :::: ::::{grasple} +:iframeclass: dark-light :url: https://embed.grasple.com/exercises/56cf013b-dc6a-4774-ac1e-fa694b16a2a8?id=85089 :label: grasple_exercise_2_4_3 :dropdown: @@ -714,6 +730,7 @@ Use the vectors $\mathbf{v}_1, \dots ,\mathbf{v}_k$ as the columns for a matrix :::: ::::{grasple} +:iframeclass: dark-light :url: https://embed.grasple.com/exercises/dba850cd-e353-4339-9811-656a565e7270?id=85091 :label: grasple_exercise_2_4_4 :dropdown: @@ -722,6 +739,7 @@ Use the vectors $\mathbf{v}_1, \dots ,\mathbf{v}_k$ as the columns for a matrix :::: ::::{grasple} +:iframeclass: dark-light :url: https://embed.grasple.com/exercises/a5715fe9-74ae-4df5-857f-2c6ed1cc9cdc?id=68889 :label: grasple_exercise_2_4_5 :dropdown: @@ -730,6 +748,7 @@ Use the vectors $\mathbf{v}_1, \dots ,\mathbf{v}_k$ as the columns for a matrix :::: ::::{grasple} +:iframeclass: dark-light :url: https://embed.grasple.com/exercises/6332f523-a152-4be7-b160-bb0bab18a4a0?id=69773 :label: grasple_exercise_2_4_6 :dropdown: @@ -738,6 +757,7 @@ Use the vectors $\mathbf{v}_1, \dots ,\mathbf{v}_k$ as the columns for a matrix :::: ::::{grasple} +:iframeclass: dark-light :url: https://embed.grasple.com/exercises/cd77f0bd-bd35-4674-9524-38a9446cd076?id=70183 :label: grasple_exercise_2_4_7 :dropdown: @@ -746,6 +766,7 @@ Use the vectors $\mathbf{v}_1, \dots ,\mathbf{v}_k$ as the columns for a matrix :::: ::::{grasple} +:iframeclass: dark-light :url: https://embed.grasple.com/exercises/5bdcebc9-3ab6-4b64-9f30-033cb9f79b80?id=76273 :label: grasple_exercise_2_4_8 :dropdown: @@ -754,6 +775,7 @@ Use the vectors $\mathbf{v}_1, \dots ,\mathbf{v}_k$ as the columns for a matrix :::: ::::{grasple} +:iframeclass: dark-light :url: https://embed.grasple.com/exercises/5ccac4fe-bf25-471e-b268-5add4b06ecfe?id=76278 :label: grasple_exercise_2_4_9 :dropdown: @@ -762,6 +784,7 @@ Use the vectors $\mathbf{v}_1, \dots ,\mathbf{v}_k$ as the columns for a matrix :::: ::::{grasple} +:iframeclass: dark-light :url: https://embed.grasple.com/exercises/e8dfc02b-2628-44f0-8a57-bed3fb0cbb26?id=77658 :label: grasple_exercise_2_4_10 :dropdown: @@ -770,6 +793,7 @@ Use the vectors $\mathbf{v}_1, \dots ,\mathbf{v}_k$ as the columns for a matrix :::: ::::{grasple} +:iframeclass: dark-light :url: https://embed.grasple.com/exercises/525d98b9-7cd3-40be-80e9-6d2f65f26002?id=77661 :label: grasple_exercise_2_4_11 :dropdown: diff --git a/Chapter2/SolutionSets.md b/Chapter2/SolutionSets.md index 9c047b1..671d243 100644 --- a/Chapter2/SolutionSets.md +++ b/Chapter2/SolutionSets.md @@ -82,11 +82,14 @@ $$ to an element of the solution set from {prf:ref}`Example:SolSet:TwoLinesinR3`. The green line in {numref}`Figure %s <Fig:SolSet:TwoLinesinR3>` corresponds to the $a=2$ case. -:::{figure} Images/Fig-SolSet-TwoLinesinR3.svg +```{applet} +:url: solution_sets/two_lines_in_r3 +:fig: Images/Fig-SolSet-TwoLinesinR3.svg :name: Fig:SolSet:TwoLinesinR3 +:class: dark-light The solution sets for the two systems of equations from {prf:ref}`Example:SolSet:TwoLinesinR3` and {prf:ref}`Example:SolSet:TwoLinesinR3b`. In blue we see the solution set of the original system {eq}`Eq:SolSet:HomSys2D`, in green that of the system with the non-zero right hand side {eq}`Eq:SolSet:NonHomSys2D`. -::: +``` :::: @@ -178,11 +181,15 @@ $$ \begin{bmatrix}1\\0\\1\end{bmatrix}. $$ -:::{figure} Images/Fig-SolSet-TwoPlanesinR3.svg +```{applet} +:url: solution_sets/two_planes_in_r3 +:fig: Images/Fig-SolSet-TwoPlanesinR3.svg :name: Fig:SolSet:TwoPlanesinR3 +:class: dark-light The solution set for the two systems of equations from {prf:ref}`Ex:Solset:TwoPlanesinR3`. -::: + +``` Note that, if we had changed the right hand side of our first equation to $a$, $a\neq0$, and the second one to anything but $2a$, the system would have had no solutions at all. The two equations would in that case describe two parallel planes. @@ -229,7 +236,8 @@ Suppose $(c_{1},...,c_{n})$ is a solution of a linear system. Then $(c_{1}',..., :::: -::::{prf:proof} +::::{admonition} Proof of {prf:ref}`Prop:SolSet:SolplusHom` +:class: myproof Consider the linear system @@ -295,7 +303,8 @@ Suppose $c_{1}$ and $c_{2}$ are arbitrary scalars. If $\vect{v}_{1}$ and $\vect{ :::: -::::{prf:proof} +::::{admonition} Proof of {prf:ref}`Prop:SolSet:SolSetisVecSpa` +:class: myproof This is a left as an exercise. @@ -319,7 +328,7 @@ By putting $c_{2}=0$ in statement [ii.](#Item:SolSet:LinCombinSolSet), we find t By putting $c_{1}=1=c_{2}$, we find that any sum of two solutions is again a solution. </li> -</ol>> +</ol> You should keep in mind, however, that this **only** holds for solutions of **homogeneous** systems! @@ -417,6 +426,7 @@ Hence, in order to turn one molecule of sodium sulfate into sodium sulfide, we m ## Grasple Exercises ::::{grasple} +:iframeclass: dark-light :url: https://embed.grasple.com/exercises/03d9c585-c51a-41e0-b3ac-33ad9f42cb55?id=83384 :label: grasple_exercise_2_3_1 :dropdown: @@ -425,6 +435,7 @@ Hence, in order to turn one molecule of sodium sulfate into sodium sulfide, we m :::: ::::{grasple} +:iframeclass: dark-light :url: https://embed.grasple.com/exercises/1e3c93cb-4fa7-4bf5-b46f-0c631e074d7e?id=83594 :label: grasple_exercise_2_3_2 :dropdown: @@ -433,6 +444,7 @@ Hence, in order to turn one molecule of sodium sulfate into sodium sulfide, we m :::: ::::{grasple} +:iframeclass: dark-light :url: https://embed.grasple.com/exercises/44dcb893-3beb-46a2-bddd-75f830cba5de?id=83499 :label: grasple_exercise_2_3_3 :dropdown: @@ -441,6 +453,7 @@ Hence, in order to turn one molecule of sodium sulfate into sodium sulfide, we m :::: ::::{grasple} +:iframeclass: dark-light :url: https://embed.grasple.com/exercises/ce8a45dc-f26f-45ca-a754-35512f882411?id=80874 :label: grasple_exercise_2_3_4 :dropdown: @@ -449,6 +462,7 @@ Hence, in order to turn one molecule of sodium sulfate into sodium sulfide, we m :::: ::::{grasple} +:iframeclass: dark-light :url: https://embed.grasple.com/exercises/633cfb15-272d-40c0-adc6-36f091446d7d?id=83279 :label: grasple_exercise_2_3_5 :dropdown: @@ -457,6 +471,7 @@ Hence, in order to turn one molecule of sodium sulfate into sodium sulfide, we m :::: ::::{grasple} +:iframeclass: dark-light :url: https://embed.grasple.com/exercises/611e08ab-df69-4a14-96d3-b6a9bbda316b?id=83238 :label: grasple_exercise_2_3_6 :dropdown: @@ -465,6 +480,7 @@ Hence, in order to turn one molecule of sodium sulfate into sodium sulfide, we m :::: ::::{grasple} +:iframeclass: dark-light :url: https://embed.grasple.com/exercises/9536051d-baba-4b22-94ed-94190e9e6b47?id=83246 :label: grasple_exercise_2_3_7 :dropdown: @@ -473,6 +489,7 @@ Hence, in order to turn one molecule of sodium sulfate into sodium sulfide, we m :::: ::::{grasple} +:iframeclass: dark-light :url: https://embed.grasple.com/exercises/196ac202-23e4-4c94-842b-e50410fedea0?id=83505 :label: grasple_exercise_2_3_8 :dropdown: @@ -481,6 +498,7 @@ Hence, in order to turn one molecule of sodium sulfate into sodium sulfide, we m :::: ::::{grasple} +:iframeclass: dark-light :url: https://embed.grasple.com/exercises/196ac202-23e4-4c94-842b-e50410fedea0?id=87438 :label: grasple_exercise_2_3_9 :dropdown: @@ -489,6 +507,7 @@ Hence, in order to turn one molecule of sodium sulfate into sodium sulfide, we m :::: ::::{grasple} +:iframeclass: dark-light :url: https://embed.grasple.com/exercises/021bb82e-7af3-4c84-86b8-0dcd22bf555b?id=84556 :label: grasple_exercise_2_3_10 :dropdown: @@ -497,6 +516,7 @@ Hence, in order to turn one molecule of sodium sulfate into sodium sulfide, we m :::: ::::{grasple} +:iframeclass: dark-light :url: https://embed.grasple.com/exercises/5d723e95-a4e5-4594-970e-6332e4953e73?id=84559 :label: grasple_exercise_2_3_11 :dropdown: @@ -505,6 +525,7 @@ Hence, in order to turn one molecule of sodium sulfate into sodium sulfide, we m :::: ::::{grasple} +:iframeclass: dark-light :url: https://embed.grasple.com/exercises/297528c4-7ea0-426b-aaa0-85dbcbfa97af?id=83227 :label: grasple_exercise_2_3_12 :dropdown: diff --git a/Chapter3/GeometryofLinearTransformations.md b/Chapter3/GeometryofLinearTransformations.md index bec6e0a..c653483 100644 --- a/Chapter3/GeometryofLinearTransformations.md +++ b/Chapter3/GeometryofLinearTransformations.md @@ -32,6 +32,8 @@ $$ can be seen on the left in {numref}`Figure %s <Fig:GeomLinTrans:ProjinR2>`. Let us briefly verify that it really is a linear transformation. ::::::{prf:proposition} +:label: Prop:Geometry:Projection + For any vector $\mathbf{v}$ in $\mathbb{R}^{n}$, the map $$ @@ -42,7 +44,9 @@ is a linear transformation. :::::: -::::::{prf:proof} +::::::{admonition} Proof of {prf:ref}`Prop:Geometry:Projection` +:class: myproof + The proof is a simple application of the definitions. For any $\mathbf{w}_{1},\mathbf{w}_{2}$ in $\mathbb{R}^{n}$, we have $$ @@ -78,7 +82,8 @@ $$ :::::: -::::::{prf:proof} +::::::{admonition} Proof of {prf:ref}`Prop:GeomLinTrans:MatofProjonLine` +:class: myproof The vector @@ -90,6 +95,7 @@ is a unit vector on $\mathcal{L}$. Using the fact that $\mathbf{u}-\proj_{\mathc ::::{figure} Images/Fig-GeomLinTrans-MatofProjonLine.svg :name: Fig:GeomLinTrans:MatofProjonLine +:class: dark-light The projection of $\mathbf{e}_{1}$ on the line $\mathcal{L}$ that makes an angle $\theta$ with the positive $x$-axis. Note that the length of $T_{\mathcal{L}}(\mathbf{e}_{1})$ is $\cos(\theta)$ since the length of $\mathbf{e}_{1}$ is $1$. :::: @@ -101,6 +107,7 @@ That the second column is as claimed, too, can be shown analogously. We leave it Often, you might have not the angle $\mathcal{L}$ makes with the positive $x$ axis, but rather a vector $\mathbf{v}$ on $\mathcal{L}$. In this case, too, you can find the standard matrix of the projection on $\mathcal{L}$ quite easily. ::::::{prf:proposition} +:label: Prop:GeomLinTrans:ProjMat2 Let $\mathcal{L}$ be a line that passes through the origin in the direction of $\mathbf{v}=\begin{bmatrix} v_{1}\\v_{2}\end{bmatrix}$. The projection $T_{\mathcal{L}}$ has standard matrix $$ @@ -112,7 +119,8 @@ $$ :::::: -::::::{prf:proof} +::::::{admonition} Proof of {prf:ref}`Prop:GeomLinTrans:ProjMat2` +:class: myproof It suffices to find the cosine and sine of the angle $\mathcal{L}$ makes with the positive $x$-axis in terms of $v_{1}$ and $v_{2}$. We leave this as an exercise. @@ -132,7 +140,8 @@ An $n\times n$-matrix $P$ is the standard matrix of a projection if and only if :::::: -::::::{prf:proof} +::::::{admonition} Proof of {prf:ref}`Prop:GeomLinTrans:ProjSquaredisProj` +:class: myproof We leave this as an exercise. @@ -150,21 +159,25 @@ this projection is depicted on the right in {numref}`Figure %s <Fig:GeomLinTrans :url: geom_lin_trans/proj_in_r2 :fig: Images/Fig-GeomLinTrans-ProjinR2.svg :name: Fig:GeomLinTrans:ProjinR2 +:class: dark-light On the left an orthogonal projection $T_{1}$ acting on a few selected vectors $\mathbf{u}_{1}$, $\mathbf{u}_{2}$, and $\mathbf{u}_{3}$. On the right a non-orthogonal projection $T_{2}$ acting on some selected vectors $\mathbf{v}_{1}$, $\mathbf{v}_{2}$, and $\mathbf{v}_{3}$. In both cases, the blue line represents the line $\mathcal{L}$ in the direction of $\begin{bmatrix}2\\1\end{bmatrix}$. On the left, every vector $\mathbf{u}_{i}$ is mapped to the closest vector that lies on $\mathcal{L}$. On the right, every vector $\mathbf{v}_{i}$ is mapped to the intersection of $\mathcal{L}$ wih the line through $\mathbf{v}_{i}$ in the direction given by $\begin{bmatrix}-2\\1\end{bmatrix}$. ``` ::::::{prf:proposition} +:label: Prop:GeomLinTrans:MapToLine + Let $\mathcal{L}$ be a line through the origin and let $\mathbf{w}$ be a vector not on $\mathcal{L}$. The transformation $T:\mathbb{R}^{2}\to\mathbb{R}^{2}$ which maps a vector $\mathbf{u}$ to the intersection of $\mathcal{L}$ and the line through $\mathbf{u}$ in the direction of $\mathbf{w}$ is a linear transformation. :::::: -::::::{prf:proof} +::::::{admonition} Proof of {prf:ref}`Prop:GeomLinTrans:MapToLine` +:class: myproof For any vector $\mathbf{u}$, there is a unique pair of real numbers $(c_{\mathbf{u}},d_{\mathbf{u}})$ such that $\mathbf{u}+c_{\mathbf{u}}\mathbf{w}=d_{\mathbf{u}}\mathbf{v}$. What $T$ does is map $\mathbf{u}$ to $d_{\mathbf{u}}\mathbf{v}$. Hence, for any two vectors $\mathbf{u}_{1},\mathbf{u}_{2}$ in $\mathbb{R}^{2}$, we have \begin{align*} -\mathbf{u}*{1}+c*{\mathbf{u}*{1}}\mathbf{w}&=d*{\mathbf{u}*{1}}\mathbf{v}=T(\mathbf{u}_{1})\quad\text{and}\\ -\mathbf{u}_{2}+c*{\mathbf{u}*{2}}\mathbf{w}&=d*{\mathbf{u}*{2}}\mathbf{v}=T(\mathbf{u}_{2}).\\ +\mathbf{u}_{1}+c_{\mathbf{u}_{1}}\mathbf{w}&=d_{\mathbf{u}_{1}}\mathbf{v}=T(\mathbf{u}_{1})\quad\text{and}\\ +\mathbf{u}_{2}+c_{\mathbf{u}_{2}}\mathbf{w}&=d_{\mathbf{u}_{2}}\mathbf{v}=T(\mathbf{u}_{2}).\\ \end{align*} Clearly, we also have @@ -216,11 +229,12 @@ gives the projection on $\mathcal{P}$. ```{applet} :url: geom_lin_trans/3d_proj_on_line -:fig: Images/Fig-GeomLinTrans-3DProjonLine.svg +:fig: Images/Fig-GeomLinTRans-3DProjonLine.svg :name: Fig:GeomLinTrans:3DProj :status: reviewed +:class: dark-light -Projections in three dimensional space. On the left, the projection on a line $\mathcal{L}$, on the right the projection on a plane $\mathcal{P}$. +Projections on a line $\mathcal{L}$ in three dimensional space. ``` Let us briefly discuss what happens in higher dimensions. @@ -256,6 +270,7 @@ $$ :fig: Images/Fig-GeomLinTrans-ReflinR2.svg :name: Fig:GeomLinTrans:ReflinR2 :status: reviewed +:class: dark-light The reflection along the line $\mathcal{L}$ in the direction of $\mathbf{v}=\begin{bmatrix}1\\1\end{bmatrix}$. The vectors in red are mapped to the vector in blue by this reflection. ``` @@ -270,6 +285,7 @@ $$ ::::{figure} Images/Fig-GeomLinTrans-ReflFromDoubleProj.svg :name: Fig:GeomLinTrans:ReflFromDoubleProj +:class: dark-light Reflection along the line $\mathcal{L}$ can be seen as the transformation $2\proj_{\mathcal{L}}-I$. :::: @@ -290,11 +306,15 @@ is the **reflection** over $\text{range}(T)$. Since any reflection is a linear combination of some projection and the identity, we arrive at the following proposition. ::::::{prf:proposition} +:label: Prop:GeomLinTrans:Reflection + Any reflection is a linear transformation. :::::: -::::::{prf:proof} +::::::{admonition} Proof of {prf:ref}`Prop:GeomLinTrans:Reflection` +:class: myproof + A reflection is by definition a sum of scaled linear transformations. As such, it is again a linear transformation. :::::: @@ -302,11 +322,15 @@ A reflection is by definition a sum of scaled linear transformations. As such, i The following proposition guarantees that, as you would expect, applying a reflection twice leaves you back where you started. ::::::{prf:proposition} +:label: Prop:GeomLinTrans:TwoReflections + If $M$ is the standard matrix of a reflection, then $R^{2}=I$. :::::: -::::::{prf:proof} +::::::{admonition} Proof of {prf:ref}`Prop:GeomLinTrans:TwoReflections` +:class: myproof + We know that $M=2P-I$ where $P$ is the standard matrix of some projection. By {prf:ref}`Prop:GeomLinTrans:ProjSquaredisProj`, we have $P^{2}=P$ and therefore $$ @@ -328,7 +352,8 @@ $$ :::::: -::::::{prf:proof} +::::::{admonition} Proof of {prf:ref}`Prop:GeomLinTrans:MatofReflinPlane` +:class: myproof Exercise. For the second equality, remember the trigonometric identities @@ -342,9 +367,10 @@ For large $n$ it is hard to picture what a reflection in $n$-dimensional space d ```{applet} :url: geom_lin_trans/3d_refl_along_plane -:fig: Images/Fig-GeomLinTrans-3DReflalongPlane.svg +:fig: Images/Fig-GeomLinTRans-3DReflalongPlane.svg :name: Fig:GeomLinTrans:3DReflalongPlane :status: reviewed +:class: dark-light Reflection along the plane $\mathcal{P}$ in $\mathbb{R}^{3}$. @@ -361,7 +387,8 @@ $$S(\vect{w}_{1})\cdot S(\vect{w}_{2})=\vect{w}_{1}\cdot\vect{w}_{2}.$$ :::: -:::{prf:proof} +:::{admonition} Proof of {prf:ref}`Prop:GeomLinTrans:ReflDotProd` +:class: myproof By definition, there is an orthogonal projection with standard matrix $P$ such that $S(\vect{w})=(2P-I)\vect{w}$. We assume $P$ is the projection on the span of a single vector $\vect{v}$. If there are more, the computations become considerably messier, but neither harder nor more enlightening. @@ -396,7 +423,9 @@ Rotations are linear transformations. :::::: -::::::{prf:proof} +::::::{admonition} Proof of {prf:ref}`Prop:GeomLinTrans:RotsAreLinTrans` +:class: myproof + Let $T:\mathbb{R}^{n}\to\mathbb{R}^{n}$ be a rotation. Because of {prf:ref}`Prop:InnerProduct:DotProdGeometric`, we have $\mathbf{v}_{1}\ip \mathbf{v}_{2}=T(\mathbf{v}_{1})\ip T(\mathbf{v}_{2})$. A tedious but not terribly hard calculation now shows that, for every $\mathbf{v}_{1},\mathbf{v}_{2}$ in $\mathbb{R}^{n}$, $$ @@ -420,6 +449,7 @@ In fact, the proof of {prf:ref}`Prop:GeomLinTrans:RotsAreLinTrans` only uses the The name _rotation_ is inspired by the following observation about rotations in the plane. ::::::{prf:proposition} +:label: Prop:GeomLinTrans:RotMatR2 For any real number $\theta$, the rotation over the angle $\theta$ in the plane has standard matrix @@ -436,12 +466,14 @@ This is indeed the standard matrix of a rotation. :::::: -::::::{prf:proof} +::::::{admonition} Proof of {prf:ref}`Prop:GeomLinTrans:RotMatR2` +:class: myproof Suppose we take the vector $\mathbf{e}_{1}$ and rotate it (counterclockwise) over an angle $\theta$. Where do we end up? By definition, the $x$-coordinate of our new location will be $\cos(\theta)$ and its $y$-coordinate will be $\sin(\theta)$. Similarly, if we start with the vector $\mathbf{e}_{2}$ and rotate that over the angle $\theta$, the $x$-coordinate of our new point will be $-\sin(\theta)$. This is illustrated in {numref}`Figure %s <Fig:GeomLinTrans:RotinPlane>`. ::::{figure} Images/Fig-GeomLinTrans-RotinPlane.svg :name: Fig:GeomLinTrans:RotinPlane +:class: dark-light The rotation over the angle $\theta$ working on $\mathbf{e}_{1}$ and $\mathbf{e}_{2}$. Note that the distance between $R_{\theta}\mathbf{e}_{2}$ and the vertical axis is $\sin(\theta)$ but, as $R_{\theta}\mathbf{e}_{2}$ lies to the left of the vertical axis, the first entry of $R_{\theta}\mathbf{e}_{2}$ is $-\sin(\theta)$. :::: @@ -458,7 +490,9 @@ Any rotation in the plane is the composition of two reflections. :::::: -::::::{prf:proof} +::::::{admonition} Proof of {prf:ref}`Prop:GeomLinTrans:RotisDoubleRefl` +:class: myproof + We will show that the standard matrix $R_{\theta}$ of the rotation $T_{\theta}$ over an angle $\theta$ is the product of the standard matrices of two reflections. The claim follows then from the definition of the matrix product. Let $\mathcal{L}_{1}$ and $\mathcal{L}_{2}$ be two lines in the plane through the origin that make an angle of $\theta/2$ with each other. If we call $\phi/2$ the angle $\mathcal{L}_{1}$ makes with the positive $x$-axis, we can conclude that $\mathcal{L}_{2}$ makes an angle of $\phi/2+\theta/2$ with the positive $x$-axis. From {prf:ref}`Prop:GeomLinTrans:MatofReflinPlane`, we know that the standard matrices of the reflections $T_{\mathcal{L}_{1}}$ and $T_{\mathcal{L}_{2}}$ along $\mathcal{L}_{1}$ and $\mathcal{L}_{2}$, respectively, are @@ -492,6 +526,7 @@ $$ :url: geom_lin_trans/rotisdoublerefl :fig: Images/Fig-GeomLinTrans-RotisDoubleRefl.svg :name: Fig:GeomLinTrans:RotisDoubleRefl +:class: dark-light {prf:ref}`Prop:GeomLinTrans:RotisDoubleRefl` illustrated. $\mathcal{L}_{1}$ and $\mathcal{L}_{2}$ are arbitrary lines that make an angle of $\theta/2$ with each other. Composing the reflections along $\mathcal{L}_{1}$ and $\mathcal{L}_{2}$ then gives the rotation over the angle $\theta$. This is shown for the particular vector $\mathbf{v}$. Note that the angle $\phi/2$ that $\mathcal{L}_{1}$ makes with the positive $x$ axis is irrelevant to the proof. ``` @@ -543,12 +578,15 @@ so $T$ moves points not on $\mathcal{L}$ parallel to $\mathcal{L}$. Points close :::::: -::::{figure} Images/Fig-GeomLinTrans-ShearTrans.svg +```{applet} +:url: geom_lin_trans/sheartrans +:fig: Images/Fig-GeomLinTrans-ShearTrans.svg :name: Fig:GeomLinTrans:ShearTrans +:class: dark-light The shear transformation $T$ from Example {numref}`Figure %s <Fig:GeomLinTrans:ShearTrans>` working on the vectors $\mathbf{e}_{1}=\begin{bmatrix}1\\0\end{bmatrix}$ and $\mathbf{v}=\begin{bmatrix}-1\\1\end{bmatrix}$. Note how the distance between a vector and the line $\mathcal{L}$ is preserved by $T$. As a consequence, the area of the green and blue parallelogams on the left is the same as that of their respective images on the right. -:::: +``` ::::::{prf:definition} :label: Dfn:GeomLinTrans:ShearScale @@ -577,11 +615,15 @@ $$ Note that the scalar $c$ in [ii.](#Item:GeomLinTrans:ShearScale) from {prf:ref}`Dfn:GeomLinTrans:ShearScale` is different for different vectors. For vectors lying on one side of $\mathcal{L}$, it will be positive. For vectors on the other side of $\mathcal{L}$ it will be negative. Moreover, for vectors further away from $\mathcal{L}$, $c$ will be larger than for vectors closer to $\mathcal{L}$. ::::::{prf:proposition} +:label: Prop:GeomLinTrans:ShearTransDistance + If $T$ is a shear transformation fixing the line $\mathcal{L}$ and $\mathbf{v}$ is an arbitrary vector in $\mathbb{R}^{2}$, then the distance from $\mathbf{v}$ to $\mathcal{L}$ is the same as the distance from $T(\mathbf{v})$ to $\mathcal{L}$. :::::: -::::::{prf:proof} +::::::{admonition} Proof of {prf:ref}`Prop:GeomLinTrans:ShearTransDistance` +:class: myproof + The distance between a vector $\mathbf{v}$ and a line $\mathcal{L}$ is the length of $\mathbf{v}-\proj_{\mathcal{L}}(\mathbf{v})$. We find, for arbitrary $\mathbf{v}$ in $\mathbb{R}^{2}$, \begin{align*} \lVert T(\mathbf{v})-\proj_{\mathcal{L}}(T(\mathbf{v}))\rVert &= \lVert \mathbf{v}+c\mathbf{w}-\frac{(\mathbf{v}+c\mathbf{w})\ip\mathbf{w}}{\mathbf{w}\ip\mathbf{w}}\mathbf{w}\rVert=\lVert \mathbf{v}-\frac{\mathbf{v}\ip\mathbf{w}}{\mathbf{w}\ip\mathbf{w}}\mathbf{w}\rVert\\ @@ -651,6 +693,7 @@ Shear transformations are widely used to model this kind of displacement of laye ::::{figure} Images/Fig-GeomLinTrans-CardsStack.svg :name: Fig:GeomLinTrans:CardsStack +:class: dark-light A shear transformation applied to a stack of cards. :::: @@ -658,6 +701,7 @@ A shear transformation applied to a stack of cards. ## Grasple Exercises ::::{grasple} +:iframeclass: dark-light :url: https://embed.grasple.com/exercises/1531c9ba-540c-4d64-bddf-169105eaa5ff?id=70393 :label: grasple_exercise_3_3_1 :dropdown: @@ -666,6 +710,7 @@ A shear transformation applied to a stack of cards. :::: ::::{grasple} +:iframeclass: dark-light :url: https://embed.grasple.com/exercises/51095023-d860-483f-8758-44d2b83d7c9e?id=70394 :label: grasple_exercise_3_3_2 :dropdown: @@ -674,6 +719,7 @@ A shear transformation applied to a stack of cards. :::: ::::{grasple} +:iframeclass: dark-light :url: https://embed.grasple.com/exercises/5eae3328-453b-4065-9829-be8acb10f0fa?id=70421 :label: grasple_exercise_3_3_3 :dropdown: @@ -682,6 +728,7 @@ A shear transformation applied to a stack of cards. :::: ::::{grasple} +:iframeclass: dark-light :url: https://embed.grasple.com/exercises/cf49c839-9eee-4f7b-b459-cfe3edcf530b?id=70422 :label: grasple_exercise_3_3_4 :dropdown: @@ -690,6 +737,7 @@ A shear transformation applied to a stack of cards. :::: ::::{grasple} +:iframeclass: dark-light :url: https://embed.grasple.com/exercises/aca8c030-4392-4e22-be38-2316f9c483c4?id=70425 :label: grasple_exercise_3_3_5 :dropdown: @@ -698,6 +746,7 @@ A shear transformation applied to a stack of cards. :::: ::::{grasple} +:iframeclass: dark-light :url: https://embed.grasple.com/exercises/e67fb238-1b3e-4cad-bbb2-4126579fa97f?id=78593 :label: grasple_exercise_3_3_6 :dropdown: @@ -706,6 +755,7 @@ A shear transformation applied to a stack of cards. :::: ::::{grasple} +:iframeclass: dark-light :url: https://embed.grasple.com/exercises/795b979c-e3d9-4f24-80ad-0dfad38c84d2?id=83137 :label: grasple_exercise_3_3_7 :dropdown: @@ -714,6 +764,7 @@ A shear transformation applied to a stack of cards. :::: ::::{grasple} +:iframeclass: dark-light :url: https://embed.grasple.com/exercises/7d10562b-929a-4b1f-9a90-6280e12b9c98?id=85261 :label: grasple_exercise_3_3_8 :dropdown: @@ -722,6 +773,7 @@ A shear transformation applied to a stack of cards. :::: ::::{grasple} +:iframeclass: dark-light :url: https://embed.grasple.com/exercises/ee24dead-8281-493e-9ced-b2f0f9cb1421?id=85263 :label: grasple_exercise_3_3_9 :dropdown: diff --git a/Chapter3/Injectivity_and_surjectivity.md b/Chapter3/Injectivity_and_surjectivity.md index 15ef05c..f7cab90 100644 --- a/Chapter3/Injectivity_and_surjectivity.md +++ b/Chapter3/Injectivity_and_surjectivity.md @@ -56,8 +56,9 @@ so any vector $\mathbf{v}=\begin{bmatrix}a_{1}\\a_{2}\end{bmatrix}$ with $a_{1}= ::::{figure} Images/Fig-InjSurj-NonInjEx.svg :name: Fig:InjSurj:NonInjEx +:class: dark-light -The transformation $T$ from {prf:ref}`Ex:InjSurj:InjEx` [i.](#Item:InjSurj:NonInjEx) . All vectors on the black line on the left, in particular $\mathbf{v}_{1}$ and $\mathbf{v}_{2}$, are mapped to the vector $\mathbf{u}$ on the right. Similarly, all vectors on the blue line are mapped to $\mathbf{0}$. Since there is not just one vector on these lines, $T$ is not injective. +The transformation $T$ from {prf:ref}`Ex:InjSurj:InjEx` [i.](#Item:InjSurj:NonInjEx) . All vectors on the <span class="only-light">black</span><span class="only-dark">white</span> line on the left, in particular $\mathbf{v}_{1}$ and $\mathbf{v}_{2}$, are mapped to the vector $\mathbf{u}$ on the right. Similarly, all vectors on the blue line are mapped to $\mathbf{0}$. Since there is not just one vector on these lines, $T$ is not injective. :::: </li> @@ -88,11 +89,14 @@ $$ There are no free variables, so if there is a solution to the system $A\vect{x}=\vect{v}$ (which, in this case, is true for all $\vect{v}$) it will be unique. This means that there is only one $\mathbf{x}$ with $T(\mathbf{x})=A\mathbf{x}=\mathbf{u}$, hence $T$ is injective. -::::{figure} Images/Fig-InjSurj-InjEx.svg +```{applet} +:url: injectivity_and_surjectivity/injsurj-injex +:fig: Images/Fig-InjSurj-InjEx.svg :name: Fig:InjSurj:InjEx +:class: dark-light The transformation $T$ from {prf:ref}`Ex:InjSurj:InjEx` [ii.](#Item:InjSurj:InjEx) and {prf:ref}`Ex:InjSurj:SurjEx` [ii.](#Item:InjSurj:SurjEx) acting on some selected vectors. Note that this transformation scales vectors and rotates them. For any vector $\mathbf{u}$ on the right, you can find only one vector $\mathbf{v}$ on the left such that $T(\mathbf{v})=\mathbf{u}$. Hence $T$ is injective. -:::: +``` </li> @@ -129,6 +133,15 @@ has, when it is consistent, a unique solution as there are no free variables. :::::: +```{applet} +:url: injectivity_and_surjectivity/injsurj-injex-example +:fig: Images/Fig-InjSurj-InjEx.svg +:name: Fig:InjSurj:InjExExample +:class: dark-light + +TODO: with call to action +``` + If we perform two actions which can both be undone, then we should be able to undo the combination of those two actions. That this intuitive rule really does hold is essentially the content of {prf:ref}`Prop:InjSurj:InjafterInjisInj`. ::::::{prf:proposition} @@ -138,7 +151,9 @@ If $S:\mathbb{R}^{l}\to\mathbb{R}^{m}$ and $T:\mathbb{R}^{m}\to\mathbb{R}^{n}$ a :::::: -::::::{prf:proof} +::::::{admonition} Proof of {prf:ref}`Prop:InjSurj:InjafterInjisInj` +:class: myproof + Take $\mathbf{v}_{1}$ and $\mathbf{v}_{2}$ in $\mathbb{R}^{l}$ such that $(T\circ S)(\mathbf{v}_{1})=(T\circ S)(\mathbf{v}_{2})$, i.e. $T(S(\mathbf{v}_{1}))=T(S(\mathbf{v}_{2}))$. Since $T$ is injective, we must have $S(\mathbf{v}_{1})=S(\mathbf{v}_{2})$. As $S$ is also injective, this in turn implies $\mathbf{v}_{1}=\mathbf{v}_{2}$ which establishes injectivity of $T\circ S$. :::::: @@ -164,6 +179,15 @@ Note that $S$ is injective by {prf:ref}`Ex:InjSurj:InjEx` [iii.](#Item:InjSurj:I :::::: +```{applet} +:url: injectivity_and_surjectivity/injsurj-injex-example2 +:fig: Images/Fig-InjSurj-InjEx.svg +:name: Fig:InjSurj:InjExExample +:class: dark-light + +TODO: with call to action +``` + ::::::{prf:proposition} :label: Prop:InjSurj:CompInjFirstInj @@ -171,7 +195,9 @@ If $S:\mathbb{R}^{l}\to\mathbb{R}^{m}$ and $T:\mathbb{R}^{m}\to\mathbb{R}^{n}$ a :::::: -::::::{prf:proof} +::::::{admonition} Proof of {prf:ref}`Prop:InjSurj:CompInjFirstInj` +:class: myproof + Suppose $T\circ S$ is injective but $S$ is not. Then there are $\mathbf{v}_{1}\neq\mathbf{v}_{2}$ in $\mathbb{R}^{l}$ such that $S(\mathbf{v}_{1})=S(\mathbf{v}_{2})$. But then $T(S(\mathbf{v}_{1}))=T(S(\mathbf{v}_{2}))$ which contradicts the assumption that $T\circ S$ is injective. :::::: @@ -210,7 +236,8 @@ Prove {prf:ref}`Prop:InjSurj:InjChars`. :::: -:::{dropdown} Solution to {numref}`Exc:InjSurj:InjChars` (_click to show_) +:::{admonition} Solution to {numref}`Exc:InjSurj:InjChars` +:class: solution, dropdown Assume $T$ is injective and $A\vect{x}=\vect{b}$ has solutions $\vect{x}_{1}$ and $\vect{x}_{2}$. Then $T(\vect{x}_{1})=T(\vect{x}_{2})$, so $\vect{x}_{1}=\vect{x}_{2}$ by injectivity of $T$. Similarly, if we assume that $A\vect{x}=\vect{b}$ has at most one solution, then $T(\vect{x}_{1})=T(\vect{x}_{2})$ would imply $\vect{x}_{1}=\vect{x}_{2}$, hence $T$ is injective. @@ -219,21 +246,27 @@ If $A$ has a column without pivot, then there is a free variable. Consequently, ::: ::::::{prf:corollary} +:label: Col:InjSurj:mgreatern If $T:\mathbb{R}^{m}\to\mathbb{R}^{n}$ is injective, then $m\leq n$. :::::: -::::::{prf:proof} +::::::{admonition} Proof of {prf:ref}`Col:InjSurj:mgreatern` +:class: myproof + If $T$ is injective, then its standard matrix $A$ has a pivot in every column. Consequently, the number of columns of $A$, which is $m$, must be smaller than or equal to the number of rows of $A$, which is $n$. :::::: ::::::{prf:proposition} +:label: Col:InjSurj:viszero + A linear transformation $T:\mathbb{R}^{m}\to\mathbb{R}^{n}$ is injective if and only if $T(\mathbf{v})=\mathbf{0}$ implies $\mathbf{v}=\mathbf{0}$. :::::: -::::::{prf:proof} +::::::{admonition} Proof of {prf:ref}`Col:InjSurj:viszero` +:class: myproof Since $T(\mathbf{0})=\mathbf{0}$ for any linear transformation $T$, injectivity of $T$ implies that $T(\mathbf{v})=\mathbf{0}$ only occurs when $\mathbf{v}=\mathbf{0}$. @@ -283,11 +316,14 @@ $$ so the system $A\mathbf{x}=\mathbf{u}$ can only be solved if $a_{1}+a_{2}=0$. This transformation is therefore not surjective. -::::{figure} Images/Fig-InjSurj-NonSurjEx.svg +```{applet} +:url: injectivity_and_surjectivity/injsurj-nonsurjex +:fig: Images/Fig-InjSurj-NonSurjEx.svg :name: Fig:InjSurj:NonSurjEx +:class: dark-light The transformation $T$ from {prf:ref}`Ex:InjSurj:SurjEx` [i.](#Item:InjSurj:NonSurjEx) . The green line is the collection of all $\mathbf{b}$ for which the system $A\mathbf{x}=\mathbf{b}$ is consistent where $A$ is the standard matrix of $T$. Since this is not all of $\mathbb{R}^{2}$, $T$ is not surjective. -:::: +``` </li> <li id="Item:InjSurj:SurjEx"> @@ -312,11 +348,14 @@ is surjective. </li> </ol> -::::{figure} Images/Fig-InjSurj-InjEx.svg +```{applet} +:url: injectivity_and_surjectivity/injsurj-injex +:fig: Images/Fig-InjSurj-InjEx.svg :name: Fig:InjSurj:SurjEx +:class: dark-light The transformation $T$ from {prf:ref}`Ex:InjSurj:SurjEx` [ii.](#Item:InjSurj:SurjEx) acting on some selected vectors. Note that this transformation scales vectors and rotates them. For any vector $\mathbf{u}$ on the right, you can find a vector $\mathbf{v}$ on the left such that $T(\mathbf{v})=\mathbf{u}$. Hence $T$ is surjective. -:::: +``` :::::: @@ -327,7 +366,9 @@ If $S:\mathbb{R}^{l}\to\mathbb{R}^{m}$ and $T:\mathbb{R}^{m}\to\mathbb{R}^{n}$ a :::::: -::::::{prf:proof} +::::::{admonition} Proof of {prf:ref}`Prop:InjSurj:SurjafterSurjisSurj` +:class: myproof + Take $\mathbf{u}$ in $\mathbb{R}^{n}$. As $T$ is surjective, there is a $\mathbf{v}\in\mathbb{R}^{m}$ with $T(\mathbf{v})=\mathbf{u}$. Since $S$ is surjective, there is a $\mathbf{w}$ in $\mathbb{R}^{l}$ with $S(\mathbf{w})=\mathbf{v}$. We find $(T\circ S)(\mathbf{w})=T(\mathbf{v})=\mathbf{u}$, so $T\circ S$ is surjective, as claimed. :::::: @@ -362,7 +403,8 @@ If $S:\mathbb{R}^{l}\to\mathbb{R}^{m}$ and $T:\mathbb{R}^{m}\to\mathbb{R}^{n}$ a :::::: -::::::{prf:proof} +::::::{admonition} Proof of {prf:ref}`Prop:InjSurj:CompSurjSecondSurj` +:class: myproof Take $\mathbf{u}\in\mathbb{R}^{n}$. Since $T\circ S$ is surjective, there is a $\mathbf{w}$ in $\mathbb{R}^{l}$ with $\mathbf{u}=(T\circ S)(\mathbf{w})=T(S(\mathbf{w}))$. Hence $\mathbf{u}=T(\mathbf{v})$ for $\mathbf{v}=S(\mathbf{w})$, which shows $T$ to be surjective. @@ -400,20 +442,25 @@ Prove {prf:ref}`Prop:InjSurj:SurjChars`. :::: -:::{dropdown} Solution to {numref}`Exc:InjSurj:SurjChars` (_click to show_) +:::{admonition} Solution to {numref}`Exc:InjSurj:SurjChars` +:class: solution, dropdown Assume $T$ is surjective and take an arbitrary $\vect{b}$ in $\R^{n}$. Then there is an $\vect{x}$ in $\mathbb{R}^{m}$ such that $T(\vect{x})=\vect{b}$, i.e. $\vect{x}$ is a solution of $A\vect{x}=\vect{b}$. Similarly, if $A\vect{x}=\vect{b}$ has a solution for any $\vect{b}$ in $\R^{n}$, then $\vect{b}=T(\vect{x})$ which establishes surjectivity of $T$. -If $A$ has a row without pivot, then, for a well-chosen $\vect{b}$, a pivot can appear in the last column of the augmented matrix $[A|\vect{b}]$. This means that $\A\vect{x}=\vect{b}$ has no solutions. Similarly, if $A\vect{x}=\vect{b}$ always has a solution, then $[A|\vect{b}]$ can never have a pivot in the lost column. Consequently, $A$ must have a pivot in every row. +If $A$ has a row without pivot, then, for a well-chosen $\vect{b}$, a pivot can appear in the last column of the augmented matrix $[A|\vect{b}]$. This means that $A\vect{x}=\vect{b}$ has no solutions. Similarly, if $A\vect{x}=\vect{b}$ always has a solution, then $[A|\vect{b}]$ can never have a pivot in the lost column. Consequently, $A$ must have a pivot in every row. ::: ::::::{prf:corollary} +:label: Col:InjSurj:mn2 + If $T:\mathbb{R}^{m}\to\mathbb{R}^{n}$ is surjective, then $m\geq n$. :::::: -::::::{prf:proof} +::::::{admonition} Proof of {prf:ref}`Col:InjSurj:mn2` +:class: myproof + If $T$ is surjective, then its standard matrix $A$ has a pivot in every row. Consequently, the number of columns of $A$, which is $m$, must be greater than or equal to the number of rows of $A$, which is $n$. :::::: @@ -430,11 +477,15 @@ A linear transformation $T:\mathbb{R}^{m}\to\mathbb{R}^{n}$ is called **bijectiv Although we allow $m$ and $n$ to be different in the definition, it turns out that this cannot happen as the following proposition shows. ::::::{prf:proposition} +:label: Prop:InjSurj:mequaln + If a linear transformation $T:\mathbb{R}^{m}\to\mathbb{R}^{n}$ is bijective, then $m=n$. :::::: -::::::{prf:proof} +::::::{admonition} Proof of {prf:ref}`Prop:InjSurj:mequaln` +:class: myproof + Let $A$ be the standard matrix of $T$, which is an $n\times m$ matrix. By {prf:ref}`Prop:InjSurj:InjChars`, the number of pivots in $A$ is $m$. By {prf:ref}`Prop:InjSurj:SurjChars`, the number of pivots in $A$ is $n$. Hence the claim follows. :::::: @@ -442,6 +493,8 @@ Let $A$ be the standard matrix of $T$, which is an $n\times m$ matrix. By {prf:r If the domain and codomain are both $\mathbb{R}^{n}$ then something striking happens: injectivity, surjectivity, and bijectivity all become equivalent! ::::::{prf:proposition} +:label: Prop:InjSurj:Equiv + Let $T:\mathbb{R}^{n}\to\mathbb{R}^{n}$ be a linear transformation. The following are equivalent: <ol type = "i"> @@ -468,7 +521,9 @@ $T$ is bijective. :::::: -::::::{prf:proof} +::::::{admonition} Proof of {prf:ref}`Prop:InjSurj:Equiv` +:class: myproof + It suffices to show that $T$ is injective if and only if it is surjective. Assume $T$ is injective. Then the standard matrix $A$ of $T$ has a pivot in each column. But as the number of columns and the number of rows are the same, there must be a pivot in each row, showing surjectivity of $T$. Similarly, if $T$ is surjective, then the standard matrix $A$ of $T$ has a pivot in each column. Again, the number of columns is the same as the number of rows, so there is also a pivot in every row and we conclude that $T$ must be injective. @@ -507,7 +562,8 @@ for any vector $\vect{v}$ in $\R^{n}$. ::: -:::{prf:proof} +:::{admonition} Proof of {prf:ref}`Prop:InjSurj:BijIsInv` +:class: myproof By {prf:ref}`Thm:MatrixInv:InvertibilityCharacterizations`, we know that $A$ is invertible if and only if the system $\vect{x}=\vect{b}$ has a unique solution for each $\vect{b}$ in $\R^{n}$. The existence of a solution is equivalent to surjectivity of $T$ and its uniqueness is equivalent to injectivity of $T$. This establishes the equivalence of [i.](#It:InjSurj:TBij) and [ii.](#It:InjSurj:AInv) @@ -522,6 +578,7 @@ Then $TS(\vect{v})=AB\vect{v}=\vect{v}$ for any $\vect{v}$ in $\R^{n}$. The only ## Grasple Exercises ::::{grasple} +:iframeclass: dark-light :url: https://embed.grasple.com/exercises/a5fcbee0-9af1-4596-b3d4-05dcdf7640b3?id=92235 :label: grasple_exercise_3_5_1 :dropdown: @@ -530,6 +587,7 @@ Then $TS(\vect{v})=AB\vect{v}=\vect{v}$ for any $\vect{v}$ in $\R^{n}$. The only :::: ::::{grasple} +:iframeclass: dark-light :url: https://embed.grasple.com/exercises/ba7d83d3-c00a-4d8b-910e-84e6a12b28e4?id=92236 :label: grasple_exercise_3_5_2 :dropdown: @@ -538,6 +596,7 @@ Then $TS(\vect{v})=AB\vect{v}=\vect{v}$ for any $\vect{v}$ in $\R^{n}$. The only :::: ::::{grasple} +:iframeclass: dark-light :url: https://embed.grasple.com/exercises/a92c3a97-1bf0-47dc-a549-c1130d053e33?id=92237 :label: grasple_exercise_3_5_3 :dropdown: @@ -546,6 +605,7 @@ Then $TS(\vect{v})=AB\vect{v}=\vect{v}$ for any $\vect{v}$ in $\R^{n}$. The only :::: ::::{grasple} +:iframeclass: dark-light :url: https://embed.grasple.com/exercises/a18a8d11-11f0-4bce-96f9-39946d6543a9?id=92238 :label: grasple_exercise_3_5_4 :dropdown: diff --git a/Chapter3/LUdecomp.md b/Chapter3/LUdecomp.md index d169f99..5046035 100644 --- a/Chapter3/LUdecomp.md +++ b/Chapter3/LUdecomp.md @@ -1,47 +1,85 @@ <!-- :::{review} ::: --> -(Sec:MatFactor)= +(Sec:LUdecomp)= -# Matrix Factorisation +# The $LU$ decomposition -When solving linear systems, it is very convenient to find an echelon form, so you can solve it using backward substitution as shown in {prf:ref}`Ex:LinSystems:I`. +As we have seen, one way to solve a linear system is to row reduce it to echelon form and then use back substitution. See for instance {prf:ref}`Ex:LinSystems:I`. + + +::::::{prf:example} +:label: Ex:LUdecomp:FirstLU Consider the system $A\mathbf{x} = \mathbf{b}$ where $$ A = \begin{bmatrix} -1 & 1 & 1 \\ -0 & 2 & 6 \\ --1 & -1 & 3 +1 & 1 & -1 \\ +2 & 4 & -3 \\ +1 & -1 & -3 \end{bmatrix}, \qquad \mathbf{b} = \begin{bmatrix} -3 \\ 2 \\1 +2 \\ 1 \\8 \end{bmatrix}. $$ -In this section we will learn how to solve an $m\times n$ linear system $A\mathbf{x}=\mathbf{b}$ by decomposing (or factorising) a matrix into a product of two matrices. In the previous example we can express $A$ as +:::::: + +In this section we will learn how to solve an $m\times n$ linear system $A\mathbf{x}=\mathbf{b}$ by decomposing (or factorising) a matrix into a product of two 'special' matrices. In the previous example we can express $A$ as $$ -A = +A = \begin{bmatrix} 1 & 0 & 0 \\ -0 & 1 & 0 \\ --1 & 0 & 1 +2 & 1 & 0 \\ +1 & -1 & 1 \end{bmatrix} \begin{bmatrix} -1 & 1 & 1 \\ -0 & 2 & 6 \\ -0 & 0 & 4 -\end{bmatrix}. +1 & 1 & -1 \\ +0 & 2 & -1 \\ +0 & 0 & 3 +\end{bmatrix} = L\,U. +$$ + +This is called an $LU$-*decomposition* of the matrix $A$. With this factorisation we can quickly solve the system in two steps, using both backward and forward substitution. In fact, the matrix $U$ is an echelon matrix equivalent to $A$. +To solve the equation $LU\vect{x} = \vect{b}$ we can introduce the auxiliary vector $\vect{y}$ via + +$$ + \vect{y} = U\vect{x}. +$$ + +We then first solve + +::::{math} +:label: Eq:LUDecomp:Lyb + + L\vect{y} = \vect{b} + +:::: + +and after that we find $\mathbf{x}$ by solving + +$$ + U\vect{x} = \tilde{\vect{y}}, +$$ + + +for the solution $ \tilde{\vect{y}}$ of system {eq}`Eq:LUDecomp:Lyb`. For this solution $ \tilde{\vect{x}}$ we then have + +$$ + A \tilde{\vect{x}} = L\,U\, \tilde{\vect{x}} = L(U\tilde{\vect{x}})= L\tilde{\vect{y}} = \vect{b}. $$ -When the factorisation is given, solving the system is quicker since we can solve it using backward and forward substitution. There is no need to look for an echelon form and then apply backward substitution. -Considering the matrix above and the system + +::::::{prf:example} +:label: Ex:LUdecomp:FirstLUcontinued + +The system $A\vect{x} = \vect{b}$ of {prf:ref}`Ex:LUdecomp:FirstLU` can be written as $$ \begin{bmatrix} @@ -58,7 +96,7 @@ $$ x_1\\ x_2 \\ x_3 \end{bmatrix} = \begin{bmatrix} -3 \\ 2 \\1 +2 \\ 1 \\8 \end{bmatrix}, $$ @@ -67,41 +105,49 @@ by setting $\mathbf{y} = \begin{bmatrix} 1 & 1 & 1 \\ 0 & 2 & 6 \\ 0 & 0 & 4 \en $$ \begin{bmatrix} 1 & 0 & 0 \\ -0 & 1 & 0 \\ --1 & 0 & 1 +2 & 1 & 0 \\ +1 & -1 & 1 \end{bmatrix} \begin{bmatrix} y_1\\y_2\\y_3 \end{bmatrix} = \begin{bmatrix} -3 \\ 2 \\1 -\end{bmatrix}. +2 \\ 1 \\ 8 +\end{bmatrix}, \quad \text{i.e.,}\,\, +\left\{\begin{array}{ccccccc} + y_1 & & & & &=& 2 \\ + 2y_1 &+& y_2 & & &=& 1 \\ + y_1 &-& y_2 &+& y_3 &=& 8. + \end{array} \right. + $$ With forward substitution we can find the solution: -$$ -\begin{bmatrix} +$$ + y_1 = 2 \quad \Longrightarrow \quad y_2 = -3 \quad \Longrightarrow \quad y_2 = 3 \quad + \Longrightarrow \quad \begin{bmatrix} y_1\\y_2\\y_3 \end{bmatrix} = \begin{bmatrix} -3 \\ 2 \\ 4 -\end{bmatrix}, +2 \\ -3 \\ 3 +\end{bmatrix} $$ + Then, solving $$ \begin{bmatrix} -1 & 1 & 1 \\ -0 & 2 & 6 \\ -0 & 0 & 4 -\end{bmatrix} +1 & 1 & -1 \\ +0 & 2 & -1 \\ +0 & 0 & -3 +\end{bmatrix} \begin{bmatrix} x_1\\ x_2 \\ x_3 \end{bmatrix} = \begin{bmatrix} -3 \\ 2 \\ 4 +2 \\ -3 \\ 3 \end{bmatrix}, $$ @@ -110,279 +156,51 @@ we obtain $$ \begin{bmatrix} x_1 \\ x_2 \\ x_3 -\end{bmatrix} +\end{bmatrix} += \begin{bmatrix} -4 \\ -2 \\ 1 +3\\ -2 \\ -1 \end{bmatrix}, $$ which is the solution to our original system. Since the factorisation was given, we did not have to solve the system from scratch by trying to find an echelon form. -There are several methods for factorising matrices. The factorisations that we will see in this section use **direct methods**. Direct methods are methods that produce the exact solution in a finite number of steps. - -There are special cases where solving linear systems can be done quickly. These cases involve triangular or trapezoidal matrices (we will discuss these matrices in the next section). In general, when the matrix associated with an $m\times n$ linear system is a trapezoidal matrix we can use backward or forward substitution for solving them. Remember the echelon forms from {numref}`Subsec:LinSystems:RowReduction`? Echelon forms are trapezoidal matrices. - -The most common factorisation methods make use of this kind of matrices. This is why we will first introduce the idea of a trapezoidal and triangular matrix and then discuss the corresponding factorisation methods and their applications. - -## Trapezoidal and Triangular Matrices - -At this point one probably figured out that when we find an echelon form for an $m\times n$ matrix, that echelon form is actually a trapezoidal matrix. However, to talk about trapezoidal matrices, first we need to revisit the concept of "main diagonal" of a matrix introduced in {prf:ref}`Def:MatrixOps:MainDiagonal`. We will extend this concept to non-square matrices. - -:::{prf:definition} Main diagonal of a matrix - -For an $m\times n$ matrix $A$, we call the elements $a_{ii}$ the **diagonal elements** of $A$. The (ordered) set of the diagonal elements is called the **main diagonal** of $A$. - -::: - -Now we are ready to define the objects that we will use during this section. - -::::::{prf:definition} Trapezoidal and Triangular Matrices - -<ul> -<li> - -We say that an $m\times n$ matrix $U$ is an **upper trapezoidal matrix** if all the entries below the main diagonal are zero. In other words, an upper trapezoidal matrix that has the form - -$$ -U= -\begin{bmatrix} -\blacksquare & \ast & \cdots & \cdots & \ast & \cdots & \cdots & \ast \\ -0 & \blacksquare & \ddots & &\vdots & & &\vdots \\ -\vdots & \ddots & \ddots & \ddots & \vdots & & & \vdots\\ -0 & \cdots & 0 & \blacksquare & \ast & \cdots & \cdots & \ast -\end{bmatrix} \quad \text{for }\,\, m<n, -$$ - -$$ -U= -\begin{bmatrix} -\blacksquare & \ast & \cdots & \ast \\ -0 & \blacksquare & \ddots &\vdots \\ -\vdots & \ddots & \ddots & \ast\\ -0 & \cdots & 0 & \blacksquare \\ -0 & \cdots & \cdots & 0 \\ -\vdots & & & \vdots \\ -\vdots & & & \vdots \\ -0 & \cdots & \cdots & 0 \\ -\end{bmatrix} \quad \text{for }\,\, m>n, -$$ - -where the $\blacksquare$ represent any real number in the main diagonal, and the $\ast$ represent any real number above the main diagonal. If the matrix is a square matrix, then it is an **upper triangular** matrix. - -</li> -<li> - -We say that an $m\times n$ matrix $L$ is a **lower trapezoidal matrix** if all the entries above the main diagonal are zero. I.e., a lower trapezoidal matrix that has the form - -$$ -L= -\begin{bmatrix} -\blacksquare & 0 & \cdots & \cdots & 0 & \cdots & \cdots &0\\ -\ast & \blacksquare & \ddots & &\vdots & & & \vdots\\ -\vdots & \ddots & \ddots & \ddots & \vdots & & & \vdots \\ -\ast & \cdots & \ast & \blacksquare & 0 & \cdots & \cdots & 0 -\end{bmatrix} \quad \text{for }\,\, m<n, -$$ - -$$ -L= -\begin{bmatrix} -\blacksquare & 0 & \cdots & 0 \\ -\ast & \blacksquare & \ddots &\vdots \\ -\vdots & \ddots & \ddots & 0\\ -\ast & \cdots & \ast & \blacksquare \\ -\ast & \cdots & \cdots & \ast \\ -\vdots & & & \vdots \\ -\vdots & & & \vdots \\ -\ast & \cdots & \cdots & \ast \\ -\end{bmatrix} \quad \text{for }\,\, m>n, -$$ - -where the $\blacksquare$ represent any real number in the main diagonal, and the $\ast$ represent any real number below the main diagonal. If the matrix is a square matrix, then it is a **lower triangular** matrix. - -</li> -</ul> - -:::::: - -Observe that, when all $\ast$ are zero and the matrix is square, then the matrix is a diagonal matrix. - -::::::{prf:example} - -Below there are examples of trapezoidal matrices. - -:::{latexlist} - -\item The matrix - -$$ -\begin{bmatrix} -1 & 0 & 0 \\ -0 & -9 & 0 \\ -0 & 0 & 11 -\end{bmatrix} -$$ - -is a $3\times 3$ both upper and lower triangular matrix and, therefore, it is a diagonal matrix. - -\item The matrix - -$$ -\begin{bmatrix} -2 & 0 & 0 & 0 \\ -4 & 6 & 0 & 0 \\ -8 & 10 & 12 & 0 \\ -14 & 16 & 18 & 20 -\end{bmatrix} -$$ - -is a $4\times 4$ lower triangular matrix. - -\item The matrix - -$$ -\begin{bmatrix} -1 & 0 & 0 & 3 \\ -0 & -3 & 0 & 0 \\ -0 & 0 & 2 & 0 \\ -0 & 0 & 0 & -4 \\ -0 & 0 & 0 & 0 -\end{bmatrix} -$$ - -is a $5\times 4$ upper trapezoidal matrix. - -::: - -:::::: - -Trapezoidal matrices have nice properties with respect to their sum and their product. - -::::::{prf:proposition} Properties of trapezoidal matrices -:label: prop:PropertiesTriangularMatrices - -Let $A$ and $B$ be two upper trapezoidal matrices. Then the following properties hold: - -:::{latexlist} -:enumerated: true -:type: i - -\item $A+B$ is an upper trapezoidal matrix (whenever the sum makes sense). -\label{Item:prop:PropertiesTriangularMatrices_sum} - -\item $AB$ is an upper trapezoidal matrix (whenever the product makes sense). -\label{Item:prop:PropertiesTriangularMatrices_product} - -::: - :::::: -::::{prf:proposition} -:label: Prop:LUDecomp:PropertiesTriangularMatricesInverse - -If $A$ is an invertible upper triangular matrix, then $A^{-1}$ is upper triangular matrix. - -:::: - -The proof of {prf:ref}`Prop:LUDecomp:PropertiesTriangularMatricesInverse` is technical and it involves computations. We leave it as an exercise (see {numref}`Exc:LUdecomp:Theory1`). - -So the reader may skip this proof and convince themselves that the properties hold true by looking at the following example. - -::::::{prf:example} -Consider the matrices - -$$ -A= -\begin{bmatrix} -1 & 2 & 3 \\ -0 & 4 & 5 \\ -0 & 0 & 6 -\end{bmatrix} -, \qquad -B = -\begin{bmatrix} -1 & 3 & 5 \\ -0 & 7 & 9 \\ -0 & 0 & -11 -\end{bmatrix} -. -$$ - -We can easily see that the first two properties of the proposition hold. - -$$ -A+B = -\begin{bmatrix} -2 & 5 & 8 \\ -0 & 11 & 14 \\ -0 & 0 & -5 -\end{bmatrix} -, -$$ - -$$ -AB = -\begin{bmatrix} -1 & 17 & -10 \\ -0 & 28 & -19 \\ -0 & 0 & -66 -\end{bmatrix} -. -$$ - -For the third one, we have that - -$$ -A^{-1} = -\begin{bmatrix} -1 & -{1}/{2} & -{1}/{12} \\ -0 & {1}/{4} & -{5}/{24} \\ -0 & 0 & {1}/{6} -\end{bmatrix} -, -$$ -which is upper triangular. It is left to the reader to check that $AA^{-1}=I$. +Here is one to try for yourself. +::::::{grasple} +:iframeclass: dark-light +:url: https://embed.grasple.com/exercises/b9a339dc-721f-4c85-aa77-3455269a3b7a?id=105809 +:label: grasple_exercise_3_6_1T +:dropdown: +:description: To solve a system $LU\vect{x} = \vect{b}$. :::::: -::::::{prf:proof} (of {prf:ref}`prop:PropertiesTriangularMatrices`) - -The proof of {itemref}`Item:prop:PropertiesTriangularMatrices_sum` follows from the fact that matrices are added component-wise. Therefore, the entries below the main diagonal of $A+B$ will be zero since both $A$ and $B$ have zero entries below the main diagonal. -To prove {itemref}`Item:prop:PropertiesTriangularMatrices_product` we fix $j < n$ and compute $AB_{(j+k)j}$ for $k=1,2,\dots, m-j$. In other words, we compute the entries below the main diagonal in column $j$: +There are several methods for factorising matrices. The factorisations that we will see in this section use **direct methods**. Direct methods are methods that produce the exact factorisations in a finite number of steps. -$$ -AB_{(j+k)j} = \sum_{l=1}^{n} a_{(j+k)l}b_{lj}. -$$ +%There are special cases where solving linear systems can be done quickly. These cases involve %triangular or trapezoidal matrices (we will discuss these matrices in the next section). In general, %when the matrix associated with an $m\times n$ linear system is a trapezoidal matrix we can use %backward or forward substitution for solving them. Remember the echelon forms from {numref}%`Subsec:LinSystems:RowReduction`? Echelon forms are trapezoidal matrices. -If we define $A = \begin{bmatrix}\mathbf{a}_1 & \mathbf{a}_2 & \cdots & \mathbf{a}_n \end{bmatrix}$ an $m\times n$ upper trapezoidal matrix, and $B=\begin{bmatrix}\mathbf{b}_1 & \mathbf{b}_2 & \cdots & \mathbf{b}_p \end{bmatrix}$ and $n\times p$ upper trapezoidal matrix, then we can understand the previous sum as the the result of the dot product of the vectors corresponding to $\mathbf{a}_{j+k}^T$ and $\mathbf{b}_j$. +%The most common factorisation methods make use of this kind of matrices. This is why we will first %introduce the idea of a trapezoidal and triangular matrix and then discuss the corresponding %factorisation methods and their applications. -We observe that for $l\le j$ the components $a_{(j+k)l}$ are zero, and for $l>j$ the components $b_{lj}0$ are zero. Therefore, - -$$ -\begin{align*} -AB_{(j+k)j} &= \sum_{l=1}^{n} a_{(j+k)l}b_{lj} \\ -&= \sum_{l=1}^{j} 0 b_{lj} + \sum_{l=j+1}^n a_{(j+k)j} 0 \\ -&= 0. -\end{align*} -$$ +In the next subsection we will address the questions of whether an $LU$ decomposition always exists and if so, how to construct it. With an extra condition on $L$ the decomposition, if it exists, will appear to be unique. In the case where an $LU$ decomposition does not exist we can instead consider the slightly more general $PLU$ decomposition. In the remainder of the section we will consider the generalization to non-square matrices and we will analyze to which extent the $(P)LU$ decomposition gives an efficiency boost. -:::::: -## LU Decomposition +## $LU$ decomposition of a square matrix -As mentioned at the begining of this section, one of the ways to solve a linear system is to factorise the matrix of coefficients by "splitting" it into a product of two trapezoidal matrices. For the following factorisation, we will name these matrices $L$ and $U$, and they will have the property that $L$ is lower triangular and $U$ is upper trapezoidal. As you probably have guessed, we call this factorisation an $LU$ decomposition. ::::::{prf:definition} -Let $A$ be an $m\times n$ matrix. We call a $LU$ -decomposition of $A$ all decompositions of the type +:label: Def:LUdecomp:DefinitionLU + +Let $A$ be an $n\times n$ matrix. An **$LU$ decomposition** of $A$ is a factorization of the type $$ A=LU $$ -with $L$ being an $m\times m$ lower triangular matrix and $U$ an $m\times n$ upper trapezoidal matrix, both with real coefficients with the form +where $L$ is an $n\times n$ lower triangular matrix with $1$s on the diagonal, and $U$ an $n\times n$ upper triangular matrix. So, $$ L= @@ -391,46 +209,32 @@ L= l_{21} & 1 \\ l_{31} & l_{32} & \ddots \\ \vdots & \vdots & \ddots & \ddots\\ -l_{m1} & l_{m2} & \cdots & l_{m(m-1)} & 1 +l_{n1} & l_{n2} & \cdots & l_{n(n-1)} & 1 \end{bmatrix} , \quad U= \begin{bmatrix} u_{11} & u_{12} & u_{13} & \cdots &u_{1n} \\ -& -u_{22} -& -u_{23} & \cdots & u_{2n} \\ -& & u_{33} & \cdots & u_{3n} \\ -& & & -\ddots -& -\vdots \\ -& & & & u_{mn} -\end{bmatrix}, \quad m<n -, + & u_{22} & u_{23} & \cdots & u_{2n} \\ + & & u_{33} & \cdots & u_{3n} \\ + & & & +\ddots & \vdots \\ +& & & & u_{nn} +\end{bmatrix}. $$ -or, +For convenience we have used blanks for zeros. +:::::: -$$ -U = \begin{bmatrix} -u_{11} & \cdots & \cdots & u_{1n}\\ - & \ddots & & \vdots \\ - & & \ddots & \vdots \\ - & & & u_{nn} \\ - & \\ - & \\ - & -\end{bmatrix},\quad m>n. -$$ +The next proposition captures the main interest of the $LU$ decomposition, as is already illustrated in +{prf:ref}`Ex:LUdecomp:FirstLUcontinued` -To not clutter and to emphasise the triangular/trapezoidal matrices, we use empty spaces instead of zeros. -:::::: +::::::{prf:proposition} +:label: Prop:LUdecomp:Usefulness -Suppose that $A=LU$ so that a linear system of equations $A\mathbf{x}=\mathbf{b}$ can be written as $LU\mathbf{x}=\mathbf{b}$. Then, by setting $\mathbf{y} = U\mathbf{x}$, we can solve the linear system in two steps: +Suppose that $A=LU$, so that a linear system of equations $A\mathbf{x}=\mathbf{b}$ can be written as $LU\mathbf{x}=\mathbf{b}$. Then, by setting $\mathbf{y} = U\mathbf{x}$, we can solve the linear system in two steps. :::{latexlist} :enumerated: true @@ -441,13 +245,23 @@ Suppose that $A=LU$ so that a linear system of equations $A\mathbf{x}=\mathbf{b} ::: -At this point the reader may think that such a decomposition involves a lot of work. However, it takes (roughly) the same number of operations as for finding an echelon form (see {numref}`Subsec:LinSystems:RowReduction`). In addition, this method has the advantage that once the decomposition of a matrix $A$ has been found, then it is faster to solve multiple systems involving the matrix $A$. And why is that? Well, if one thinks about it, once we have an $LU$ decomposition of $A$ then we just need to solve linear systems that involve trapezoidal/triangular matrices, which are "faster" to solve than solving $A\mathbf{x}=\mathbf{b}$. We will formalise this concept below. +The solution of the second system is then a solution of the system $A\mathbf{x}=\mathbf{b}$. + +:::::: + +The next proposition tells us which matrices do have an $LU$ decomposition. +More importantly, it shows how such a decomposition can be found, which is in fact a row reduction that keeps track of the row operations involved. -The $LU$ decomposition is a particular case of the more general algorithm that we find in {numref}`Sec:PLUDecomp` +::::::{prf:proposition} +:label: Prop:LUdecomp:Existence -The idea behind an $LU$ decomposition is to find an echelon form of the matrix of coefficients without exchanging rows, while keeping track of those changes. Let's see how to find an $LU$ decomposition with a complete example using an square matrix of coefficients. Along the rest of this subsection, we will assume that we perform **no row scaling when preforming row operations**. +A matrix $A$ can be written as $A = LU$, with $L$ and $U$ as described in {prf:ref}`Def:LUdecomp:DefinitionLU` if and only it can be row reduced to an echelon matrix with only additions of multiples of rows to rows below it. We will call this a *top-down row reduction*. +:::::: + +Instead of a giving a formal proof, we will illustrate matters first with an example. ::::::{prf:example} +:label: Ex:LUdecomp:SecondLU We consider the matrix $$ @@ -460,7 +274,7 @@ A= . $$ -To find an $LU$ decomposition we will find an echelon form performing row operations without exchanging rows. In addition, we will keep track of the changes we perform. +To find an $LU$ decomposition we will works towards an echelon form in the top-down direction. In addition, we will keep track of the actions we perform. For the first step, $$ @@ -469,30 +283,38 @@ $$ [R_1] \\ {[R_2-2/3R_1]} \\ {[R_3-1/3R_1]} \\ -\end{array}\sim +\end{array} +\quad\sim\quad \begin{bmatrix} 3 & 1 & -2 \\ 0 & {10}/{3} & {7}/{3} \\ 0 & {5}/{3} & {5}/{3} -\end{bmatrix} +\end{bmatrix}. $$ -The numbers $2/3$ and $1/3$ are called multipliers. -Observe that the row operations can be understood as a product of matrices. Let's call +The numbers $2/3$ and $1/3$ are called *multipliers*. + +A second row reduction step, involving the multiplier $1/2$, leads to an echelon/upper triangular matrix. $$ -F^{(1)} = + +\left[\begin{array}{rrr}3 & 1 & -2\\0 &{10}/{3}&{7}/{3}\\0 &{5}/{3}&{5}/{3}\end{array} \right] \begin{array}{l} +[R_1] \\ +{[R_2]} \\ +{[R_3-1/2R_2]} \\ +\end{array}\sim \begin{bmatrix} -1 & 0 & 0 \\ --2/3 & 1 & 0 \\ --1/3 & 0 & 1 +3 & 1 & -2 \\ +0 & {10}/{3} & {7}/{3} \\ +0 & 0 & {1}/{2} \end{bmatrix} +. $$ -Then, +We can effectuate these row operations by matrix multiplications. $$ -F^{(1)} A = + F_1A = \begin{bmatrix} 1 & 0 & 0 \\ -2/3 & 1 & 0 \\ @@ -509,762 +331,1173 @@ F^{(1)} A = 0 & {10}/{3} & {7}/{3} \\ 0 & {5}/{3} & {5}/{3} \end{bmatrix} += A_2. $$ -Now, +In the same way the second row reduction step can be described by -$$ -\left[\begin{array}{rrr}3 & 1 & -2\\0 &{10}/{3}&{7}/{3}\\0 &{5}/{3}&{5}/{3}\end{array} \right] \begin{array}{l} -[R_1] \\ -{[R_2]} \\ -{[R_3-1/2R_2]} \\ -\end{array}\sim +$$ + F_2A_2 = +\begin{bmatrix} +1 & 0 & 0 \\ +0 & 1 & 0 \\ +0 & -1/2 & 1 +\end{bmatrix} \begin{bmatrix} 3 & 1 & -2 \\ 0 & {10}/{3} & {7}/{3} \\ -0 & 0 & {1}/{2} -\end{bmatrix} -. -$$ - -Since an echelon form of an $n\times n$ matrix is an upper triangular matrix, we define - -$$ -U= +0 & {5}/{3} & {5}/{3} +\end{bmatrix} = \begin{bmatrix} 3 & 1 & -2 \\ 0 & {10}/{3} & {7}/{3} \\ 0 & 0 & {1}/{2} \end{bmatrix} -. += A_3. + $$ -To find $L$, we observe that the last row operation that we performed can be written as a product of matrices: +The echelon matrix $A_3$ can act as our upper triangular matrix $U$, and the above computations +can be summarized as -\begin{align*} -U &= F^{(2)}F^{(1)}A = -\begin{bmatrix} +$$ + U = A_3 = F_2F_1A = FA = \begin{bmatrix} 1 & 0 & 0 \\ -0 & 1 & 0 \\ +-2/3 & 1 & 0 \\ 0 & -1/2 & 1 \end{bmatrix} -\begin{bmatrix} -1 & 0 & 0 \\ --2/3 & 1 & 0 \\ --1/3 & 0 & 1 -\end{bmatrix} -\begin{bmatrix} -3 & 1 & -2 \\ -2 & 4 & 1 \\ -1 & 2 & 1 -\end{bmatrix} -\\ -&= -\begin{bmatrix} -1 & 0 & 0 \\ --\frac{2}{3} & 1 & 0 \\ -0 & -\frac{1}{2} & 1 -\end{bmatrix} -A\\ -&= FA. -\end{align*} +A, +$$ +where $F = F_2F_1$. -Since $F=F^{(2)}F^{(1)}$ is non-singular and lower triangular, we can compute its inverse, +We conclude that $$ -F^{-1} = -\begin{bmatrix} + A = F^{-1} U = \begin{bmatrix} 1 & 0 & 0 \\ -{2}/{3} & 1 & 0 \\ -{1}/{3} & {1}/{2} & 1 +2/3 & 1 & 0 \\ +1/3 & 1/2 & 1 +\end{bmatrix} + \begin{bmatrix} + 3 & 1 & -2 \\ + 0 & {10}/{3} & {7}/{3} \\ + 0 & 0 & {1}/{2} \end{bmatrix} -, + $$ -which is also lower triangular (we knew it from {prf:ref}`prop:PropertiesTriangularMatrices`). By writing $F^{-1}U=A$, we can take $L=F^{-1}$. +which is indeed a product of a lower triangular matrix $L$ (with 1's on it diagonal) and an upper triangular matrix $U$. :::::: -::::::{prf:remark} -Pay attention! +The above procedure shows how in principle an $LU$ decomposition can be computed. However, writing down the explicit elementary like matrices $F_i$, computing their product $F$, and finding the inverse of $F$ is unnecessary. Look at the matrix $L = F^{-1}$ we found! The entries below the diagonal are exactly the numbers $2/3$, $1/3$ and $1/2$ we called the *multipliers*. +The following algorithm describes this 'shortcut' to find an $LU$ decomposition. -In practice, we do not need to compute the product of the matrices $F^{(k)}$, and we do not need to find any inverse. By looking at the previous example, one can see that the matrix $L$ has ones in its diagonal and the entries below the main diagonal have, in each column, the corresponding multipliers. This is true in the general case (as long as one does not need to exchange rows). We will see all the details for the general case in {prf:ref}`thm:existence_and_uniqueness_LU` below. +::::::{prf:algorithm} +:label: Alg:LUdecomp:LUalgorithm -:::::: +Suppose the $n\times n$ matrix $A$ can be row reduced top-down to the echelon matrix $U$. If the numbers $m_{jk}$ denote the multiples of the $k$th row that are subtracted from the rows below it in the $k$th step (so $1 \leq k < j \leq n$), then -The following example shows how we implement the $LU$ decomposition in practice. Remember that no row exchanges are needed. +$$ + A = LU, \quad \text{for} \,\, + L = \begin{bmatrix} +1\\ +m_{21} & 1 \\ +m_{31} & m_{32} & \ddots \\ +\vdots & \vdots & \ddots & \ddots\\ +m_{n1} & m_{n2} & \cdots & m_{n,n-1} & 1 +\end{bmatrix}. +$$ -::::::{prf:example} -Find an $LU$ decomposition of the matrix -$$ -A= -\begin{bmatrix} -5 & 5 & 5 \\ -3 & 4 & 1 \\ -2 & 1 & 3 -\end{bmatrix} . -$$ +:::::: + + +Another look at {prf:ref}`Ex:LUdecomp:SecondLU` explains why the detour via the matrices $F_i$ and the inverse of their product can be skipped, as is expressed in the above algorithm. + + +::::::{prf:example} +:label: Ex:LUdecomp:SecondLUSecondLook + +For the matrix $A= \begin{bmatrix} + 3 & 1 & -2 \\ + 2 & 4 & 1 \\ + 1 & 2 & 1 + \end{bmatrix}$. + + +The 'trick' is not to work with the matrices $F_1$ and $F_2$, but with their inverses. -We will proceed using row operations without exchanging any rows. At the same time, we will construct the matrix $L$ using the multipliers. Our matrix $L$ will have the form +The first row reduction step $$ -L= + F_1A = \begin{bmatrix} 1 & 0 & 0 \\ -\ast & 1 & 0 \\ -\ast & \ast & 1 -\end{bmatrix} . +-2/3 & 1 & 0 \\ +-1/3 & 0 & 1 +\end{bmatrix} +\begin{bmatrix} +3 & 1 & -2 \\ +2 & 4 & 1 \\ +1 & 2 & 1 +\end{bmatrix} += +\begin{bmatrix} +3 & 1 & -2 \\ +0 & {10}/{3} & {7}/{3} \\ +0 & {5}/{3} & {5}/{3} +\end{bmatrix} += A_2. $$ -The changes we make are the following: +can be rewritten as -\begin{align*} -\left[\begin{array}{rrr}5 & 5 & 5\\3 & 4 & 1\\2 & 1 & 3\end{array} \right] \begin{array}{l} -[R_1] \\ -{[R_2-\mathbf{3/5}R_1]} \\ -{[R_3-\mathbf{2/5}R_1]} \\ -\end{array} &\sim +$$ + A = F_1^{-1}A_2 = L_1A_2 = +\begin{bmatrix} +1 & 0 & 0 \\ +2/3 & 1 & 0 \\ +1/3 & 0 & 1 +\end{bmatrix} \begin{bmatrix} -5 & 5 & 5 \\ -0 & 1 & -2 \\ -0 & -1 & 1 +3 & 1 & -2 \\ +0 & {10}/{3} & {7}/{3} \\ +0 & {5}/{3} & {5}/{3} \end{bmatrix} -\\ -&\longrightarrow -L = +$$ + + +Likewise the second row reduction step + +$$ + F_2A_2 = \begin{bmatrix} 1 & 0 & 0 \\ -\mathbf{3/5} & 1 & 0 \\ -\mathbf{2/5} & \ast & 1 -\end{bmatrix} , \\ -\left[\begin{array}{rrr}5 & 5 & 5\\0 & 1 & -2\\0 & -1 & 1\end{array} \right] \begin{array}{l} -[R_1] \\ -{[R_2]} \\ -{[R_3-(\mathbf{-1})R_2]} \\ -\end{array} -&\sim +0 & 1 & 0 \\ +0 & -1/2 & 1 +\end{bmatrix} \begin{bmatrix} -5 & 5 & 5 \\ -0 & 1 & -2 \\ -0 & 0 & -1 -\end{bmatrix}\\ -&\longrightarrow -L = +3 & 1 & -2 \\ +0 & {10}/{3} & {7}/{3} \\ +0 & {5}/{3} & {5}/{3} +\end{bmatrix} = \begin{bmatrix} -1 & 0 & 0 \\ -3/5 & 1 & 0 \\ -2/5 & \mathbf{-1} & 1 -\end{bmatrix} . -\end{align*} +3 & 1 & -2 \\ +0 & {10}/{3} & {7}/{3} \\ +0 & 0 & {1}/{2} +\end{bmatrix} +$$ + +can be can be represented as -Therefore, an $LU$ decomposition of $A$ is $$ -L= +A_2 = F_2^{-1}A_3 = L_2U = \begin{bmatrix} 1 & 0 & 0 \\ -{3}/{5} & 1 & 0 \\ -{2}/{5} & -1 & 1 +0 & 1 & 0 \\ +0 & 1/2 & 1 \end{bmatrix} -,\qquad -U= \begin{bmatrix} -5 & 5 & 5 \\ -0 & 1 & -2 \\ -0 & 0 & -1 -\end{bmatrix} -. +3 & 1 & -2 \\ +0 & {10}/{3} & {7}/{3} \\ +0 & {5}/{3} & {5}/{3} +\end{bmatrix}. + $$ -:::::: +Combining the two equations gives -At this point, there are important questions that we still need to address: when does a matrix have an $LU$ decomposition? Can a matrix have more than one $LU$ decomposition? It would be convenient if there is an $LU$ decomposition, that such decomposition is unique. +$$ + A = L_2L_1U = LU = + \begin{bmatrix} + 1 & 0 & 0 \\ + 2/3 & 1 & 0 \\ + 1/3 & 1/2 & 1 + \end{bmatrix} + \begin{bmatrix} + 3 & 1 & -2 \\ + 0 & {10}/{3} & {7}/{3} \\ + 0 & 0 & {1}/{2} + \end{bmatrix}. +$$ -The case when there is a unique $LU$ decomposition is very special, as the following result indicates. +We see the multipliers nicely fall into place! -::::::{prf:theorem} -:label: thm:existence_and_uniqueness_LU +:::::: -Suppose that $A$ is an -$m\times n$ matrix with real entries. Then +Here is an example where we apply the algorithm applied without further ado to a $4 \times 4$ matrix. + +::::::{prf:example} +:label: Ex:LUdecomp:LUviaAlgorithm +We use the $LU$-algorithm to the matrix $A = \begin{bmatrix} + 2 & 1 & -2 & 3 \\ + 2 & -3 & -4 & 7 \\ + -4 & 0 & 2 & -5 \\ + -6 & -1 & 8 & -8 + \end{bmatrix}.$ + +We row reduce the matrix $A$ top-down, diligently registering the multipliers. +Recall that the multiplier $m_{jk}$ is defined as the multiple of row $k$ that is *subtracted* from row $j$ in the $k$-th step of the reduction process. + +Here he goes: + +$$ +\left[\begin{array}{rrrr} + 2 & 1 & -2 & 3 \\ + 2 & -3 & -4 & 7 \\ + -4 & 0 & 2 & -5 \\ + 6 & 1 & -8 & 8\end{array} \right] \begin{array}{l} +[R_1] \\ +{[R_2-\class{red}{1}R_1]} \\ +{[R_3-\class{red}{(-2)}R_1]} \\ +{[R_4-\class{red}{3}R_1]} \\ +\end{array} +\sim +\left[\begin{array}{rrrr} + 2 & 1 & -2 & 3 \\ + 0 & -4 & -2 & 4 \\ + 0 & 2 & 2 & 1 \\ + 0 & -2 & -2 &-1\end{array} \right] \begin{array}{l} +[R_1] \\ +[R_2] \\ +{[R_3-\class{blue}{(-1/2)}R_2]} \\ +{[R_4-\class{blue}{1/2}R_2]} \\ +\end{array} +$$ -<ol type = "i"> -<li id="Item:thm:existence_and_uniqueness_LU:existence"> +$$ +\sim + \left[\begin{array}{rrrr} + 2 & 1 & -2 & 3 \\ + 0 & -4 & -2 & 4 \\ + 0 & 0 & -3 & 3 \\ + 0 & 0 & -1 & -3 + \end{array} \right] \begin{array}{l} +[R_1] \\ +[R_2] \\ +{[R_3]} \\ +{[R_4-\class{green}{1/3}R_2]} \\ +\end{array} +\,\,=\,\, + \left[\begin{array}{rrrr} + 2 & 1 & -2 & 3 \\ + 0 & -4 & -2 & 4 \\ + 0 & 0 & -3 & 3 \\ + 0 & 0 & 0 & -4 + \end{array} \right] +\,\,\sim\,\, U. +$$ -If we can find an echelon form for the matrix $A$ without exchanging rows, then there exists an $LU$ decomposition of $A$, and it has the form +Putting every multiplier in its right place gives $$ -L= -\begin{bmatrix} -1 \\ -m_{21} & 1 \\ -\vdots & m_{32} &\ddots \\ -\vdots & \vdots &\ddots & \ddots & \\ -m_{m1} & m_{m2} & \cdots & m_{m(m-1)} & 1 -\end{bmatrix} -, \quad -U= -\begin{bmatrix} -a^{(0)}_{11} & a^{(0)}_{12} & \cdots & a^{(0)}_{1n}\\ -& a^{(1)}_{22} & \cdots & a^{(1)}_{2n} \\ -& & \ddots & \vdots \\ -& & &a^{(n-1)}_{nn} \\ -\\\\ -\end{bmatrix}\quad (m>n), + L = \left[\begin{array}{rrrr} + 1 & 0 & 0 & 0 \\ + \class{red}{1} & 1 & 0 & 0 \\ + \class{red}{-2} & \class{blue}{-1/2} & 1 & 0 \\ + \class{red}{3} & \class{blue}{1/2} & \class{green}{1/3} & 1 + \end{array} \right]. $$ -or +:::::: + + +::::::{prf:example} +:label: Ex:LUdecomp:NoLU + +For the matrix $A= \begin{bmatrix} + 1 & 2 & 1 \\ + 4 & 8 & 6 \\ + 2 & 5 & 4 + \end{bmatrix}$ +the procedure breaks down at the second step. + +$$ + \begin{bmatrix} + 1 & 2 & 1 \\ + 4 & 8 & 6 \\ + 2 & 5 & 7 + \end{bmatrix} + \begin{array}{l} + [R_1] \\ + {[R_2-4R_1]} \\ + {[R_3-2R_1]} + \end{array} \quad \sim \quad + \begin{bmatrix} + 1 & 2 & 1 \\ + 0 & 0 & 2 \\ + 0 & 1 & 5 + \end{bmatrix}. +$$ +The next step towards an echelon matrix needs a row swap. But then the lower triangular structure of $L$ will be broken. In {numref}`Subsection %s <Subsec:LUdecomp:PLUdecomp>` we will study what we can do in such a situation. + +:::::: + +People that are not satisfied with two examples to show +that {prf:ref}`Alg:LUdecomp:LUalgorithm` works can have a look at the following (informal) proof of +{prf:ref}`Prop:LUdecomp:Existence`. It will also prove the statement that the existence of a $LU$ decomposition of a matrix $A$ implies that the matrix $A$ can be row reduced top-down to a matrix in echelon form. + + +:::{admonition} Proof of {prf:ref}`Prop:LUdecomp:Existence` +:class: myproof, dropdown + +Suppose $A$ is an $n\times n$ matrix that can be row reduced to an upper triangular (= echelon) matrix $U$. We can row reduce $A$ from top to bottom, where we use the same form as in {prf:ref}`Ex:LUdecomp:SecondLUSecondLook`. +For instance the first two steps are + $$ -\begin{bmatrix} -a^{(0)}_{11} & a^{(0)}_{12} & \cdots & a^{(0)}_{1m} &\cdots &a_{1n}^{(0)}\\ -& a^{(1)}_{22} & \cdots & a^{(1)}_{2m} & \cdots & a_{2n}^{(1)}\\ -& & \ddots & \vdots & & \vdots\\ -& & &a^{(m-1)}_{mm} & \cdots & a_{mn}^{(m-1)}\\ -\end{bmatrix}\quad (m<n), + A = \begin{bmatrix} + a_{11} & a_{12}& a_{13} & \ldots& a_{1n} \\ + a_{21} & a_{22}& a_{23} & \ldots& a_{2n} \\ + a_{31} & a_{32}& a_{33} & \ldots& a_{3n} \\ + \vdots & \vdots& \vdots& & \vdots \\ + a_{n1} & a_{n2}& a_{n3}& \ldots& a_{nn} + \end{bmatrix} = L_1A_1 + = + \begin{bmatrix} + 1 & \\ + m_{21} & 1 \\ + m_{31} & 0 & 1 \\ + \vdots & \vdots& & \ddots \\ + m_{n1} & 0 & \ldots& & 1 + \end{bmatrix}A_1 $$ -where the values $m_{ij}$ are the corresponding multiplers and the superscripts in $a_{ij}^{(k)}$ indicate that the value has been obtained after performing $k$ row operations. +and -</li> -<li id="Item:thm:existence_and_uniqueness_LU:uniqueness"> +$$ + A_1 = L_2A_2 = + \begin{bmatrix} + 1 & \\ + 0 & 1 & \\ + 0 &m_{32} & 1 \\ + \vdots & \vdots& & \ddots \\ + 0 & m_{n2} & 0 & \ldots& & 1 + \end{bmatrix}A_2, +$$ -If $A$ is an $n\times n$ non-singular matrix, then the $LU$ decomposition is unique. +where $A_2$ will be of the form -</li> -</ol> +$$ + A_2 = \begin{bmatrix} a_{11} & a_{12} & a_{13} & \ldots & a_{1n} \\ + 0 & \tilde{a}_{22} & \tilde{a}_{23} & \ldots &\tilde{a}_{2n} \\ + 0 & 0 & \tilde{a}_{33} & \ldots &\tilde{a}_{3n} \\ + \vdots & \vdots & \vdots & & \vdots \\ + 0 & 0 & \tilde{a}_{n3} & \ldots &\tilde{a}_{nn} \\ + \end{bmatrix}. +$$ -:::::: +We thus end up with a product -::::::{prf:proof} Proof of {prf:ref}`thm:existence_and_uniqueness_LU` +$$ + A = L_{n-1}L_{n-2}\cdots L_2L_1\,U = L\,U, +$$ + +where each matrix $L_k$ is a matrix containing the multipliers of the $k$th step in de proces. -We start with the proof of <a href="#Item:thm:existence_and_uniqueness_LU:uniqueness">ii. </a>. We will -proceed by contradiction. Suppose that we have two $LU$ decompositions of $A$. That is, $A= L_1U_1$ and $A=L_2U_2$. Then +The crucial thing is that in the product $L_{n-1}L_{n-2}\cdots L_2L_1$ in this order the multipliers do not 'interact'. For instance, for $n = 4$, we would get $$ -L_1U_1=L_2U_2. + \begin{array}{l} L = + \begin{bmatrix} 1 & 0 & 0 & 0 \\ + m_{21} & 1 & 0 & 0 \\ + m_{31} & 0 & 1 & 0 \\ + m_{41} & 0 & 0 & 1 + \end{bmatrix} + \begin{bmatrix} 1 & 0 & 0 & 0 \\ + 0 & 1 & 0 & 0 \\ + 0 & m_{32} & 1 & 0 \\ + 0 & m_{42} & 0 & 1 + \end{bmatrix} + \begin{bmatrix} 1 & 0 & 0 & 0 \\ + 0 & 1 & 0 & 0 \\ + 0 & 0 & 1 & 0 \\ + 0 & 0 & m_{43} & 1 + \end{bmatrix} = \\ + = + \begin{bmatrix} 1 & 0 & 0 & 0 \\ + m_{21} & 1 & 0 & 0 \\ + m_{31} & 0 & 1 & 0 \\ + m_{41} & 0 & 0 & 1 + \end{bmatrix} = + \begin{bmatrix} 1 & 0 & 0 & 0 \\ + 0 & 1 & 0 & 0 \\ + 0 & m_{32} & 1 & 0 \\ + 0 & m_{42} & m_{43} & 1 + \end{bmatrix} = + \begin{bmatrix} 1 & 0 & 0 & 0 \\ + m_{21} & 1 & 0 & 0 \\ + m_{31} & m_{32} & 1 & 0 \\ + m_{41} & m_{42} & m_{43} & 1 + \end{bmatrix}. + \end{array} $$ -Since $A$ is non-singular, $L_{i}$ and $U_{i}$ are non-singular for $i=1,2$. Multiplying both sides of the previous identity by $L^{-1}_{2}$ to the left, and by $U^{-1}_{1}$ to the right we obtain: +The pattern is clear, we skip the technical details to prove it for $n\times n$ matrices. -:::{math} -:label: eq:lowerequalupper -L*{2}^{-1}L*{1}=U*{2}U^{-1}*{1}. +To prove the converse, assume that $A$ has an $LU$ decomposition, i.e., -::: -Now we can visualise equation {eq}`eq:lowerequalupper` like this +$$ + A = LU = + \left[\begin{array}{rrrrr} + 1 & & & \\ + \ell_{11} & 1 & & \\ + \ell_{21} & \ell_{32} & 1 & \\ + \vdots & \vdots & \vdots & \ddots & \\ + \ell_{n1} & \ell_{n2}& \ell_{n3} & \cdots & 1 \\ + \end{array} \right] \begin{bmatrix} +u_{11} & u_{12} & u_{13} & \cdots &u_{1n} \\ + & u_{22} & u_{23} & \cdots & u_{2n} \\ + & & u_{33} & \cdots & u_{3n} \\ + & & & +\ddots & \vdots \\ +& & & & u_{nn} +\end{bmatrix}. +$$ + +By {prf:ref}`Prop:LUdecomp:L-properties` the inverse of $L$ has the same structure as $L$, i.e., $$ -\begin{bmatrix} -1 \\ -\ast & 1 \\ -\vdots & \ast & \ddots \\ -\vdots & \vdots & \ddots &\ddots \\ -\ast & \ast & \cdots & \ast& 1 -\end{bmatrix} - = -\begin{bmatrix} -\blacksquare & \ast & \cdots & \cdots & \ast \\ -& \blacksquare & \ast & \cdots & \ast \\ -& & \ddots & \ddots & \vdots \\ -& & & \ddots & \ast \\ -& & & & \blacksquare -\end{bmatrix} -. +\left[\begin{array}{rrrrr} + 1 & & & \\ + \ell^{\ast}_{11} & 1 & & \\ + \ell^{\ast}_{21} & \ell^{\ast}_{32} & 1 & \\ + \vdots & \vdots & \vdots & \ddots & \\ + \ell^{\ast}_{n1} & \ell^{\ast}_{n2}& \ell^{\ast}_{n3} & \cdots & 1 \\ + \end{array} \right]. +$$ + +As in the proof of {prf:ref}`Prop:LUdecomp:Existence` $L^{-1}$ can be factorized as + +$$ + L_2L_3\cdots L_{n} = + \left[\begin{array}{rrrrr} + 1 & & & \\ + \ell^{\ast}_{11} & 1 & & \\ + \ell^{\ast}_{21} & 0 & 1 & \\ + \vdots & \vdots & \vdots & \ddots & \\ + \ell^{\ast}_{n1} & 0 & 0 & \cdots & 1 \\ + \end{array} \right] + \left[\begin{array}{rrrrr} + 1 & & & \\ + 0 & 1 & & \\ + 0 & \ell^{\ast}_{32} & 1 & \\ + \vdots & \vdots & \vdots & \ddots & \\ + 0 & \ell^{\ast}_{n2}& 0 & \cdots & 1 \\ + \end{array} \right] + \cdots + \left[\begin{array}{rrrrr} + 1 & & & \\ + 0 & 1 & & \\ + 0 & 0 & 1 & \\ + \vdots & \vdots & \vdots & \ddots & \\ + 0 & 0 & \cdots & \ell^{\ast}_{n-1,n} & 1 \\ + \end{array} \right] $$ -For this identity to hold true, we need all $\blacksquare$ to be one and all $\ast$ to be zero. In other words, +Pre-multiplication of a matrix $M$ with one of the matrices $L_k$ amounts to adding multiples of the $k$th row of $M$ to the lower rows. So the product $L_2L_3\cdots L_n$ is a series of top-down operations, +and $$ -L^{-1}_{2}L_1 = U_{2}U^{-1}_{1} = I, + L_2L_3\cdots L_n\,s A = U $$ -which leads us to $L^{-1}_2=L^{-1}_1$ so $L_2=L_1$, and -$U^{-1}_2=U^{-1}_1$ so $U_2=U_1$. This is a contradiction with the statement that $A$ had two different $LU$ decompositions. +amounts to a top-down row reduction of $A$ to the upper triangular matrix $U$. + +:::::: + +At the end of this section we will analyze whether an $LU$ decomposition if it exists, is unique. To answer that question we need the following properties of lower as well as upper triangular matrices. + + +::::::{prf:proposition} +:label: Prop:LUdecomp:L-properties + +Suppose $A$ and $B$ are lower triangular matrices with $1$s on their diagonals. +Then the following properties hold. + +::::{latexlist} +:enumerated: true +:type: i + +\item $AB$ is also a lower triangular matrix with $1$s on its diagonal. + +\item $A^{-1}$ is also a lower triangular matrix with $1$s on its diagonal. + +:::: + +In both properties 'lower' can be replaced by 'upper'. + + +:::::: + + + +There are several ways to prove {prf:ref}`Prop:LUdecomp:L-properties`. +The best would be to think of a proof yourself, but you can also have a peek at the exposition below. + +::::::{admonition} Proof of {prf:ref}`Prop:LUdecomp:L-properties` +:class: myproof, dropdown + +:::{latexlist} +:enumerated: true +:type: i -To prove <a href="#Item:thm:existence_and_uniqueness_LU:existence">i. </a>, suppose that we can find an echelon form of $A$ without exchanging rows. For simplicity on the notation, we will prove the case of a squared matrix but the reader can easily adapt the proof for the non-suqared case. +\item +Suppose $A$ and $B$ are lower triangular matrices with $1$s on their diagonals. -We can write the $k$-th step as a product of matrices: +One way to prove that $AB$ also has these properties is to use the column-row expansion of the product. +(Cf. {numref}`Exc:MatrixOps:ColumnRowExpansion`.) <br> +Let $\vect{a}_k$ be the $k$th column of $A$, and $\vect{b}^{(k)}$ the $k$th row of $B$. +Then $$ -\begin{align*} -& -\begin{bmatrix} -1 \\ -& \ddots \\ -& & 1 \\ -& & -m_{(k+1)k} & 1 \\ -& & \vdots & & \ddots \\ -& & -m_{nk} & & & 1 -\end{bmatrix} -\begin{bmatrix} -a^{(0)}_{11} & \cdots & a^{(0)}_{1k} & a^{(0)}_{1(k+1)} & \cdots & a^{(0)}_{1n} \\ -& \ddots & \vdots & \vdots & & \vdots \\ -& & a^{(k-1)}_{kk} & a^{(k-1)}_{k(k+1)} & \cdots & a^{(k-1)}_{kn} \\ -& & a^{(k-1)}_{(k+1)k} & a^{(k-1)}_{(k+1)(k+1)} & \cdots & a^{(k-1)}_{(k+1)n} \\ -& & \vdots & \vdots & & \vdots \\ -& & a^{(k-1)}_{nk} & a^{(k-1)}_{n(k+1)} & \cdots & a^{(k-1)}_{nn} -\end{bmatrix} -\\ -=& -\begin{bmatrix} -a^{(0)}_{11} & \cdots & a^{(0)}_{1k} & a^{(0)}_{1(k+1)} & \cdots & a^{(0)}_{1n} \\ -& \ddots & \vdots & \vdots & & \vdots \\ -& & a^{(k-1)}_{kk} & a^{(k-1)}_{k(k+1)} & \cdots & a^{(k-1)}_{kn} \\ -& & 0 & a^{(k)}_{(k+1)(k+1)} & \cdots & a^{(k)}_{(k+1)n} \\ -& & \vdots & \vdots & & \vdots \\ -& & 0 & a^{(k)}_{n(k+1)} & \cdots & a^{(k)}_{nn} -\end{bmatrix} -. -\end{align*} + \vect{a}_k = \begin{bmatrix}0 \\ \vdots \\ 0 \\ a_{kk} \\ \vdots \\ a_{nk} \end{bmatrix} \quad + \text{and} \quad + \vect{b}_{(k)} = \begin{bmatrix}b_{k1} & \cdots & b_{kk} & 0 & \cdots & 0 \end{bmatrix}, $$ -We denote the previous product by $A^{(k)}=F^{(k)}A^{(k-1)}$. Since finding an echelon form is an iterative process, we can find $A^{(n)}$ by multiplying $A^{(0)}$ by the corresponding $F^{(k)}$ matrices to the left: +where moreover $a_{kk} = b_{kk} = 1$. So the $k$th term in the column-row expansion of $AB$ becomes $$ -A^{(n)} = F^{(n-1)}F^{(n-2)}\cdots F^{(3)}F^{(2)}F^{(1)}A^{(0)} -$$ +\begin{array}{rcl} + \vect{a}_k\vect{b}^{(k)} &=& + \begin{bmatrix}b_{k1}\vect{a}_k & b_{k2}\vect{a}_k & \cdots & b_{kk}\vect{a}_k & \vect{0} & \cdots & \vect{0}\end{bmatrix} \\ + &=& + \begin{bmatrix} + 0 & 0 & \cdots & 0 & 0 & \cdots & 0 \\ + \vdots & \vdots & & \vdots & \vdots & & \vdots \\ + 0 & 0 & \cdots & 0 & 0 & \cdots & 0 \\ + a_{kk}b_{k1} & a_{kk}b_{k2} & \cdots & a_{kk}b_{kk} & 0 & \cdots & 0 \\ + \vdots & \vdots & & \vdots & \vdots & & \vdots \\ + a_{nk}b_{k1} & a_{nk}b_{k2} & \cdots & a_{nk}b_{kk} & 0 & \cdots & 0 + \end{bmatrix} + \end{array}. +$$ + +This is a lower triangular matrix, with a $1$ on position $(k,k)$ and for the rest $0$s on the diagonal. +Adding these $n$ column-row products gives a matrix of the required form. + +\item +Next suppose that $A$ is an upper triangular matrix with $1$s on the diagonal. +If we apply the algorithm of {prf:ref}`Prop:MatrixInv:Algorithm` to find the inverse using the augmented matrix + +$$ + [\,A | I \,] = + \left[\begin{array}{ccccc|ccccc} + 1 & 0 & 0 & \cdots & 0 & 1 & 0 & 0 & \cdots & 0 \\ + a_{21} & 1 & 0 & \cdots & 0 & 0 & 1 & 0 & \cdots & 0 \\ + a_{31} & a_{32} & 1 & \cdots & 0 & 0 & 0 & 1 & \cdots & 0 \\ + \vdots &\vdots & & \ddots & 0 & \vdots & \vdots & & \ddots & 0 \\ + a_{n1} &a_{n2} & a_{n3} & \cdots & 1 & 0 & 0 & 0 & \cdots & 1 + \end{array} \right], +$$ +to row reduce $A$ to $I$ we only need to subtract multiples of rows from rows below it. Thus in the matrix to the right of the bar, where the identity matrix is transformed into the inverse matrix of $A$, the triangular structure with $1$s on the diagonal remains. + +::: -Since $A^{(n)}$ is an upper triangular matrix, we can take it as $U$. Since all matrices $F^{(k)}$ are invertible, we can recover $A^{(0)}$ multiplying $U$ to the left by the corresponding inverse matrices: +:::::: + +The uniqueness issue is not of major importance, but for completeness' sake below you can open a possible argument to prove it. + +::::::{admonition} Proof of the uniqueness of the $LU$-decomposition of an invertible matrix. +:class: myproof, dropdown + +Suppose $A$ is an invertible matrix with two $LU$ decompositions $$ -A=A^{(0)}={F^{(1)}}^{-1}{F^{(2)}}^{-1}\cdots{F^{(n-2)}}^{-1}{F^{(n-1)}}^{-1}A^{(n)} + A = L_1U_1, \quad A = L_2U_2. $$ -So we can define $L={F^{(1)}}^{-1}{F^{(2)}}^{-1}\cdots{F^{(n-2)}}^{-1}{F^{(n-1)}}^{-1}$. -We just need to see that $L$ is, indeed, lower triangular with ones on the diagonal, and that it has the multipliers $m_{ij}$ in the entries below it. To see that, we write $F^{(k)} = I - M_k E_k$ where +We then have to show that $$ -M_k = -\begin{bmatrix} -0\\ \vdots\\ 0\\m_{(k+1)k}\\m_{(k+2),k}\\ \vdots \\ m_{nk} -\end{bmatrix} -,\qquad E_k = -\begin{bmatrix} -0 & \cdots & 0 & \stackrel{\text{$k$-th}}{1} & 0 & \cdots & 0 -\end{bmatrix} -. + L_1=L_2 \quad \text{and} \quad U_1 = U_2. $$ -Observe that the matrix $I-M_kE_k$ is the matrix +Since $A$ is invertible, the matrices $L_1, L_2, U_1, U_2$ are also invertible. <BR> +From $$ -\begin{bmatrix} -1 & & & & & \\ - & \ddots & & & & \\ - & & 1 & & & \\ - & & -m_{(k+1)k} & \\ - & & -m_{(k+2)k} & \ddots & \\ - & & \vdots & & & \ddots \\ - & & -m_{nk} & & & & 1 -\end{bmatrix}, +L_1U_1 = L_2U_2 $$ -and that $E_iM_j = 0$ for $i \le j$. +it follows that -Now, we take the following product: +::::{math} +:label: Eq:LUdecomp:EqualityL1L2U1U2 -\begin{align*} -(I-M_kE_k)(I+M_kE_k) &= I - M_kE_k + M_kE_k -M_kE_kM_kE_k \\ -&= I - M_kE_k M_kE_k \\ -&= I - M_k(E_k M_k)E_k \\ -&= I - M_k 0 E_k \\ -&= I, -\end{align*} + L_2^{-1}L_1 = U_2U_1^{-1}. +:::: -where the zero in the second from the last identity is the zero matrix, we deduce that ${F^{(k)}}^{-1} = I + M_k E_k$. -Then, +From {prf:ref}`Prop:LUdecomp:L-properties` we know that $L_2^{-1}$ is a lower triangular matrix with $1$s on the diagonal, +and that the product $L_2^{-1}L_1$ is also of this form. At the same time the product $U_2U_1^{-1}$ must be an upper triangular matrix with $1$s on its diagonal. Then {eq}`Eq:LUdecomp:EqualityL1L2U1U2` implies that $$ -\begin{align*} -L &= {F^{(1)}}^{-1}{F^{(2)}}^{-1}\cdots{F^{(n-1)}}^{-1}{F^{(n-1)}}^{-1}\\ -&= \prod_{k=1}^{n-1} (I+M_kE_k) \\ -&= I + \sum_{k=1}^{n-1} M_kE_k, -\end{align*} + L_2^{-1}L_1 = U_2U_1^{-1} = I, $$ -where we have used that fact that, for $i < j$ $E_iM_j=0$. -Thus, +from which the identities $$ -\begin{align*} -L &= I + M_1E_1 + \cdots M_{n-1}E_{n-1} \\ -&= -\begin{bmatrix} -1 \\ -m_{21} & 1 \\ -\vdots & m_{32} &\ddots \\ -\vdots & \vdots &\ddots & \ddots & \\ -m_{n1} & m_{n2} & \cdots & m_{n(n-1)} & 1 -\end{bmatrix} -. -\end{align*} + L_1 = L_2, \quad U_1 = U_2 $$ +immediately follow. + :::::: -(Sec:PLUDecomp)= +Lastly we give an example to show that the uniqueness may fail for a singular matrix. + +::::::{prf:example} +:label: Eq:LUdecomp:NonUniqueLU + +For the matrix $A = \begin{bmatrix} 1 & 1 & 1 \\ 2 & 2 & 2 \\ 3 & 3 & 3 \end{bmatrix}$ it holds that + +$$ + A = \begin{bmatrix} 1 & 0 & 0 \\ 2 & 1 & 0 \\ 3 & a & 1 \end{bmatrix}\begin{bmatrix} 1 & 1 & 1 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix}, +$$ + +where the parameter $a$ is free to choose. +:::::: -## PLU Decomposition +(Subsec:LUdecomp:PLUdecomp)= -The LU decomposition is quite limiting in the sense that it requires to be able to find an echelon form of the matrix of coefficients without exchanging any rows in the process. Clearly, it is not always possible to find an echelon form of a matrix without exchanging rows. Let's see what happens when we encounter this situation. +## Generalization to non-square matrices and $PLU$ decomposition -::::{prf:example} +In this section we describe what can be said regarding $LU$ decompositions for non-square matrices, +and present a 'workaround' for matrices for which there is no top-down row reduction to echelon form. -We can try to find an $LU$ decomposition of the matrix +We start with an example to show that not much changes if we apply the algorithm of {prf:ref}`Alg:LUdecomp:LUalgorithm` to non-square matrices. + +::::::{prf:example} +:label: Ex:LUdecomp:Nonsquare + +The matrix $A$ is given by $$ -A = \begin{bmatrix} -0 & 1 & 2 \\ -3 & 4 & 5 \\ -6 & 7 & 8 +A = +\begin{bmatrix} +1 & 3 & 1 & -1 \\ +-1 & 1 & 1 & 2 \\ + 2 & -1 & -1 & 3 \end{bmatrix}. $$ -In this case, we can not find an echelon form for this matrix without exchanging rows. Let's perform the following row operations: +We can row reduce $A$ top-down to an echelon matrix: -\begin{align*} -&\begin{bmatrix} -0 & 1 & 2 \\ -3 & 4 & 5 \\ -6 & 7 & 8 +$$ +\begin{array}{rcl} +\begin{bmatrix} +1 & 3 & 1 & -1 \\ +-1 & 1 & 1 & 2 \\ + 2 & -2 & -1 & 3 \end{bmatrix} \begin{array}{l} [R_1] \\ -{[R_2]}\\ -{[R_3-2 R_2]} -\end{array} &\sim & +{[R_2-\class{blue}{(-1)}R_1]} \\ +{[R_3-\class{blue}{2}R_1]} \\ +\end{array} +& \sim & \begin{bmatrix} -0 & 1 & 2 \\ -3 & 4 & 5 \\ -0 & -1 & -2 -\end{bmatrix} -\begin{array}{l} -[R_1 \leftrightarrow R_2] \\ -{[R_2 \leftrightarrow R_1]} \\ -{[R_3]} \\ -\end{array} \\ -&\begin{bmatrix} -3 & 4 & 5 \\ -0 & 1 & 2 \\ -0 & -1 & -2 +1 & 3 & 1 & -1 \\ +0 & 4 & 2 & 1 \\ +0 & -8 & -3 & 5 \end{bmatrix} \begin{array}{l} -[R_1]\\ +[R_1] \\ {[R_2]} \\ -{[R_3 + R_2]} -\end{array} &\sim & +{[R_3-\class{blue}{(-2)}R_2]} \\ +\end{array}\\ +&\sim& \begin{bmatrix} -3 & 4 & 5 \\ -0 & 1 & 2 \\ -0 & 0 & 0 -\end{bmatrix} -\end{align*} +1 & 3 & 1 & -1 \\ +0 & 4 & 2 & 1 \\ +0 & 0 & 1 & 7 +\end{bmatrix}. +\end{array} +$$ -Observe that we obtained an upper triangular matrix $U$ (echelon form). However, if we consider the changes we performed to the matrix $A$, we will see that +We then have $$ + A = LU = \begin{bmatrix} +1 & 0 & 0 \\ \class{blue}{-1} & 1 & 0 \\ \class{blue}{2} & \class{blue}{-2} & 1 \end{bmatrix} \begin{bmatrix} -1 & 0 & 0\\ -0 & 1 & 0 \\ -0 & 1 & 1 -\end{bmatrix} -\begin{bmatrix} -0 & 1 & 0 \\ -1 & 0 & 0 \\ -0 & 0 & 1 -\end{bmatrix} -\begin{bmatrix} -1 & 0 & 0 \\ -0 & 1 & 0 \\ -0 & -2 & 1 -\end{bmatrix} -= -\begin{bmatrix} -0 & 1 & 0 \\ -1 & 0 & 0 \\ -1 & -2 & 1 -\end{bmatrix} +1 & 3 & 1 & -1 \\ +0 & 4 & 2 & 1 \\ +0 & 0 & 1 & 7 +\end{bmatrix}. $$ -is not a lower triangular matrix. +If we want to solve an equation like -::::: +$$ + A\vect{x}= \vect{b}, +$$ -To find a lower triangular matrix we observe the following fact: subtracting $2$ times the second row to the third and then exchanging the first and second rows is equivalent to first exchanging the first and second rows and then subtracting $2$ times the first row to the third. +we can use the same two-step procedure as in {prf:ref}`Ex:LUdecomp:FirstLUcontinued`. -::::{prf:example} +For instance, to solve the system $$ + LU\vect{x} = \begin{bmatrix} +1 & 0 & 0 \\ -1 & 1 & 0 \\ 2 & -2 & 1 \end{bmatrix} \begin{bmatrix} -0 & 1 & 0 \\ -1 & 0 & 0 \\ -0 & 0 & 1 -\end{bmatrix} -\begin{bmatrix} -1 & 0 & 0 \\ -0 & 1 & 0 \\ -0 & -2 & 1 -\end{bmatrix}= -\begin{bmatrix} -1 & 0 & 0 \\ -0 & 1 & 0 \\ --2 & 0 & 1 -\end{bmatrix} -\begin{bmatrix} -0 & 1 & 0 \\ -1 & 0 & 0 \\ -0 & 0 & 1 -\end{bmatrix}. +1 & 3 & 1 & -1 \\ +0 & 4 & 2 & 1 \\ +0 & 0 & 1 & 7 +\end{bmatrix}\vect{x} = \begin{bmatrix}2 \\ -2 \\ 5 \end{bmatrix} $$ +we can first solve -:::: +$$ + L\vect{y} = \begin{bmatrix} +1 & 0 & 0 \\ -1 & 1 & 0 \\ 2 & -2 & 1 \end{bmatrix}\vect{y} = + \begin{bmatrix}2 \\ -2 \\ 5 \end{bmatrix}. +$$ -So we found an alternative order of row operations that brought us to the same echelon form. The key idea is to **perform all the row exchanges first** and **then add multiples of one row to another** to obtain an echelon form. Let's see the results: +Using forward substitution we find the solution -:::{math} -:label: eq:LUDecomp:almostPLU +$$ + \tilde{\vect{y}} = \begin{bmatrix}2 \\ 0 \\ 1 \end{bmatrix} +$$ -\begin{array}{rcl} -\begin{bmatrix} -1 & 0 & 0\\ -0 & 1 & 0 \\ -0 & 1 & 1 -\end{bmatrix} -\begin{bmatrix} -1 & 0 & 0 \\ -0 & 1 & 0 \\ --2 & 0 & 1 -\end{bmatrix} -\begin{bmatrix} -0 & 1 & 0 \\ -1 & 0 & 0 \\ -0 & 0 & 1 -\end{bmatrix}A &= \begin{bmatrix} -3 & 4 & 5 \\ -0 & 1 & 2 \\ -0 & 0 & 0 -\end{bmatrix} \\\\ -\begin{bmatrix} -1 & 0 & 0 \\ -0 & 1 & 0 \\ --2 & 1 & 1 -\end{bmatrix} -\begin{bmatrix} -0 & 1 & 0 \\ -1 & 0 & 0 \\ -0 & 0 & 1 -\end{bmatrix}A &= -\begin{bmatrix} -3 & 4 & 5 \\ -0 & 1 & 2 \\ -0 & 0 & 0 -\end{bmatrix} -\end{array} +and then the system -::: +$$ + U\vect{x} = \begin{bmatrix} +1 & 3 & 1 & -1 \\ +0 & 4 & 2 & 1 \\ +0 & 0 & 1 & 7\end{bmatrix}\vect{x} = + \begin{bmatrix}2 \\ 0 \\ 1 \end{bmatrix} +$$ -Now we see that on the left-hand side of {eq}`eq:LUDecomp:almostPLU` we obtain a lower triangular matrix, for which we can find an inverse to obtain: +gives the solution(s) $$ -\begin{bmatrix} -0 & 1 & 0 \\ -1 & 0 & 0 \\ -0 & 0 & 1 -\end{bmatrix}A = -\begin{bmatrix} -1 & 0 & 0 \\ -0 & 1 & 0 \\ -2 & -1 & 1 -\end{bmatrix} -\begin{bmatrix} -3 & 4 & 5 \\ -0 & 1 & 2 \\ -0 & 0 & 0 -\end{bmatrix} + \vect{x} = \begin{bmatrix} + \tfrac52 -\tfrac{7}{4}x_4\\ + -\tfrac12 +\tfrac{13}{4}x_4\\ + 1 - 7x_4\\ + x_4 + \end{bmatrix}, \quad x_4 \,\, \text{free.} $$ -This is not an $LU$ decomposition, but almost! This is what we call a **PLU** decomposition. The following result summarizes it: +:::::: -:::::{prf:theorem} Existence of a PLU Decomposition -:label: LUDecomp:existencePLU -Suppose that $A$ is an $m\times n$ matrix with real coefficients. Then there exist matrices $P$, $L$ and $U$ such that +The generalization of {prf:ref}`Prop:LUdecomp:Existence` to non-square matrices is captured in the next proposition. -$$ PA = LU, $$ +::::::{prf:proposition} +:label: Prop:LUdecomp:ExistenceNonsquare -where $P$ is an $m\times m$ matrix that exchanges the rows of $A$, $L$ is an $m\times m$ lower triangular matrix obtained inverting the product matrices that perform row operations to that only add multiples of a row to other rows in the matrix $PA$, and the matrix $U$ is an $m\times n$ upper-trapezoidal matrix (echelon form) that is obtained after performing the corresponding row operations to $PA$. +An $m\times n$ matrix $A$, with $m \leq n$ can be written as $A = LU$, with $L$ an $m\times m$ upper triangular matrix with $1$s on its diagonal and $U$ an echelon matrix if and only if $A$ can be row reduced top-down to the echelon matrix $U$. <BR> +Moreover, if the rows of $A$ are linearly independent the matrices $L$ and $U$ are unique. -::::: +:::::: -## Application of the (P)LU Decomposition +A similar proposition holds for $m \times n$ matrices with $m > n$. However, in this case the systems +$A\vect{x} = \vect{b}$ are inconsistent for most vectors $\vect{b}$, and then other techniques come into play (e.g., see {numref}`SubSec:LeastSquares:LS-solutions`). -One way to measure the performance of an algorithm is counting the number of arithmetic operations [^flopnote] that are necessary for solving a problem. By arithmetic operations we will take into account sums, products, multiplications and divisions. Suppose that we want to solve the linear system $A\mathbf{x}=\mathbf{b}$ by taking the augmented matrix $[ A | \mathbf{b}]$, finding an echelon form with the same solution set, and then using backward substitution. +In the remainder of this subsection we address the next best thing we can do in case a matrix does not have an $LU$ decomposition. -In the worst-case scenario, for a $3\times 3$ matrix $A$, ($3\times 4$ augmented matrix), we need the following number of arithmetic operations: -<ul> -<li> +::::::{prf:example} +:label: Ex:LUdecomp:NoLUcontinued -To convert the components $a_{21}$ and $a_{31}$ to a zero value, we need to compute two $m_{ij}$(two divisions), then we need to multiply each component of the first row, starting at $a_{12}$, by each $m_{ij}$(this happens twice, so $2\times 3=6$ products) and then we need to subtract the resulting values to the corresponding components in each row ($2\times 3=6$ subtractions). Therefore, we need a total of $14$ arithmetic operations(8 products/divisions and 6 additions/subtractions). +Let us return to {prf:ref}`Ex:LUdecomp:NoLU` where the matrix $A$ cannot be written as $LU$. +We copy from there -</li> -<li> +$$ + A \,=\, \begin{bmatrix} + 1 & 2 & 1 \\ + 4 & 8 & 6 \\ + 2 & 5 & 7 + \end{bmatrix} + \begin{array}{l} + [R_1] \\ + {[R_2-4R_1]} \\ + {[R_3-2R_1]} + \end{array} \quad \sim \quad + \begin{bmatrix} + 1 & 2 & 1 \\ + 0 & 0 & 2 \\ + 0 & 1 & 5 + \end{bmatrix}. +$$ -To convert the component $a_{32}$ to a zero value, we need to compute one $m_{ij}$(one division), then we need to multiply each component of the second row starting at $a_{23}$(this is 2 products), and then we need to subtract the resulting values to the corresponding components in the third row (2 subtractions). This totals 5 arithmetic operations. +We need a row swap to bring the last matrix to echelon form. The key idea is to **perform all the row exchanges first** and **then add multiples of rows (top-down) to other rows** to obtain an echelon form. Here the one row exchange is captured by the matrix -</li> -</ul> +$$ + P = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 1 & 0 \end{bmatrix}. +$$ -So just to bring the augmented matrix to an echelon form requires 19 arithmetic operations (11 multiplications/divisions and 8 additions/subtractions). -Now, to solve the system we use backward substitution: +We get -<ul> -<li> +$$ + PA \,=\, \begin{bmatrix} + 1 & 2 & 1 \\ + 2 & 5 & 7 \\ + 4 & 8 & 6 + \end{bmatrix} \,\, = \,\, + \begin{bmatrix} + 1 & 0 & 0 \\ + 2 & 1 & 0 \\ + 4 & 0 & 1 + \end{bmatrix}\, + \begin{bmatrix} + 1 & 2 & 1 \\ + 0 & 1 & 5 \\ + 0 & 0 & 2 + \end{bmatrix}. +$$ -To find $x_3$ requires one division. -</li> -<li> +This is what we will call a *PLU* decomposition. -To find $x_2$ requires (one multiplication, one subtraction, and one division). +Note that first subtracting row 1 four times from row 2 and two times from row 3, followed by exchanging row 2 and row 3 leads to the same echelon matrix as first swapping row 2 and 3 and then subtracting row 1 two times from row 2 and four times from row 3. -</li> -<li> +:::::: -To find $x_1$ requires (two multiplications, two subtractions, and one division). -</li> -</ul> +::::::{prf:definition} +:label: Def:LUdecomp:PermutationMatrix -This means that solving a linear system with a $3\times 3$ matrix of coefficients in echelon form requires 9 arithmetic operations. +A **permutation matrix** is an $n \times n$ matrix $P$ with only entries $0$ and $1$ in such a way that each row and each column contain exactly one $1$. -So in total, we needed 28 arithmetic operations. +:::::: -Supposing that $A=LU$ and that $L$ and $U$ are given, then, we solve first $L\mathbf{y}=\mathbf{b}$ and then $U\mathbf{x}=\mathbf{y}$. +::::::{prf:example} -<ul> -<li> +Two $4\times 4$ permutation matrices are -For $L\mathbf{y}=\mathbf{b}$ we use forward substitution. Since the elements in the main diagonal are ones, then we have that we need no operations to determine $y_1$, we need one subtraction and one division for $y_2$, and two subtractions and one division for $y_3$. This totals 6 arithmetic operations. +::::{math} +:label: Eq:LUdecomp:P1andP2 -</li> -<li> + P_1 = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 1 & 0 + \end{bmatrix} \quad \text{and} \quad + P_2 = \begin{bmatrix} 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \\ 1 & 0 & 0 & 0 + \end{bmatrix} +:::: -To solve $U\mathbf{x}=\mathbf{y}$ we use backward substitution, and we have just seen that it requires 9 arithmetic operations. +Note that for an arbitrary $4 \times 4$ matrix $A$ we have -</li> -</ul> +$$ + P_1 A = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & \class{blue}{1} \\ 0 & 0 & 1 & 0 + \end{bmatrix} + \begin{bmatrix} a_{11} & a_{12} & a_{13} & a_{14} \\ a_{21} & a_{22} & a_{23} & a_{24} \\ + a_{31} & a_{32} & a_{33} & a_{34} \\ + \class{blue}{a_{41}} & \class{blue}{a_{42}} & + \class{blue}{a_{43}} & \class{blue}{a_{44}} + \end{bmatrix} = + \begin{bmatrix} a_{11} & a_{12} & a_{13} & a_{14} \\ a_{21} & a_{22} & a_{23} & a_{24} \\ + \class{blue}{a_{41}} & \class{blue}{a_{42}} & + \class{blue}{a_{43}} & \class{blue}{a_{44}} \\ + a_{31} & a_{32} & a_{33} & a_{34} + \end{bmatrix} +$$ -So when the matrix $A$ is already $LU$ factorised, the number of operations required to solve the system is significantly lower. +and -Suppose now that $A$ is a non-singular $n\times n$ matrix. Let's count the number of operations in a general case, and we can see how advantageous it is to factorise our matrix $A$. +$$ + P_2 A = \begin{bmatrix} 0 & \class{blue}{1} & 0 & 0 \\ 0 & 0 & \class{red}{1} & 0 \\ 0 & 0 & 0 & 1 \\ 1 & 0 & 0 & 0 + \end{bmatrix} + \begin{bmatrix} a_{11} & a_{12} & a_{13} & a_{14} \\ + \class{blue}{a_{21}} & \class{blue}{a_{22}} & + \class{blue}{a_{23}} & \class{blue}{a_{24}} \\ + \class{red}{a_{31}} & \class{red}{a_{32}} & + \class{red}{a_{33}} & \class{red}{a_{34}} \\ + a_{41} & a_{42} & a_{43} & a_{44} + \end{bmatrix} = + \begin{bmatrix} \class{blue}{a_{21}} & \class{blue}{a_{22}} & + \class{blue}{a_{23}} & \class{blue}{a_{24}} \\ + \class{red}{a_{31}} & \class{red}{a_{32}} & + \class{red}{a_{33}} & \class{red}{a_{34}} \\ + a_{41} & a_{42} & a_{43} & a_{44} \\a_{11} & a_{12} & a_{13} & a_{14} + \end{bmatrix} +$$ -<ul> -<li> +In general (pre-)multiplication of a matrix $A$ with any permutation matrix reorders the rows of $A$. -For solving the system directly, for each column $j$ we need to compute the $m_{ij}$($(n-1)$ divisions), then multiply $m_{ij}$ by all the components of row $i$ except for the first $i$, so that is $(n-i)(n-i+1)$ products, and then we need to perform the same number of subtractions. This totals $(n-i)(n-i+2)$ products/divisions and $(n-i)(n-i+2)$ additions/subtractions. Now we need to add these values for all the columns. +:::::: + + +The following properties are rather obvious. + + +::::::{prf:proposition} +:label: Prop:LUdecomp:PermutationMatrices + +:::{latexlist} +:enumerated: true +:type: i + +\item The product of two $n\times n$ permutation matrices is again a permutation matrix. +\label{Item:Prop:LUdecomp:PermutationMatrices_Product} + +\item The inverse of a permutation matrix is its transpose. Thus, $P^{-1} = P^T$. +\label{Item:Prop:LUdecomp:PermutationMatrices__Inverse} + +::: + +:::::: + +::::::{prf:example} + +For the matrices $P_1$ and $P_2$ from {eq}`Eq:LUdecomp:P1andP2` we have -<ul> -<li> +$$ + P_1P_2 = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 1 & 0 + \end{bmatrix} + \begin{bmatrix} 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \\ 1 & 0 & 0 & 0 + \end{bmatrix} + = + \begin{bmatrix} 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 + \end{bmatrix} +$$ -For the products/divisions we have: +and $$ -\begin{align*} -\sum_{i=1}^{n-1}(n-i)(n-i+2) &= \sum_{i+1}^{n-1} i^{2} - 2 i n + n^{2} - 2 i + 2 n \\ -&=\sum_{i=1}^{n-1}(n^2-2ni+i^2)+\sum_{i=1}^{n-1}(2n-2i)\\ -&=\sum_{i=1}^{n-1}(n-i)^2 + 2\sum_{i=1}^{n-1}(n-i) \\ -&=\sum_{i=1}^{n-1}i^2 +2\sum_{i=1}^{n-1}i \\ -&\frac{n(n-1)(2n-1)}{6}+2\frac{n(n-1)}{2} \\ -&\frac{2n^3+3n^2-5n}{6}. -\end{align*} + P_2^TP_2 = \begin{bmatrix} 0 & 0 & 0 & 1 \\ 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 + \end{bmatrix} + \begin{bmatrix} 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \\ 1 & 0 & 0 & 0 + \end{bmatrix} + = + \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 + \end{bmatrix}. $$ -</li> -<li> +:::::: + +::::::{admonition} Proof of {prf:ref}`Prop:LUdecomp:PermutationMatrices` +:class: myproof, dropdown + +:::{latexlist} +:enumerated: true +:type: i + +\item The product of two $n\times n$ permutation matrices is again a permutation matrix. + +Suppose $P_1$ and $P_2$ are permutation matrices. With the product $P_1P_2$ the rows of $P_2$ are reordered, and that leaves the properties a $1$ in each row, a $1$ in each column, all other entries equal to $0$, intact. + + +\item The inverse of a permutation matrix is its transpose. Thus, $P^{-1} = P^T$. + +In a product $A^TA$, the entry on position $(i,j)$ is the inner product of the $i$th column of $A$ +with the $j$th column of $A$. (Cf., {numref}`Exc:MatrixOps:InterpretATB`.) Since the $n$ columns of $A$ are the $n$ columns $\vect{e}_j$ of the identity matrix (in some order), and + +$$ + \vect{e}_i\ip\vect{e}_j = \left\{\begin{array}{l} + 1, \,\,\text{if}\,\, i = j\\ + 0, \,\,\text{if}\,\, i \neq j, + \end{array} + \right. +$$ + +the result immediately follows. + +::: + +:::::: + +::::::{prf:theorem} Existence of a $PLU$ Decomposition +:label: LUDecomp:existencePLU + +Suppose that $A$ is an $m\times n$ matrix with real coefficients, and let $m \leq n$. Then there exist a permutation matrix $P$, an upper triangular matrix $L$ and an echelon matrix $U$ such that + +$$ + PA = LU. +$$ + +:::::: + +::::::{prf:remark} -For the additions/subtractions we have: +As was mentioned before, the key idea is to perform the row exchanges first. These can be put together in the permutation matrix $P$. The algorithm to actually find the $LU$ decomposition of $PA$ without doing the whole row reduction process for $PA$ all over again is rather intricate, and in our view belongs to a course of numerical linear algebra. There it will be explained that it may also be preferable to work towards a $PLU$ decomposition instead of an $LU$ decomposition in cases where theoretically it is not absolutely necessary. For numerical reasons, having to do with finite accuracy when representing real numbers in computers, it may be better to choose the pivots in another order than just top-down. + +:::::: + +In the following example the matrix does have a proper $LU$ decomposition, but we will row reduce it +in another order than top-down to echelon form. It is a tiny example to illustrate that it is possible to deduce a $PLU$ decomposition from it when we keep record of both the multipliers and the positions of the pivots. + +::::::{prf:example} +:label: Ex:LUdecomp:PLUexample-2 + +We will row reduce the matrix $ A= \begin{bmatrix}2&4&3 \\ 1&2&3\\1&3&2 \end{bmatrix}$ in an alternative order than top-down and extricate a $PLU$ decomposition from it. $$ -\begin{align*} -\sum_{i=1}^{n-1}(n-i)(n-i+1) &= \sum_{i=1}^{n-1} i^{2} - 2 i n + n^{2} - i + n \\ -&=\sum_{i=1}^{n-1}(n^2-2in+i^2) + \sum_{i=1}^{n-1}(n-i) \\ -&=\sum_{i=1}^{n-1}(n-i)^2 + \sum_{i=1}^{n-1}(n-i)\\ -&=\sum_{i=1}^{n-1}i^2 + \sum_{i=1}^{n-1}i \\ -&=\frac{n(n-1)(2n-1)}{6}+\frac{n(n-1)}{2}\\ -&=\frac{n^3-n}{3}. -\end{align*} +\left[\begin{array}{rrr}2&4&3 \\ 1&2&3\\ \fbox{1}&3&2 \end{array} \right] \begin{array}{l} +[R_1-\class{blue}{2}R_3] \\ +{[R_2-\class{blue}{1}R_3]} \\ +{[R_3]} \\ +\end{array} +\sim +\left[\begin{array}{rrr}0&\fbox{$-2$}&-1 \\ 0 & -1 &1 \\ 1&3&2\end{array} \right] \begin{array}{l} +[R_1] \\ +{[R_2-\class{red}{\frac12}R_1]} \\ +{[R_3]} \\ +\end{array} +\sim +\left[\begin{array}{rrr}0&-2&-1 \\ 0 & 0 &\frac32 \\ 1&3&2\end{array} \right]. $$ -</li> -</ul> +If we put together the matrices that describe the row operations we get + +:::{math} +:label: Eq:LUdecomp:PivotStructure -So in total we have to perform + A = \begin{bmatrix}2&\fbox{4}&3 \\ 1&2&\fbox{3}\\ \fbox{1}&3&2\end{bmatrix} = + \begin{bmatrix} 1 & 0 & \class{blue}{2} \\ \class{red}{\frac12} &1 & \class{blue}{1} \\ 0 & 0 & 1\end{bmatrix} + \begin{bmatrix} 0 & -2 & -1 \\ 0 & 0 &\frac32 \\1 & 3 & 2\end{bmatrix} = \tilde{L}\tilde{U}. + +::: + +If we would have started from $$ -\frac{4n^3-3n^2-7n}{6} + \begin{bmatrix} 1&3&2 \\2&4&3 \\ 1&2&3\end{bmatrix} = PA = + \begin{bmatrix} 0 & 0 & 1 \\ 1 & 0 & 0 \\ 0 & 1 & 0\end{bmatrix} + \begin{bmatrix} 2&4&3 \\ 1&2&3\\1&3&2 \end{bmatrix} $$ -arithmetic operations to bring the matrix to echelon form. +using the same pivots would have arrived at + +$$ + \begin{bmatrix} 1&3&2 \\2&4&3 \\ 1&2&3\end{bmatrix} \sim + \begin{bmatrix} 1&3&2 \\0&-2&-1 \\ 0&-1&1\end{bmatrix} \sim + \begin{bmatrix} 1&3&2 \\0&-2&-1 \\ 0&0&\frac32\end{bmatrix}, +$$ -If we just count the number of arithmetic operations to compute the $LU$ decomposition, then we need +so $$ -\frac{4n^3-3n^2-n}{6} + PA = \begin{bmatrix} 1&3&2 \\2&4&3 \\ 1&2&3\end{bmatrix} = + \begin{bmatrix} 1 & 0 & 0 \\\class{blue}{2} & 1 & 0 \\ + \class{blue}{1} & \class{red}{\frac12} & 1\end{bmatrix} + \begin{bmatrix} 1&3&2 \\0&-2&-1 \\ 0&0&\frac32\end{bmatrix} = LU. $$ -arithmetic operations. +The matrix $P$ is the inverse of (so also the transpose of) the matrix that describes the positions of the pivots as in Equation {eq}`Eq:LUdecomp:PivotStructure`. +It asks for some careful analysis how to reconstruct $L$ from $\tilde{L}$. -Using similar reasoning, we can calculate the number of arithmetic operations needed to solve an upper triangular linear system, which gives us $n^2$. And solving a lower triangular system with ones in the main diagonal requires $n^2-n$ arithmetic operations. +:::::: -:::{prf:remark} -The total number of arithmetic operations needed in order to solve a linear system with row reduction (without exchanging rows), and with $LU$ is the same. We leave the proof as an exercise for the reader. -::: -In many applications in engineering, it is required to solve $m$ linear systems, $[A|\mathbf{b}_1\,\mathbf{b}_2\,\dots \mathbf{b}_m]$, that have the same matrix of coefficients. In this situation is where the $LU$ Decomposition comes in handy. In {numref}`tbl:comparison_gausselim_LU` we can see the comparison in the number of operations need to solve several linear systems when using row reduction and $LU$ decomposition. -:::{latextable} Comparison between solving linear systems with row reduction (RR) and with $LU$ decomposition ($LU$) -:header-rows: 2 -:class: longtable table-bordered table-striped table-hover table -:align: right -:name: tbl:comparison_gausselim_LU +## Efficiency Issues -\begin{tabular}{crrrrrr} -$n$ & \multicolumn{2}{c}{$m=5$} & \multicolumn{2}{c}{$m=10$} & \multicolumn{2}{c}{$m=50$} \\ -& RR & $LU$ & RR & $LU$ & RR & $LU$ \\ -$3$ & $140$ & $88$ & $280$ & $163$ & $1400$ & $763$ \\ -$5$ & $575$ & $295$ & $1,150$ & $520$ & $5,750$ & $2,320$ \\ -$10$ & $4,025$ & $1,565$ & $8,050$ & $2,515$ & $40,250$ & $10,115$ \\ -\end{tabular} +To be filled in later. -::: -</li> -</ul> +## Grasple Exercises -## Theoretical Exercises +::::::{grasple} +:iframeclass: dark-light +:url: https://embed.grasple.com/exercises/cca386f8-a6ff-44b6-9b83-fe96482a4763?id=108857 +:label: grasple_exercise_3_6_2 +:dropdown: +:description: To identify triangular matrices. -::::::{exercise} -:label: Exc:LUdecomp:Theory1 +:::::: -Prove {prf:ref}`Prop:LUDecomp:PropertiesTriangularMatricesInverse`. +::::::{grasple} +:iframeclass: dark-light +:url: https://embed.grasple.com/exercises/4ef9b6fe-e204-44e7-9463-3e1c3537a10b?id=82913 +:label: grasple_exercise_3_6_3 +:dropdown: +:description: To compute the $LU$-decomposition of a 2x2 matrix $A$. -**Hint:** Write the matrix $[A\vert I]$ and apply row operations to compute $A^{-1}$. The idea is similar to the one used in the proof of {prf:ref}`thm:existence_and_uniqueness_LU`. :::::: -::::::{exercise} -:label: Exc:LUdecomp:Theory2 +::::::{grasple} +:iframeclass: dark-light +:url: https://embed.grasple.com/exercises/b167deea-922f-4a80-9b3e-7cbdf16f023f?id=106332 +:label: grasple_exercise_3_6_4 +:dropdown: +:description: To compute the $LU$-decomposition of a 3x3 matrix $A$. + +:::::: -Check that the number of arithmetic operations needed to solve a linear system using row reduction (without exchanging rows) and with $LU$ decomposition is the same. + +::::::{grasple} +:iframeclass: dark-light +:url: https://embed.grasple.com/exercises/9708bce4-5c01-4486-8f44-7ea3a5157950?id=82914 +:label: grasple_exercise_3_6_5 +:dropdown: +:description: To compute the $LU$-decomposition of a 3x3 matrix $A$ and use it to solve $A\vect{x} = \vect{b}$. + +:::::: + + +::::::{grasple} +:iframeclass: dark-light +:url: https://embed.grasple.com/exercises/d7ec03b4-32c4-4c3e-8c1e-2714878ef558?id=82917 +:label: grasple_exercise_3_6_6 +:dropdown: +:description: To compute the $LU$-decomposition of a 3x3 matrix $A$ and use it to solve $A\vect{x} = \vect{b}$. + +:::::: + + +::::::{grasple} +:iframeclass: dark-light +:url: https://embed.grasple.com/exercises/9cbcf004-bfbe-428f-927f-5c64ca802946?id=82919 +:label: grasple_exercise_3_6_7 +:dropdown: +:description: To decide solving $A\vect{x} = \vect{b}$ via (given) $A=LU$ or (given) $A^{-1}$. + +:::::: + +::::::{grasple} +:iframeclass: dark-light +:url: https://embed.grasple.com/exercises/8fe1ca5c-3f24-4148-9725-a96c44e3f43a?id=82920 +:label: grasple_exercise_3_6_8 +:dropdown: +:description: To compute $A^{-1}$ using $A = LU$. :::::: -[^flopnote]: In some books they use the abbreviation _flop_ (floating point operations). +::::::{grasple} +:iframeclass: dark-light +:url: https://embed.grasple.com/exercises/7d8c3553-18cd-4866-bfa1-9ff273ee18e8?id=82925 +:label: grasple_exercise_3_6_9 +:dropdown: +:description: Explorative exercise about the $LDU$-decomposition + +:::::: + +::::::{grasple} +:iframeclass: dark-light +:url: https://embed.grasple.com/exercises/5bb6dcac-4575-4953-bb3a-c0e8d4594798?id=82928 +:label: grasple_exercise_3_6_10 +:dropdown: +:description: To compute the $LU$-decomposition of 3x4 matrix $A$ and use it to solve $A\vect{x} = \vect{b}$. + +:::::: + +::::::{grasple} +:iframeclass: dark-light +:url: https://embed.grasple.com/exercises/9a2cb913-3462-4832-8e33-9f4b878f1da7?id=106804 +:label: grasple_exercise_3_6_11 +:dropdown: +:description: To compute a $PLU$-decomposition of a 3x3 matrix. + +:::::: + +::::::{grasple} +:iframeclass: dark-light +:url: https://embed.grasple.com/exercises/48ef4fa5-cdcf-4449-8c5a-0d5f5d448025?id=106870 +:label: grasple_exercise_3_6_12 +:dropdown: +:description: To solve a system $A\vect{x} = \vect{b}$ using $ PA = LU$. + +:::::: diff --git a/Chapter3/Linear_Transformations.md b/Chapter3/Linear_Transformations.md index 94a3fda..824cf5c 100644 --- a/Chapter3/Linear_Transformations.md +++ b/Chapter3/Linear_Transformations.md @@ -204,6 +204,7 @@ This transformation "embeds" the plane $\mathbb{R}^2$ into the space $\mathbb{R} :fig: Images/Fig-LinTrafo-EmbedR2R3.svg :name: Fig:LinTrafo:EmbedR2R3 :status: reviewed +:class: dark-light $T$: embedding $\mathbb{R}^2$ into $\mathbb{R}^3$. ``` @@ -286,8 +287,9 @@ See {numref}`Figure %s <Fig:LinTrafo:SkewProjection>`. ::::{figure} Images/Fig-LinTrafo-SkewProjection.svg :name: Fig:LinTrafo:SkewProjection +:class: dark-light -The transformation of {prf:ref}`Eq:LinTrafo:SkewProjection` +The transformation of {prf:ref}`Eq:LinTrafo:SkewProjection`. :::: :::::: @@ -425,7 +427,8 @@ Thus, if $ T:\mathbb{R}^n \to\mathbb{R}^m$ is a linear transformation, then $T(\ :::::: -::::::{dropdown} Solution to {numref}`Exc:LinTrafo:ImageofZeroVector` (_click to show_) +::::::{admonition} Solution to {numref}`Exc:LinTrafo:ImageofZeroVector` +:class: solution, dropdown If $ T:\mathbb{R}^n \to\mathbb{R}^m$ is linear, and $\vect{v}$ is any vector in $\R^n$, then $\mathbf{0}_n = 0\vect{v}$. From the second property in {prf:ref}`Dfn:LinTrafo:LinTrafo` it follows that @@ -620,7 +623,8 @@ a linear transformation? :::::: -::::::{dropdown} Solution to {numref}`Exc:LinTrafo:T(x)=x+p` (_click to show_) +::::::{admonition} Solution to {numref}`Exc:LinTrafo:T(x)=x+p` +:class: solution, dropdown The transformation defined by $T(\vect{x}) = \vect{x} + \vect{p}$, with $\vect{p}\neq \vect{0}$ does not have any of the two properties of a linear transformation. @@ -660,7 +664,9 @@ Each matrix transformation is a linear transformation. :::::: -::::::{prf:proof} +::::::{admonition} Proof of {prf:ref}`Prop:LinTrafo:MatrixTrafoIsLinear` +:class: myproof + This is a direct consequence of the two properties of the matrix-vector product ({prf:ref}`Prop:MatVecProduct:Linearity`) that say $$ @@ -689,7 +695,9 @@ is a linear transformation from $\mathbb{R}^n$ to $\mathbb{R}^p$. The transformation $S\circ T$ is called the **composition** of the two transformations $S$ and $T$. It is best read as _"$S$ after $T$"_. :::::: -::::::{prf:proof} +::::::{admonition} Proof of {prf:ref}`Prop:LinTrafo:CompositionLintrafos` +:class: myproof + Suppose that $$ @@ -739,7 +747,8 @@ Show that $S$ and $T_3$ are again linear transformations. :::::: -::::::{dropdown} Solution to {numref}`Exc:LinTrafo:CombiningLinTrafos` (_click to show_) +::::::{admonition} Solution to {numref}`Exc:LinTrafo:CombiningLinTrafos` +:class: solution, dropdown The properties of the linear transformatiuon $T_1$ and $T_2$ carry over to $S$ and $T_3$ in the following way. We check the properties one by one. @@ -812,7 +821,9 @@ c_1T(\mathbf{x}\_1)+c_2T(\mathbf{x}\_2)+\ldots +c_kT( \mathbf{x}\_k). In words: for any linear transformation _the image of a linear combination of vectors is equal to the linear combination of their images_. -::::::{prf:proof} +::::::{admonition} Proof of {prf:ref}`Prop:LinTrafo:ExtendedLinearity` +:class: myproof + Suppose $T:\mathbb{R}^n\rightarrow\mathbb{R}^m$ is a linear transformation. So we have @@ -1015,7 +1026,8 @@ $$ :::::: -::::::{dropdown} Solution to {numref}`Exc:LinTrafo:MatrixForFirstExample` (_click to show_) +::::{admonition} Solution to {numref}`Exc:LinTrafo:MatrixForFirstExample` +:class: solution, dropdown Consider the linear transformation $T:\mathbb{R}^2\rightarrow\mathbb{R}^3$ that sends each vector $ \begin{bmatrix} @@ -1038,7 +1050,7 @@ $$ \begin{bmatrix} 1 & 0 \\ 0 & 1\\ 0 & 0 \end{bmatrix}\begin{bmatrix} x\\ y \end{bmatrix}. $$ -:::::: +:::: The reasoning of {prf:ref}`Ex:LinTrafo:StandardMatrixIntro` can be generalized. This is the content of the next theorem. @@ -1062,7 +1074,9 @@ T(\mathbf{e}\_1) & T(\mathbf{e}\_2) & \ldots & T(\mathbf{e}\_n) :::::: -::::::{prf:proof} +::::::{admonition} Proof of {prf:ref}`Thm:LinTrafo:LinTrafo=MatrixTrafo` +:class: myproof + We can more or less copy the derivation in {prf:ref}`Ex:LinTrafo:StandardMatrixIntro`. First of all, any vector $\mathbf{x}$ is a linear combination of the standard basis: @@ -1115,7 +1129,7 @@ $$ For a linear transformation $T:\mathbb{R}^n \to \mathbb{R}^m$, the matrix :::{math} -:label: Eq:LinTrafo:StandardMatrix +:label: Eq:LinTrafo:StandardMatrix2 \begin{bmatrix} T(\mathbf{e}\_1) & T(\mathbf{e}\_2) & \ldots & T(\mathbf{e}\_n) @@ -1319,6 +1333,7 @@ $$ ## Grasple Exercises %::::::{grasple} +:iframeclass: dark-light %:url: https://embed.grasple.com/exercises/97a589a8-54f9-4688-bd4d-a17a9585813b?id=69465 %:label: grasple_exercise_3_1_1 %:dropdown: @@ -1326,6 +1341,7 @@ $$ %:::::: ::::::{grasple} +:iframeclass: dark-light :url: https://embed.grasple.com/exercises/3f14573a-1d4c-4a4b-ae48-ccb168005702?id=70373 :label: grasple_exercise_3_1_2 :dropdown: @@ -1333,6 +1349,7 @@ $$ :::::: ::::::{grasple} +:iframeclass: dark-light :url: https://embed.grasple.com/exercises/b80d9889-bd46-45c6-a9cb-d056aa315232?id=70374 :label: grasple_exercise_3_1_3 :dropdown: @@ -1340,6 +1357,7 @@ $$ :::::: ::::::{grasple} +:iframeclass: dark-light :url: https://embed.grasple.com/exercises/be6a768d-c60d-4ed6-81a7-5dea71b4a1a5?id=70375 :label: grasple_exercise_3_1_4 :dropdown: @@ -1347,6 +1365,7 @@ $$ :::::: ::::::{grasple} +:iframeclass: dark-light :url: https://embed.grasple.com/exercises/c8bb24f6-d357-4571-adb3-39ea0fa9e4ee?id=70395 :label: grasple_exercise_3_1_5 :dropdown: @@ -1354,6 +1373,7 @@ $$ :::::: ::::::{grasple} +:iframeclass: dark-light :url: https://embed.grasple.com/exercises/93048f7c-b755-4445-a532-949f34136096?id=70398 :label: grasple_exercise_3_1_6 :dropdown: @@ -1361,6 +1381,7 @@ $$ :::::: ::::::{grasple} +:iframeclass: dark-light :url: https://embed.grasple.com/exercises/2af6559f-8871-494d-abce-d4263d530c69?id=70381 :label: grasple_exercise_3_1_7 :dropdown: @@ -1368,6 +1389,7 @@ $$ :::::: ::::::{grasple} +:iframeclass: dark-light :url: https://embed.grasple.com/exercises/ce6e4a52-c985-43ee-92cb-2762a467ac5a?id=70383 :label: grasple_exercise_3_1_8 :dropdown: @@ -1375,6 +1397,7 @@ $$ :::::: ::::::{grasple} +:iframeclass: dark-light :url: https://embed.grasple.com/exercises/37b6bd46-8cfc-4c98-a5e8-53aa41c87dcf?id=70384 :label: grasple_exercise_3_1_10 :dropdown: @@ -1382,13 +1405,15 @@ $$ :::::: ::::::{grasple} +:iframeclass: dark-light :url: https://embed.grasple.com/exercises/c5b2a642-fd50-43f6-9346-c37a0ffe1a40?id=70386 -:label: grasple_exercise_3_1_10 +:label: grasple_exercise_3_1_10b :dropdown: :description: Find vectors $\vect{w}$ for which $T(\vect{w}) = \vect{u}$. :::::: ::::::{grasple} +:iframeclass: dark-light :url: https://embed.grasple.com/exercises/c3d009c0-62d6-4ae3-8ca1-04a5d2730455?id=70406 :label: grasple_exercise_3_1_11 :dropdown: @@ -1396,6 +1421,7 @@ $$ :::::: ::::::{grasple} +:iframeclass: dark-light :url: https://embed.grasple.com/exercises/b9a4b128-f2c2-4612-a7f5-271c4e69aa70?id=70418 :label: grasple_exercise_3_1_12 :dropdown: @@ -1403,6 +1429,7 @@ $$ :::::: ::::::{grasple} +:iframeclass: dark-light :url: https://embed.grasple.com/exercises/4058e54a-74f2-414e-9693-420abbc62677?id=70391 :label: grasple_exercise_3_1_13 :dropdown: @@ -1410,6 +1437,7 @@ $$ :::::: ::::::{grasple} +:iframeclass: dark-light :url: https://embed.grasple.com/exercises/990bf561-629e-430f-b8d0-e757c63fe15c?id=70392 :label: grasple_exercise_3_1_14 :dropdown: @@ -1417,6 +1445,7 @@ $$ :::::: ::::::{grasple} +:iframeclass: dark-light :url: https://embed.grasple.com/exercises/4e5d3f55-9257-4023-9739-5df0a1a9f277?id=70410 :label: grasple_exercise_3_1_15 :dropdown: @@ -1424,6 +1453,7 @@ $$ :::::: ::::::{grasple} +:iframeclass: dark-light :url: https://embed.grasple.com/exercises/9efa96e2-483d-4b2c-a58a-ba197bc09a81?id=70411 :label: grasple_exercise_3_1_16 :dropdown: @@ -1431,6 +1461,7 @@ $$ :::::: ::::::{grasple} +:iframeclass: dark-light :url: https://embed.grasple.com/exercises/729cba57-72d1-4d54-8cf9-c9946952bf9d?id=70412 :label: grasple_exercise_3_1_17 :dropdown: @@ -1438,6 +1469,7 @@ $$ :::::: ::::::{grasple} +:iframeclass: dark-light :url: https://embed.grasple.com/exercises/b4bb3730-f14c-4a60-a8b8-6b895cf93ac5?id=70413 :label: grasple_exercise_3_1_18 :dropdown: @@ -1445,6 +1477,7 @@ $$ :::::: ::::::{grasple} +:iframeclass: dark-light :url: https://embed.grasple.com/exercises/34bb6386-7e7c-411b-83a1-09bbaf1106c5?id=70415 :label: grasple_exercise_3_1_19 :dropdown: @@ -1452,6 +1485,7 @@ $$ :::::: ::::::{grasple} +:iframeclass: dark-light :url: https://embed.grasple.com/exercises/ce8ba17c-0a17-4d5e-b4b7-5c277c7e8df8?id=70416 :label: grasple_exercise_3_1_20 :dropdown: @@ -1459,6 +1493,7 @@ $$ :::::: ::::::{grasple} +:iframeclass: dark-light :url: https://embed.grasple.com/exercises/2de4f8d1-ab3d-4d3a-94e4-5e414e2da3d9?id=70372 :label: grasple_exercise_3_1_21 :dropdown: @@ -1466,6 +1501,7 @@ $$ :::::: ::::::{grasple} +:iframeclass: dark-light :url: https://embed.grasple.com/exercises/3f992e7a-19e3-4b83-8d90-db86e323ea94?id=69296 :label: grasple_exercise_3_1_22 :dropdown: @@ -1473,6 +1509,7 @@ $$ :::::: ::::::{grasple} +:iframeclass: dark-light :url: https://embed.grasple.com/exercises/94d618e0-de21-491c-ad44-8e29974e0303?id=71098 :label: grasple_exercise_3_1_23 :dropdown: @@ -1480,6 +1517,7 @@ $$ :::::: ::::::{grasple} +:iframeclass: dark-light :url: https://embed.grasple.com/exercises/f983b627-10c2-4dd6-a273-2a33e99d0ded?id=71101 :label: grasple_exercise_3_1_24 :dropdown: diff --git a/Chapter3/MatrixInverse.md b/Chapter3/MatrixInverse.md index 6a45a57..c5414a8 100644 --- a/Chapter3/MatrixInverse.md +++ b/Chapter3/MatrixInverse.md @@ -37,9 +37,16 @@ $$ The bad news: -$$ - \frac{A}{B} \quad \text{cannot be defined in any useful way!} -$$ +<p style="text-align:center;"> +<math xmlns="http://www.w3.org/1998/Math/MathML"> + <mstyle displaystyle="true" scriptlevel="0"> + <mfrac> + <mi>A</mi> + <mi>B</mi> + </mfrac> + </mstyle> +</math> cannot be defined in any useful way! +</p> First of all the corresponding matrix equation @@ -167,7 +174,9 @@ If an inverse of a matrix $A$ exists, then it is unique. The proof is very short, when we plug in the right idea at the right place. -::::::{prf:proof} +::::::{admonition} Proof of {prf:ref}`Prop:MatrixInv:UniqueInverse` +:class: myproof + Suppose $B$ and $C$ are two matrices that satisfy the properties of being an inverse of $A$, i.e. $$ @@ -295,7 +304,9 @@ Also check that the first matrix in {prf:ref}`Ex:FirstInverse` illustrates the f :::::: -::::::{dropdown} Solution to {numref}`Exc:MatrixInv:CheckBA=I` (_click to show_) + +::::::{admonition} Solution to {numref}`Exc:MatrixInv:CheckBA=I` +:class: solution, dropdown $$ \begin{array}{rcl} BA &=& @@ -432,7 +443,9 @@ $$ :::::: -::::::{prf:proof} +::::::{admonition} Proof of {prf:ref}`Prop:MatrixInv:InvertibleIndepCols` +:class: myproof + As in the proof in {prf:ref}`Rem:MatrixInvDetZeroDependentColumns` we have to prove two implications: $$ @@ -546,7 +559,9 @@ $$ :::::: -::::::{prf:proof} +::::::{admonition} Proof of {prf:ref}`Prop:SolutionViaInverse` +:class: myproof + We multiply both sides of the equation $$ @@ -708,7 +723,9 @@ $$ :::::: -::::::{prf:proof} +::::::{admonition} Proof of {prf:ref}`Prop:MatrixInv:ElemProperties` +:class: myproof + All statements can be proved by verifying that the relevant products are equal to $I$. <ol type="i"> @@ -725,13 +742,12 @@ and likewise $\dfrac1c A^{-1}\cdot (cA) = I$, which proves that indeed $\dfrac1c A^{-1} = (cA)^{-1}$. </li> + <li> Since it is given that $A^{-1}$ exists we can proceed as follows, where we make use of the characteristic property $ B^TA^T = (AB)^T$. -<BR> - $$ (A^{-1})^TA^T = ( AA^{-1})^T = I^T = I $$ @@ -742,10 +758,13 @@ $$ A^T(A^{-1})^T =( A^{-1}A)^T = I^T = I, $$ -which settles the second statement. To prove iii., see {numref}`Exc:MatrixInv:Ainvinv`. +which settles the second statement. </li> -</ul> + +</ol> + +To prove iii., see {numref}`Exc:MatrixInv:Ainvinv`. :::::: @@ -756,7 +775,8 @@ Prove the last statement of the previous proposition. :::::: -::::::{dropdown} Solution to {numref}`Exc:MatrixInv:Ainvinv` (_click to show_) +::::::{admonition} Solution to {numref}`Exc:MatrixInv:Ainvinv` +:class: solution, dropdown For the inverse $C = (A^{-1})^{-1}$ of $A^{-1}$, it should hold that @@ -820,7 +840,9 @@ $$ :::::: -::::::{prf:proof} +::::::{admonition} Proof of {prf:ref}`Prop:MatrixInv:ProductRule` +:class: myproof + Again we just check that the properties of the definition hold. Suppose that $A$ and $B$ are invertible with inverses $A^{-1}$ and $B^{-1}$. @@ -856,7 +878,8 @@ In case it is true, give an argument, when false, give a counterexample. :::::: -::::::{dropdown} Solution to {numref}`Exc:MatrixInv:(AB)Tinv` (_click to show_) +::::::{admonition} Solution to {numref}`Exc:MatrixInv:(AB)Tinv` +:class: solution, dropdown The statement is _true_. <BR> From the two properties @@ -1060,7 +1083,9 @@ $$ :::::: -::::::{prf:proof} +::::::{admonition} Proof of {prf:ref}`Prop:MatrixInv:Algorithm` +:class: myproof + We have already seen ({prf:ref}`Prop:MatrixInv:InvertibleIndepCols`) that an invertible matrix linearly independent columns, which implies that the reduced echelon form of $A$ is indeed the identity matrix. And then it is clear that via row operations we get @@ -1279,7 +1304,8 @@ Make sure that you do not use $A^{-1}$ or $B^{-1}$ prematurely, i.e., before you :::::: -::::::{dropdown} Solution to {numref}`Exc:MatrixInv:ConverseProdRule` (_click to show_) +::::::{admonition} Solution to {numref}`Exc:MatrixInv:ConverseProdRule` +:class: solution, dropdown Suppose $A$ and $B$ are two $n \times n$ matrices for which $AB$ is invertible. Let $C=(AB)^{-1}$ be the inverse of $AB$. We claim that $BC$ is the inverse of $A$. @@ -1363,7 +1389,9 @@ $A$ can be written as a product of elementary matrices: $A = E_1E_2\cdots E_k$. :::::: -::::::{prf:proof} +::::::{admonition} Proof of {prf:ref}`Thm:MatrixInv:InvertibilityCharacterizations` +:class: myproof + It is a good exercise to find out where the evidence of each characterization is found, and wherever necessary to fill in the missing details. @@ -1412,6 +1440,7 @@ The first exercises are quite straightfordwardly computational. The remaining exercises tend to be more theoretic. ::::::{grasple} +:iframeclass: dark-light :url: https://embed.grasple.com/exercises/6683a2f9-7b6b-4dd1-bec1-1e8b894fa3bb?id=71086 :label: grasple_exercise_3_4_1 :dropdown: @@ -1420,6 +1449,7 @@ The remaining exercises tend to be more theoretic. :::::: ::::::{grasple} +:iframeclass: dark-light :url: https://embed.grasple.com/exercises/1bbca38b-a734-4049-b8a2-f79d4bf1b098?id=71087 :label: grasple_exercise_3_4_2 :dropdown: @@ -1428,6 +1458,7 @@ The remaining exercises tend to be more theoretic. :::::: ::::::{grasple} +:iframeclass: dark-light :url: https://embed.grasple.com/exercises/045cd1 :label: grasple_exercise_3_4_3 :dropdown: @@ -1436,6 +1467,7 @@ The remaining exercises tend to be more theoretic. :::::: ::::::{grasple} +:iframeclass: dark-light :url: https://embed.grasple.com/exercises/82c06a56-8ee8-4f36-8173-e5d56da1e8e3?id=71073 :label: grasple_exercise_3_4_4 :dropdown: @@ -1444,6 +1476,7 @@ The remaining exercises tend to be more theoretic. :::::: ::::::{grasple} +:iframeclass: dark-light :url: https://embed.grasple.com/exercises/551172d9-861c-4958-9b17-dfa828acdabe?id=71088 :label: grasple_exercise_3_4_5 :dropdown: @@ -1451,6 +1484,7 @@ The remaining exercises tend to be more theoretic. :::::: ::::::{grasple} +:iframeclass: dark-light :url: https://embed.grasple.com/exercises/9174c68c-e2d5-4c23-af96-e3fe3dd36f42?id=71089 :label: grasple_exercise_3_4_6 :dropdown: @@ -1459,6 +1493,7 @@ The remaining exercises tend to be more theoretic. :::::: ::::::{grasple} +:iframeclass: dark-light :url: https://embed.grasple.com/exercises/800dc2f9-227e-401b-818b-093fc9647dd9?id=83083 :label: grasple_exercise_3_4_7 :dropdown: @@ -1467,6 +1502,7 @@ The remaining exercises tend to be more theoretic. :::::: ::::::{grasple} +:iframeclass: dark-light :url: https://embed.grasple.com/exercises/9146f49d-74a5-4fda-a641-181c4536fe01?id=83086 :label: grasple_exercise_3_4_8 :dropdown: @@ -1477,15 +1513,16 @@ The remaining exercises tend to be more theoretic. The remaining exercises have more theoretic flavour. ::::::{grasple} +:iframeclass: dark-light :url: https://embed.grasple.com/exercises/677aa3ee-4594-4d77-ace6-583a1efcba59?id=71090 :label: grasple_exercise_3_4_9 :dropdown: -:description: True/False question about invertibility versus -consistent linear systems. +:description: True/False question about invertibility versus consistent linear systems. :::::: ::::::{grasple} +:iframeclass: dark-light :url: https://embed.grasple.com/exercises/f789ebd5-171b-4556-83a9-eefc5ef830ef?id=71092 :label: grasple_exercise_3_4_10 :dropdown: @@ -1494,6 +1531,7 @@ consistent linear systems. :::::: ::::::{grasple} +:iframeclass: dark-light :url: https://embed.grasple.com/exercises/29dc7c2f-6636-493e-9c97-da1847a336b7?id=68908 :label: grasple_exercise_3_4_11 :dropdown: @@ -1502,6 +1540,7 @@ consistent linear systems. :::::: ::::::{grasple} +:iframeclass: dark-light :url: https://embed.grasple.com/exercises/8f3feb75-b41b-42e0-b574-f6442da253ce?id=70272 :label: grasple_exercise_3_4_12 :dropdown: @@ -1510,6 +1549,7 @@ consistent linear systems. :::::: ::::::{grasple} +:iframeclass: dark-light :url: https://embed.grasple.com/exercises/5185c5c0-4d92-4e0e-92a7-6dc5eed8f7cf?id=68896 :label: grasple_exercise_3_4_13 :dropdown: @@ -1518,6 +1558,7 @@ consistent linear systems. :::::: ::::::{grasple} +:iframeclass: dark-light :url: https://embed.grasple.com/exercises/ee4bb61e-6939-4074-a556-b82f3d0e8c28?id=71091 :label: grasple_exercise_3_4_14 :dropdown: @@ -1525,6 +1566,7 @@ consistent linear systems. :::::: ::::::{grasple} +:iframeclass: dark-light :url: https://embed.grasple.com/exercises/1732d75b-2027-4a92-b8bb-c98bda62475d?id=71093 :label: grasple_exercise_3_4_15 :dropdown: @@ -1532,6 +1574,7 @@ consistent linear systems. :::::: ::::::{grasple} +:iframeclass: dark-light :url: https://embed.grasple.com/exercises/f8602d4f-57b7-4752-9edc-69c83069fe36?id=71095 :label: grasple_exercise_3_4_16 :dropdown: @@ -1539,6 +1582,7 @@ consistent linear systems. :::::: ::::::{grasple} +:iframeclass: dark-light :url: https://embed.grasple.com/exercises/a8ea864d-1164-4afc-9a24-c0a126ee8e54?id=71097 :label: grasple_exercise_3_4_17 :dropdown: @@ -1546,6 +1590,7 @@ consistent linear systems. :::::: ::::::{grasple} +:iframeclass: dark-light :url: https://embed.grasple.com/exercises/73a16f62-28d7-4a4c-baf5-7ce3be9272ce?id=71104 :label: grasple_exercise_3_4_18 :dropdown: @@ -1553,6 +1598,7 @@ consistent linear systems. :::::: ::::::{grasple} +:iframeclass: dark-light :url: https://embed.grasple.com/exercises/a8c2b8ed-9961-4779-8841-491a9529b71c?id=71466 :label: grasple_exercise_3_4_19 :dropdown: @@ -1560,6 +1606,7 @@ consistent linear systems. :::::: ::::::{grasple} +:iframeclass: dark-light :url: https://embed.grasple.com/exercises/dfe429bd-1ab9-47f7-8f6c-06150c468645?id=71468 :label: grasple_exercise_3_4_20 :dropdown: @@ -1567,6 +1614,7 @@ consistent linear systems. :::::: ::::::{grasple} +:iframeclass: dark-light :url: https://embed.grasple.com/exercises/9af5928a-7ecb-478e-a896-7c66d16d9d09?id=71463 :label: grasple_exercise_3_4_21 :dropdown: @@ -1576,6 +1624,7 @@ consistent linear systems. In the last two exercises (non-)invertibility of non-square matrices is considered. ::::::{grasple} +:iframeclass: dark-light :url: https://embed.grasple.com/exercises/ca504661-cc62-454f-8035-04a9bef85f91?id=61170 :label: grasple_exercise_3_4_22 :dropdown: @@ -1583,6 +1632,7 @@ In the last two exercises (non-)invertibility of non-square matrices is consider :::::: ::::::{grasple} +:iframeclass: dark-light :url: https://embed.grasple.com/exercises/4e9b4ec1-f775-430f-b81f-c76c42fcbc76?id=60136 :label: grasple_exercise_3_4_23 :dropdown: diff --git a/Chapter3/MatrixOperations.md b/Chapter3/MatrixOperations.md index fa8aa73..49e1a7b 100644 --- a/Chapter3/MatrixOperations.md +++ b/Chapter3/MatrixOperations.md @@ -191,8 +191,11 @@ An operator of which the usefulness is not immediately clear, but which fits wel The **transpose** of an $m \times n$ matrix $A$ with entries $a_{ij}$ is the $n \times m$ matrix $B$ with entries $b_{ij}$ defined by -<!-- prettier-ignore --> -$ b_{ij} = a_{ji}$. It is denoted by $B = A^T$. +$$ + b_{ij} = a_{ji}, \quad i = 1,\ldots,n,\,\,j=1,\ldots, m +$$ + +It is denoted by $B = A^T$. :::::: @@ -239,7 +242,9 @@ $(A^T)^T = A$. :::::: -::::::{prf:proof} +::::::{admonition} Proof of {prf:ref}`Prop:MatrixOps:Transpose` +:class: myproof + We will prove the second statement and leave the other two to the diligent reader. See {numref}`Exc:MatrixOps:CheckTransposeRules`. @@ -334,7 +339,8 @@ Prove statements (i) and (iii) of {prf:ref}`Prop:MatrixOps:Transpose`. :::::: -::::::{dropdown} Solution to {numref}`Exc:MatrixOps:CheckTransposeRules` (_click to show_) +::::::{admonition} Solution to {numref}`Exc:MatrixOps:CheckTransposeRules` +:class: solution, dropdown Suppose $A = \left[\begin{array}{cccc} a_{11} & a_{12}& \ldots& a_{1n} \\ @@ -403,6 +409,7 @@ $$ ## Grasple Exercises ::::::{grasple} +:iframeclass: dark-light :url: https://embed.grasple.com/exercises/bc898154-3f5e-45bd-8993-28a74bf34b5f?id=70278 :label: grasple_exercise_3_2_1 :dropdown: @@ -411,6 +418,7 @@ $$ :::::: ::::::{grasple} +:iframeclass: dark-light :url: https://embed.grasple.com/exercises/bf170c2b-127b-4ce7-bd75-c9c9bdfb12f9?id=70277 :label: grasple_exercise_3_2_2 :dropdown: @@ -419,6 +427,7 @@ $$ :::::: ::::::{grasple} +:iframeclass: dark-light :url: https://embed.grasple.com/exercises/dd83bd83-0ce4-4dd7-84de-3472c24acbc0?id=70279 :label: grasple_exercise_3_2_3 :dropdown: @@ -427,6 +436,7 @@ $$ :::::: ::::::{grasple} +:iframeclass: dark-light :url: https://embed.grasple.com/exercises/3e5f0674-1e9f-4349-867f-6b1d638e744b?id=82934 :label: grasple_exercise_3_2_4 :dropdown: @@ -435,6 +445,7 @@ $$ :::::: ::::::{grasple} +:iframeclass: dark-light :url: https://embed.grasple.com/exercises/52a8c0e8-09e8-4c46-aa43-0cee2a93e7c4?id=82931 :label: grasple_exercise_3_2_5 :dropdown: @@ -452,7 +463,6 @@ $$ B = \mathbf{x} = \begin{bmatrix}x_1 \\ x_2 \\ \vdots \\ x_n \end{bmatrix}, $$ - a vector in $\mathbb{R}^n$, which we can identify with an $n \times 1$ matrix. We want of course the definition of the general matrix product to be consistent with this. ::::::{prf:definition} @@ -506,7 +516,9 @@ This is sometimes called the **row-column expansion** of the product. :::::: -::::::{prf:proof} +:::{admonition} Proof of {prf:ref}`Prop:MatrixOps:RowColExpansion` +:class: myproof + We already saw this row-column expansion in {numref}`Sec:MatVecProduct`. :::::: @@ -517,16 +529,16 @@ $$ \begin{array}{ccc} & \begin{bmatrix} - b_{11} & b_{12}& \ldots& {\color{red}b_{1j}} & \ldots& b_{1p} \\ - b_{21} & b_{22}& \ldots& {\color{red}b_{2j}} & \ldots& b_{2p} \\ + b_{11} & b_{12}& \ldots& \class{red}{b_{1j}} & \ldots& b_{1p} \\ + b_{21} & b_{22}& \ldots& \class{red}{b_{2j}} & \ldots& b_{2p} \\ \vdots & \vdots& \ldots& & \ldots& \vdots \\ - b_{n1} & b_{n2}& \ldots& {\color{red}b_{nj}} & \ldots& b_{np} + b_{n1} & b_{n2}& \ldots& \class{red}{b_{nj}} & \ldots& b_{np} \end{bmatrix} \\ \begin{bmatrix} a_{11} & a_{12}& \ldots& \ldots& a_{1n} \\ a_{21} & a_{22}& \ldots& \ldots& a_{2n} \\ \cdots & \ddots& \ldots& \ldots& \vdots \\ - {\color{red}a_{i1}} & {\color{red}a_{i2}}& {\color{red}\cdots}& \ldots& {\color{red}a_{in}} \\ + \class{red}{a_{i1}} & \class{red}{a_{i2}}& \class{red}{\cdots}& \ldots& \class{red}{a_{in}} \\ \vdots & \vdots& \ldots& \ldots& \vdots \\ a_{m1} & a_{m2}& \ldots& \ldots& a_{mn} \end{bmatrix} \!\! & \! @@ -534,7 +546,7 @@ $$ c_{11} & c_{12}& \ldots& c_{1j} &\ldots& c_{1p} \\ c_{21} & c_{22}& \ldots& c_{2j} &\ldots& c_{2p} \\ \vdots & \vdots& \ldots& & \ldots& \vdots \\ - c_{i1} & c_{i2}& \cdots&{\color{red}c_{ij}} &\ldots& c_{ip} \\ + c_{i1} & c_{i2}& \cdots&\class{red}{c_{ij}} &\ldots& c_{ip} \\ \vdots & \vdots& \ldots& &\ldots& \vdots \\ c_{m1} & c_{m2}& \ldots& c_{mn} &\ldots& c_{mp} \end{bmatrix} @@ -709,7 +721,9 @@ The $i$-th row of the product $AB$ is the linear combination of the rows of the :::::: -::::::{prf:proof} +::::::{admonition} Proof of {prf:ref}`Prop:MatrixOps:ProductRowCombinations` +:class: myproof + The indicated linear combination yields: $$ @@ -931,8 +945,9 @@ We need a good perspective to give a proof of the general case. :::::: -::::::{prf:proof} -(of {prf:ref}`Prop:MatrixOps:ProdProperties`) +:::{admonition} Proof of {prf:ref}`Prop:MatrixOps:ProdProperties` +:class: myproof + Rules i. and ii. are checked in a straightforward way. See {numref}`Exc:MatrixOps:RulesProduct`. <ol type = "i" start = "3"> @@ -1133,8 +1148,9 @@ $$ ::::{figure} Images/Fig-MatrixOps-NonCommutativity.svg :name: Fig:MatrixOps:NonCommutativity +:class: dark-light -$ \begin{bmatrix} 2 & 0 \\ 0 & 1 \end{bmatrix}\begin{bmatrix} 0 & 1 \\ 1&0 \end{bmatrix} \neq \begin{bmatrix} 0 & 1 \\ 1&0 \end{bmatrix}\begin{bmatrix} 2 & 0 \\ 0 & 1 \end{bmatrix}$ +$ \begin{bmatrix} 2 & 0 \\ 0 & 1 \end{bmatrix}\begin{bmatrix} 0 & 1 \\ 1&0 \end{bmatrix} \neq \begin{bmatrix} 0 & 1 \\ 1&0 \end{bmatrix}\begin{bmatrix} 2 & 0 \\ 0 & 1 \end{bmatrix}$. :::: Note that $T_A$ is a transformation that 'stretches' horizontally, and $T_B$ is a reflection. {numref}`Figure %s <Fig:MatrixOps:NonCommutativity>` visualizes the transformations corresponding to $AB$ and $BA$. When we apply the transformations one after another, the order in which we do this is important. @@ -1257,13 +1273,14 @@ So $A^2\vect{x} = T_2(T_1(T_2(T_1(\vect{x})))) = \vect{0}$, for each vector $\ve See {numref}`Figure %s <Fig:MatrixOps:NilPotent>`. -:::::{figure} Images/Fig-MatrixOps-Nilpotent.svg +```{applet} +:url: matrix_operations/nilpotent +:fig: Images/Fig-MatrixOps-Nilpotent.svg :name: Fig:MatrixOps:Nilpotent +:class: dark-light Visualisation of $\vect{x} \mapsto A^2\vect{x}$. -::::: - -:::::: +``` ::::::{prf:remark} The next list gives six situations where matrix multiplication acts differently than multiplication of numbers. @@ -1365,7 +1382,7 @@ $$ AB = O, $$ -and let $C$ be the zero matrix. +and let $C$ be the zero matrix. Then $B \neq C$, whereas $$ @@ -1410,6 +1427,8 @@ Give a $2 \times 2$ matrix $B$ for which $B^2 = -I$. The following property connects the two operations matrix transposition and matrix multiplication. ::::::{prf:proposition} +:label: Prop:MatrixOperations:TransposeProduct + If $A$ is an $m\times n$ matrix and $B$ an $n\times p$ matrix, then $$ @@ -1467,7 +1486,9 @@ $$ As {prf:ref}`Ex:TransposeProduct` illustrates the rule is not restricted to square matrices $A$ and $B$. The proof for general matrices $A$ and $B$ for which the product $AB$ is well defined is as follows -::::::{prf:proof} +::::::{admonition} Proof of {prf:ref}`Prop:MatrixOperations:TransposeProduct` +:class: myproof + To show that $$ @@ -1545,6 +1566,7 @@ We will dedicate {numref}`Sec:MatrixInv` to this topic. ## Grasple Exercises ::::::{grasple} +:iframeclass: dark-light :url: https://embed.grasple.com/exercises/262bcea8-548b-45c2-8c37-b4cb3cb03ddc?id=70281 :label: grasple_exercise_3_2_6 :dropdown: @@ -1553,6 +1575,7 @@ We will dedicate {numref}`Sec:MatrixInv` to this topic. :::::: ::::::{grasple} +:iframeclass: dark-light :url: https://embed.grasple.com/exercises/718bda8a-9e75-495a-8aea-506788d46432?id=70282 :label: grasple_exercise_3_2_7 :dropdown: @@ -1561,6 +1584,7 @@ We will dedicate {numref}`Sec:MatrixInv` to this topic. :::::: ::::::{grasple} +:iframeclass: dark-light :url: https://embed.grasple.com/exercises/e5799b3f-53f6-4095-bb96-bc2f4febde30?id=70284 :label: grasple_exercise_3_2_8 :dropdown: @@ -1569,6 +1593,7 @@ We will dedicate {numref}`Sec:MatrixInv` to this topic. :::::: ::::::{grasple} +:iframeclass: dark-light :url: https://embed.grasple.com/exercises/9d1526f4-777b-4a41-8b8e-c0746f7503c9?id=70285 :label: grasple_exercise_3_2_9 :dropdown: @@ -1577,6 +1602,7 @@ We will dedicate {numref}`Sec:MatrixInv` to this topic. :::::: ::::::{grasple} +:iframeclass: dark-light :url: https://embed.grasple.com/exercises/d03c79a5-4936-41ae-8129-96ea9dee875a?id=82963 :label: grasple_exercise_3_2_10 :dropdown: @@ -1585,6 +1611,7 @@ We will dedicate {numref}`Sec:MatrixInv` to this topic. :::::: ::::::{grasple} +:iframeclass: dark-light :url: https://embed.grasple.com/exercises/9fd59a3b-bdc6-42c5-af90-da9b0541437b?id=70291 :label: grasple_exercise_3_2_11 :dropdown: @@ -1593,6 +1620,7 @@ We will dedicate {numref}`Sec:MatrixInv` to this topic. :::::: ::::::{grasple} +:iframeclass: dark-light :url: https://embed.grasple.com/exercises/6e4d152b-1eae-480b-a40c-ca8846ed6612?id=70286 :label: grasple_exercise_3_2_12 :dropdown: @@ -1601,6 +1629,7 @@ We will dedicate {numref}`Sec:MatrixInv` to this topic. :::::: ::::::{grasple} +:iframeclass: dark-light :url: https://embed.grasple.com/exercises/65f960ef-01a1-4c81-b053-8c93c66504db?id=70287 :label: grasple_exercise_3_2_13 :dropdown: @@ -1609,6 +1638,7 @@ We will dedicate {numref}`Sec:MatrixInv` to this topic. :::::: ::::::{grasple} +:iframeclass: dark-light :url: https://embed.grasple.com/exercises/d2ccfcf5-7aaf-4859-8219-392abad68e79?id=82853 :label: grasple_exercise_3_2_14 :dropdown: @@ -1617,6 +1647,7 @@ We will dedicate {numref}`Sec:MatrixInv` to this topic. :::::: ::::::{grasple} +:iframeclass: dark-light :url: https://embed.grasple.com/exercises/2fc08e2c-b3ad-4a2b-8077-ce66abc466d7?id=82936 :label: grasple_exercise_3_2_15 :dropdown: @@ -1625,6 +1656,7 @@ We will dedicate {numref}`Sec:MatrixInv` to this topic. :::::: ::::::{grasple} +:iframeclass: dark-light :url: https://embed.grasple.com/exercises/6bd96baf-1862-40c7-a21d-24c1dada9078?id=82937 :label: grasple_exercise_3_2_16 :dropdown: @@ -1635,6 +1667,7 @@ We will dedicate {numref}`Sec:MatrixInv` to this topic. The remaining exercises are less of a compuational character. ::::::{grasple} +:iframeclass: dark-light :url: https://embed.grasple.com/exercises/786324ef-8706-4f4d-ac06-f6b4360a70d8?id=69285 :label: grasple_exercise_3_2_17 :dropdown: @@ -1643,6 +1676,7 @@ The remaining exercises are less of a compuational character. :::::: ::::::{grasple} +:iframeclass: dark-light :url: https://embed.grasple.com/exercises/14b6af51-de5f-4e6c-bfb8-20a018fce053?id=69458 :label: grasple_exercise_3_2_18 :dropdown: @@ -1651,6 +1685,7 @@ The remaining exercises are less of a compuational character. :::::: ::::::{grasple} +:iframeclass: dark-light :url: https://embed.grasple.com/exercises/cdb5014d-eace-489e-9616-45e03bb6e95e?id=69295 :label: grasple_exercise_3_2_19 :dropdown: @@ -1659,6 +1694,7 @@ The remaining exercises are less of a compuational character. :::::: ::::::{grasple} +:iframeclass: dark-light :url: https://embed.grasple.com/exercises/7f91a5d2-e1c9-422e-b0f9-ba0b22936e2a?id=69456 :label: grasple_exercise_3_2_20 :dropdown: @@ -1667,6 +1703,7 @@ The remaining exercises are less of a compuational character. :::::: ::::::{grasple} +:iframeclass: dark-light :url: https://embed.grasple.com/exercises/78c129ac-644d-4fbd-bf47-c2283d0e1f7a?id=69460 :label: grasple_exercise_3_2_21 :dropdown: @@ -1675,6 +1712,7 @@ The remaining exercises are less of a compuational character. :::::: ::::::{grasple} +:iframeclass: dark-light :url: https://embed.grasple.com/exercises/9fe5f92d-54f9-4794-a2e8-c21a24a5a8cf?id=70288 :label: grasple_exercise_3_2_22 :dropdown: @@ -1683,14 +1721,16 @@ The remaining exercises are less of a compuational character. :::::: ::::::{grasple} +:iframeclass: dark-light :url: https://embed.grasple.com/exercises/bbed8637-4110-4e90-a1dc-a5960a405caf?id=70289 :label: grasple_exercise_3_2_23 :dropdown: -:description: Number of columns of $C$ is $AC=B$. +:description: Number of columns of $C$ if $AC=B$. :::::: ::::::{grasple} +:iframeclass: dark-light :url: https://embed.grasple.com/exercises/eb4b9e6e-0436-466c-bb1f-7e596b43ec34?id=70290 :label: grasple_exercise_3_2_24 :dropdown: @@ -1699,6 +1739,7 @@ The remaining exercises are less of a compuational character. :::::: ::::::{grasple} +:iframeclass: dark-light :url: https://embed.grasple.com/exercises/deea79ca-ba41-46fc-b75b-4cd109fc0513?id=71118 :label: grasple_exercise_3_2_25 :dropdown: @@ -1707,6 +1748,7 @@ The remaining exercises are less of a compuational character. :::::: ::::::{grasple} +:iframeclass: dark-light :url: https://embed.grasple.com/exercises/0b27fa70-e097-4090-b57e-7225019a4624?id=78589 :label: grasple_exercise_3_2_26 :dropdown: @@ -1715,6 +1757,7 @@ The remaining exercises are less of a compuational character. :::::: ::::::{grasple} +:iframeclass: dark-light :url: https://embed.grasple.com/exercises/958761d7-421f-40f1-b3be-3535bf71422b?id=82968 :label: grasple_exercise_3_2_27 :dropdown: diff --git a/Chapter4/BasisAndDimension.md b/Chapter4/BasisAndDimension.md index a36cec8..6bea066 100644 --- a/Chapter4/BasisAndDimension.md +++ b/Chapter4/BasisAndDimension.md @@ -163,8 +163,9 @@ with $\vect{e}_1$ pointing to the right and $\vect{e}_2$ pointing upwards. Likew :url: basisdim/standardbasis :fig: Images/Fig-BasisDim-StandardBasis.svg :name: Fig:BasisDim:StandardBasis +:class: dark-light -The standard bases in $\R^2$ and $\R^3$ +The standard bases in $\R^2$ and $\R^3$. ``` :::::: @@ -199,7 +200,8 @@ is indeed a basis for $\R^4$. :::::: -::::::{dropdown} Solution to {numref}`Exc:BasisDim:CheckStandardBasis` (_click to show_) +::::::{admonition} Solution to {numref}`Exc:BasisDim:CheckStandardBasis` +:class: solution, dropdown The set is linearly independent: @@ -235,6 +237,7 @@ $\vect{x} = x_1\vect{e}_1 + x_2\vect{e}_2 + x_3\vect{e}_3 + x_4\vect{e}_4$. :::::: ::::::{grasple} +:iframeclass: dark-light :url: https://embed.grasple.com/exercises/7ecdf0d8-e529-4589-82f6-7207f229cd87?id=88187 :label: grasple_exercise_4_2_A :dropdown: @@ -298,7 +301,8 @@ So, there exists a set $\mathcal{B}$ containing $\mathcal{A}$ which is a basis f :::::: -::::::{prf:proof} +::::::{admonition} Proof of {prf:ref}`Prop:BasisDim:Thinning` +:class: myproof The ideas are quite straightforward. @@ -462,6 +466,7 @@ spans the null space. It is also linearly independent, so it is a basis. ::::{figure} Images/Fig-BasisDim-BasisColA.svg :name: Fig:BasisDim:BasisColA +:class: dark-light The basis $\lbrace\vect{a}_1,\vect{a}_3\rbrace$ of $\Col{A}$. :::: @@ -469,6 +474,7 @@ The basis $\lbrace\vect{a}_1,\vect{a}_3\rbrace$ of $\Col{A}$. :::::: ::::::{grasple} +:iframeclass: dark-light :url: https://embed.grasple.com/exercises/6c836722-f664-434d-bf7d-3a4f86ff0187?id=88188 :label: grasple_exercise_4_2_B :dropdown: @@ -580,7 +586,8 @@ The null space of $A$ is equal to the null space of $E$. :::::: -::::::{prf:proof} +::::::{admonition} Proof of {prf:ref}`Prop:BasisDim:PivotColsBasis` +:class: myproof The main idea of the first statement: row operations do not alter the linear relations between the columns of a matrix. Now why is this so? Let @@ -755,7 +762,8 @@ $$ :::::: -::::::{dropdown} Solution to {numref}`Exc:BasisDim:TF-ColA-ColE` (_click to show_) +::::::{admonition} Solution to {numref}`Exc:BasisDim:TF-ColA-ColE` +:class: solution, dropdown The statement is _false_. <BR> For instance, look at {prf:ref}`Ex:BasisDim:FourByFour`. In that example all vectors in $\Col{(E)}$ have a zero on position four, and there are (many) vectors in $\Col{(A)}$ that have a nonzero fourth entry. So definitely $\Col{(A)} \neq \Col{(E)}$. @@ -822,7 +830,8 @@ Find a basis for the null space of the matrix in the previous example. :::::: -::::::{dropdown} Solution to {numref}`Exc:BasisDim:FinishExampleNulspace` (_click to show_) +::::::{admonition} Solution to {numref}`Exc:BasisDim:FinishExampleNulspace` +:class: solution, dropdown We row reduce the matrix $E = \begin{bmatrix} 1 & 1 & 2 & 1 & -1 \\ @@ -867,14 +876,16 @@ Every basis of a fixed subspace $S$ in $\R^n$ has the same number of elements. ::::{margin} -:::{admonition} {prf:ref}`Thm:LinInd:TooManyVectsimpliesLinDep`. +:::{admonition} {prf:ref}`Thm:LinInd:TooManyVectsimpliesLinDep` +:class: theorem Let $\vect{u}_{1},...,\vect{u}_{k}$ and $\vect{v}_{1},...,\vect{v}_{\ell}$ be vectors in $\R^{n}$. If $ k< \ell$ and $\Span{\vect{u}_{1},...,\vect{u}_{k}}$ contains $\Span{\vect{v}_{1},...,\vect{v}_{\ell}}$ then the set $\left\lbrace\vect{v}_{1},...,\vect{v}_{\ell}\right\rbrace$ is linearly dependent. :::: -::::::{prf:proof} +::::::{admonition} Proof of {prf:ref}`Thm:BasisDim:EqualDim` +:class: myproof The proof is an immediate consequence of {prf:ref}`Thm:LinInd:TooManyVectsimpliesLinDep` from the section on linear independence. Because of its vital important we restate it here (check the side note). @@ -1080,7 +1091,8 @@ The dimension of the vector $\vect{u} = \begin{bmatrix} 3\\4 \end{bmatrix} $ is :::::: -::::::{dropdown} Solution to {numref}`Exc:BasisDim:TF:DimOfVector` (_click to show_) +::::::{admonition} Solution to {numref}`Exc:BasisDim:TF:DimOfVector` +:class: solution, dropdown The statement is _false_. The attribute dimension is only defined for _subspaces_. @@ -1121,7 +1133,8 @@ Another way to put it: once it is known that the dimension of $S$ equals $k$, ea :::::: -::::::{prf:proof} +::::::{admonition} Proof of {prf:ref}`Prop:BasisDim:TwoOfThreeSuffice` +:class: myproof We first show the "easy" part: @@ -1257,7 +1270,9 @@ $$ :::::: -::::::{prf:proof} + +::::::{admonition} Proof of {prf:ref}`Thm:BasisDim:DimensionTheorem` +:class: myproof The proof consists of combining several properties of this section. @@ -1430,7 +1445,8 @@ $$ :::::: -::::::{prf:proof} +::::::{admonition} Proof of {prf:ref}`Prop:BasisDim:EquivalentMatricesEqualRowspaces` +:class: myproof Recall that equivalence here means that by row operations we can transform $A$ into $B$ (and vice versa). So we have to show that row operations do not change the row space. @@ -1457,7 +1473,8 @@ For each matrix $A$ the row space and the column space have the same dimension. :::::: -::::::{prf:proof} +::::::{admonition} Proof of {prf:ref}`Prop:BasisDim:EqualDimRowColSpace` +:class: myproof If a matrix $A$ is row reduced to an echelon matrix $E$ we know that @@ -1576,7 +1593,8 @@ In the above {prf:ref}`Ex:BasisDim:Rowspace4x3` find out how the four rows of th :::::: -::::::{dropdown} Solution to {numref}`Exc:BasisDim:ExpressInRowsOfE` (_click to show_) +::::::{admonition} Solution to {numref}`Exc:BasisDim:ExpressInRowsOfE` +:class: solution, dropdown It can be done 'by inspection' @@ -1623,7 +1641,8 @@ $$ :::::: -::::::{dropdown} Solution to {numref}`Exc:BasisDim:TF:RankAEqualsRankAT` (_click to show_) +::::::{admonition} Solution to {numref}`Exc:BasisDim:TF:RankAEqualsRankAT` +:class: solution, dropdown The rank of $A^T$ is the dimension of the column space of $A^T$, which is the dimension of the row space of $A$. <BR> The rank of $A$ is the dimension of the column space of $A$. @@ -1680,7 +1699,8 @@ $$ :::::: -::::::{dropdown} Solution to {numref}`Exc:BasisDim:RankABLeqRankA` (_click to show_) +::::::{admonition} Solution to {numref}`Exc:BasisDim:RankABLeqRankA` +:class: solution, dropdown The statement in {numref}`Exc:Subspaces:ColABinColA` that says $\Col{AB} \subseteq \Col{A}$ immediately gives that @@ -1714,7 +1734,8 @@ $$ :::::: -::::::{prf:proof} +::::::{admonition} Proof of {prf:ref}`Prop:BasisDim:RankAPEqualToRankPA` +:class: myproof Suppose $A$ and $P$ are as stated. Then by {numref}`Exc:BasisDim:RankABLeqRankA` @@ -1765,6 +1786,7 @@ $B$ is an $n\times m$ matrix? ## Grasple Exercises ::::::{grasple} +:iframeclass: dark-light :url: https://embed.grasple.com/exercises/9387d1c3-03b4-41ff-b7b6-bb0d0ee3c771?id=70632 :label: grasple_exercise_4_2_1 :dropdown: @@ -1773,6 +1795,7 @@ $B$ is an $n\times m$ matrix? :::::: ::::::{grasple} +:iframeclass: dark-light :url: https://embed.grasple.com/exercises/7bf4ef59-9f95-4697-9309-f06078856988?id=70633 :label: grasple_exercise_4_2_2 :dropdown: @@ -1781,6 +1804,7 @@ $B$ is an $n\times m$ matrix? :::::: ::::::{grasple} +:iframeclass: dark-light :url: https://embed.grasple.com/exercises/2ea2e118-a471-4688-9d89-87cd49cfddc2?id=70634 :label: grasple_exercise_4_2_3 :dropdown: @@ -1789,6 +1813,7 @@ $B$ is an $n\times m$ matrix? :::::: ::::::{grasple} +:iframeclass: dark-light :url: https://embed.grasple.com/exercises/1c00677f-eadb-4a13-84aa-5c7b07774f21?id=88189 :label: grasple_exercise_4_2_4 :dropdown: @@ -1797,6 +1822,7 @@ $B$ is an $n\times m$ matrix? :::::: ::::::{grasple} +:iframeclass: dark-light :url: https://embed.grasple.com/exercises/ae1a690e-1e4d-40be-94d7-cf91121134f0?id=70649 :label: grasple_exercise_4_2_5 :dropdown: @@ -1805,6 +1831,7 @@ $B$ is an $n\times m$ matrix? :::::: ::::::{grasple} +:iframeclass: dark-light :url: https://embed.grasple.com/exercises/9440dca7-7d2d-4f74-8679-c966be28d73f?id=70638 :label: grasple_exercise_4_2_6 :dropdown: @@ -1813,6 +1840,7 @@ $B$ is an $n\times m$ matrix? :::::: ::::::{grasple} +:iframeclass: dark-light :url: https://embed.grasple.com/exercises/3d5483ab-4a1f-4caf-b979-9a4518551416?id=70640 :label: grasple_exercise_4_2_7 :dropdown: @@ -1821,6 +1849,7 @@ $B$ is an $n\times m$ matrix? :::::: ::::::{grasple} +:iframeclass: dark-light :url: https://embed.grasple.com/exercises/b85a9ef2-3b82-47d9-89f3-212a435b8be2?id=70642 :label: grasple_exercise_4_2_8 :dropdown: @@ -1829,6 +1858,7 @@ $B$ is an $n\times m$ matrix? :::::: ::::::{grasple} +:iframeclass: dark-light :url: https://embed.grasple.com/exercises/04d804ff-16ea-44ee-ac76-452a73a88859?id=70653 :label: grasple_exercise_4_2_9 :dropdown: @@ -1837,6 +1867,7 @@ $B$ is an $n\times m$ matrix? :::::: ::::::{grasple} +:iframeclass: dark-light :url: https://embed.grasple.com/exercises/789d912e-6ac2-4f48-b92b-11ab33d5c949?id=70655 :label: grasple_exercise_4_2_10 :dropdown: @@ -1845,6 +1876,7 @@ $B$ is an $n\times m$ matrix? :::::: ::::::{grasple} +:iframeclass: dark-light :url: https://embed.grasple.com/exercises/610e51bc-c62f-4da2-81f3-eeef106bba84?id=83409 :label: grasple_exercise_4_2_11 :dropdown: @@ -1853,6 +1885,7 @@ $B$ is an $n\times m$ matrix? :::::: ::::::{grasple} +:iframeclass: dark-light :url: https://embed.grasple.com/exercises/98aae0f1-3cd9-43d8-aa9f-7c884f2c9527?id=83411 :label: grasple_exercise_4_2_12 :dropdown: @@ -1863,6 +1896,7 @@ $B$ is an $n\times m$ matrix? The exercises below are more theoretical. ::::::{grasple} +:iframeclass: dark-light :url: https://embed.grasple.com/exercises/9dc4b61f-1ded-496c-82e1-8413bc0fa5e7?id=70644 :label: grasple_exercise_4_2_13 :dropdown: @@ -1871,6 +1905,7 @@ The exercises below are more theoretical. :::::: ::::::{grasple} +:iframeclass: dark-light :url: https://embed.grasple.com/exercises/dc1ffd49-1c32-407a-9042-f386b85c771d?id=70645 :label: grasple_exercise_4_2_14 :dropdown: @@ -1879,6 +1914,7 @@ The exercises below are more theoretical. :::::: ::::::{grasple} +:iframeclass: dark-light :url: https://embed.grasple.com/exercises/3576e4c9-2084-4e3f-af61-08f09d63ad82?id=70646 :label: grasple_exercise_4_2_15 :dropdown: @@ -1887,6 +1923,7 @@ The exercises below are more theoretical. :::::: ::::::{grasple} +:iframeclass: dark-light :url: https://embed.grasple.com/exercises/37a433f6-b15f-4b8a-8232-4098fe82e6c9?id=70647 :label: grasple_exercise_4_2_16 :dropdown: @@ -1895,6 +1932,7 @@ The exercises below are more theoretical. :::::: ::::::{grasple} +:iframeclass: dark-light :url: https://embed.grasple.com/exercises/2940572e-f3bf-40e9-bf01-c2244c6f9aa5?id=70648 :label: grasple_exercise_4_2_17 :dropdown: @@ -1903,6 +1941,7 @@ The exercises below are more theoretical. :::::: ::::::{grasple} +:iframeclass: dark-light :url: https://embed.grasple.com/exercises/2f4a3540-9454-4b49-ac4c-0aae22fd5b50?id=70657 :label: grasple_exercise_4_2_18 :dropdown: @@ -1911,6 +1950,7 @@ The exercises below are more theoretical. :::::: ::::::{grasple} +:iframeclass: dark-light :url: https://embed.grasple.com/exercises/b07a06d8-ea95-4798-9ae7-7d4bdea040de?id=70658 :label: grasple_exercise_4_2_19 :dropdown: @@ -1919,6 +1959,7 @@ The exercises below are more theoretical. :::::: ::::::{grasple} +:iframeclass: dark-light :url: https://embed.grasple.com/exercises/547dd05d-c9da-4e7a-8deb-e4e8715e0f02?id=70660 :label: grasple_exercise_4_2_20 :dropdown: @@ -1927,6 +1968,7 @@ The exercises below are more theoretical. :::::: ::::::{grasple} +:iframeclass: dark-light :url: https://embed.grasple.com/exercises/e8051821-b278-4895-ad3e-bc40ba99e1dc?id=70659 :label: grasple_exercise_4_2_21 :dropdown: @@ -1935,6 +1977,7 @@ The exercises below are more theoretical. :::::: ::::::{grasple} +:iframeclass: dark-light :url: https://embed.grasple.com/exercises/edb07654-fb52-4049-af08-e6333fd2d96e?id=83377 :label: grasple_exercise_4_2_22 :dropdown: @@ -1943,6 +1986,7 @@ The exercises below are more theoretical. :::::: ::::::{grasple} +:iframeclass: dark-light :url: https://embed.grasple.com/exercises/af70726a-1610-4515-8f43-c11e109ca5cd?id=83396 :label: grasple_exercise_4_2_23 :dropdown: @@ -1951,6 +1995,7 @@ The exercises below are more theoretical. :::::: ::::::{grasple} +:iframeclass: dark-light :url: https://embed.grasple.com/exercises/3a957728-2365-4e80-820b-2d0f9dcf6ec3?id=83399 :label: grasple_exercise_4_2_24 :dropdown: @@ -1959,6 +2004,7 @@ The exercises below are more theoretical. :::::: ::::::{grasple} +:iframeclass: dark-light :url: https://embed.grasple.com/exercises/429fda86-ad72-402d-ab47-58ae103b36fc?id=83402 :label: grasple_exercise_4_2_25 :dropdown: @@ -1967,6 +2013,7 @@ The exercises below are more theoretical. :::::: ::::::{grasple} +:iframeclass: dark-light :url: https://embed.grasple.com/exercises/608b1140-590f-468c-b704-eb922aa7fca4?id=83407 :label: grasple_exercise_4_2_26 :dropdown: @@ -1975,6 +2022,7 @@ The exercises below are more theoretical. :::::: ::::::{grasple} +:iframeclass: dark-light :url: https://embed.grasple.com/exercises/d88ce866-54b2-48aa-bfe2-26116c2c6c34?id=83404 :label: grasple_exercise_4_2_27 :dropdown: diff --git a/Chapter4/ChangeOfBasis.md b/Chapter4/ChangeOfBasis.md index cdcf616..1cfc940 100644 --- a/Chapter4/ChangeOfBasis.md +++ b/Chapter4/ChangeOfBasis.md @@ -29,8 +29,9 @@ See {numref}`Figure %s <Fig:ChangeOfBasis:Reflection>`. :::{figure} Images/Fig-ChangeOfBasis-Reflection.svg :name: Fig:ChangeOfBasis:Reflection +:class: dark-light -Reflection along the line $\mc{L}$ +Reflection along the line $\mc{L}$. ::: From the geometry involved it follows that @@ -73,7 +74,8 @@ for _unique_ constants $c_1,c_2,\ldots,c_m$ in $\R$. :::: -::::{prf:proof} +::::{admonition} Proof of {prf:ref}`Prop:ChangeOfBasis:UniqueCoords` +:class: myproof From the definition of a basis it follows that @@ -185,11 +187,14 @@ $$ {numref}`Figure %s <Fig:ChangeOfBasis:AlternativeBasis>` may help to see what is going on geometrically. -:::{figure} Images/Fig-ChangeOfBasis-AlternativeBasis.svg +```{applet} +:url: change_of_basis/alternative_basis +:fig: Images/Fig-ChangeOfBasis-AlternativeBasis.svg :name: Fig:ChangeOfBasis:AlternativeBasis +:class: dark-light The basis $\{\vect{b}_1,\vect{b}_2\}$ of {prf:ref}`Ex:ChangeOfBasis:BasicExampleR2`. -:::: +``` ::::::{prf:remark} :label: Rem:ChangeOfBasis:ConventionBasis @@ -318,7 +323,8 @@ $$ :::: -::::{prf:proof} +::::{admonition} Proof of {prf:ref}`Prop:ChangeOfBasis:ToStandardBasis` +:class: myproof Suppose @@ -346,7 +352,8 @@ $$ Show that every change-of-coordinates matrix $P_{\mc{B}}$ is invertible. :::: -::::{dropdown} Solution to {numref}`Exc:ChangeOfBasis:InvertiblePB` (_click to show_) +::::{admonition} Solution to {numref}`Exc:ChangeOfBasis:InvertiblePB` +:class: solution, dropdown Let $\mc{B} = \{\vect{b}_1,\vect{b}_2, \ldots, \vect{b}_n\}$ be any basis of $\R^n$. <BR> @@ -461,7 +468,8 @@ $$ :::: -::::{prf:proof} +::::{admonition} Proof of {prf:ref}`Prop:ChangeOfBasis:MatrixOfTrafo` +:class: myproof We use the definition of the coordinate vector and the linearity of the transformation. In fact we can play copycat with the proof of {prf:ref}`Thm:LinTrafo:LinTrafo=MatrixTrafo` in the section of linear transformations. @@ -622,6 +630,7 @@ $$ :::: ::::{grasple} +:iframeclass: dark-light :url: https://embed.grasple.com/exercises/d6aa929c-7614-4af2-b015-31e2e6fd7b80?id=104847 :label: grasple_exercise_4_3_T1 :dropdown: @@ -676,8 +685,9 @@ The vector $\vect{b}_1+\vect{b}_2 = \begin{bmatrix} 1 \\ \sqrt{3} \end{bmatrix} :::{figure} Images/Fig-ChangeOfBasis-TriangularGrid.svg :name: Fig:ChangeOfBasis-TriangularGrid +:class: dark-light -Rotation in disguise +Rotation in disguise. ::: @@ -877,7 +887,8 @@ $$ :::: -::::{dropdown} Solution to {numref}`Exc:ChangeOfBasis:PinvAPversusPBinvP` (_click to show_) +::::{admonition} Solution to {numref}`Exc:ChangeOfBasis:PinvAPversusPBinvP` +:class: solution, dropdown Starting from $B = P^{-1}A\,P$ multiply both sides from the left by $P$ and from the right by $P^{-1}$, and use that $P^{-1}P = PP^{-1} = I$: @@ -904,6 +915,7 @@ See {numref}`Figure %s <Fig:ChangeOfBasis:Projection>`. :url: change_of_basis/projection :fig: Images/Fig-ChangeOfBasis-Projection.svg :name: Fig:ChangeOfBasis:Projection +:class: dark-light Projection with respect to a suitable basis. ``` @@ -959,7 +971,8 @@ $A^2=A$. Show that the matrix $[T]_{\mc{E}}$ of {prf:ref}`Ex:ChangeOfBasis:Matri :::: -::::{dropdown} Solution to {numref}`Exc:ChangeOfBasis:CheckIdempotent` (_click to show_) +::::{admonition} Solution to {numref}`Exc:ChangeOfBasis:CheckIdempotent` +:class: solution, dropdown Obviously the matrix $B = [T]_{\mc{B}} = \begin{bmatrix}1 & 0 & 0\\0& 1& 0\\0&0&0 \end{bmatrix}$ has the property $B^2 = B$. @@ -1013,7 +1026,8 @@ $$ :::: -::::{prf:proof} +::::{admonition} Proof of {prf:ref}`Prop:ChangeOfBasis:CoBmatrix` +:class: myproof Again we will make use of the identity @@ -1067,7 +1081,8 @@ P_{\mc{B}\leftarrow\mc{D}} \quad \text{and} \quad P_{\mc{C}\leftarrow\mc{D}}$? :::: -::::{dropdown} Solution to {numref}`Exc:ChangeOfBasis:RelationMatricesCoB` (_click to show_) +::::{admonition} Solution to {numref}`Exc:ChangeOfBasis:RelationMatricesCoB` +:class: solution, dropdown The defining relation of a change-of-coordinates matrix like $P_{\mc{B}\leftarrow\mc{D}}$ is that for every vector $\vect{x}$ in $\R^n$ we have @@ -1127,7 +1142,8 @@ $$ \end{array} $$ -::::{prf:proof} +::::{admonition} Proof of {prf:ref}`Thm:ChangeOfBasis:MatrixChangeGeneralBasis` +:class: myproof <!-- prettier-ignore --> To find $[T(\vect{x})]_{\mc{C}'}$ when $ [\vect{x}]_{\mc{B}'}$ is given one can either @@ -1194,6 +1210,7 @@ must be equal. ## Grasple Exercises ::::{grasple} +:iframeclass: dark-light :url: https://embed.grasple.com/exercises/b19d38ef-60cf-4581-a4b2-9aa2efcf6f30?id=90868 :label: grasple_exercise_4_3_1 :dropdown: @@ -1202,6 +1219,7 @@ must be equal. :::: ::::{grasple} +:iframeclass: dark-light :url: https://embed.grasple.com/exercises/3008a6aa-58ee-4182-8fd1-9d452ac3e9f0?id=90867 :label: grasple_exercise_4_3_2 :dropdown: @@ -1210,6 +1228,7 @@ must be equal. :::: ::::{grasple} +:iframeclass: dark-light :url: https://embed.grasple.com/exercises/18d96cbf-6158-4800-9a10-3ec7f6e933f8?id=90885 :label: grasple_exercise_4_3_3 :dropdown: @@ -1218,6 +1237,7 @@ must be equal. :::: ::::{grasple} +:iframeclass: dark-light :url: https://embed.grasple.com/exercises/dfad4903-b2a8-4f67-979e-5651cf4072ec?id=90872 :label: grasple_exercise_4_3_4 :dropdown: @@ -1226,6 +1246,7 @@ must be equal. :::: ::::{grasple} +:iframeclass: dark-light :url: https://embed.grasple.com/exercises/d6e53d94-578e-48fe-96b6-aca26f4eca1c?id=90870 :label: grasple_exercise_4_3_5 :dropdown: @@ -1234,6 +1255,7 @@ must be equal. :::: ::::{grasple} +:iframeclass: dark-light :url: https://embed.grasple.com/exercises/75c6d18b-8a54-4592-97f4-edd77169cc10?id=90876 :label: grasple_exercise_4_3_6 :dropdown: @@ -1242,6 +1264,7 @@ must be equal. :::: ::::{grasple} +:iframeclass: dark-light :url: https://embed.grasple.com/exercises/c45ea239-1e90-4d1f-ae08-323e595bd53a?id=104827 :label: grasple_exercise_4_3_7 :dropdown: @@ -1253,6 +1276,7 @@ must be equal. ::::{grasple} +:iframeclass: dark-light :url: https://embed.grasple.com/exercises/39e1af19-0a32-456b-a414-20056e6b7f16?id=85157 :label: grasple_exercise_4_3_8 :dropdown: @@ -1261,6 +1285,7 @@ must be equal. :::: ::::{grasple} +:iframeclass: dark-light :url: https://embed.grasple.com/exercises/b03d9983-3ef2-4d45-82b3-6c1762510561?id=90875 :label: grasple_exercise_4_3_9 :dropdown: @@ -1269,6 +1294,7 @@ must be equal. :::: ::::{grasple} +:iframeclass: dark-light :url: https://embed.grasple.com/exercises/784bba91-a0be-4076-9918-63b8ab2fbc49?id=90881 :label: grasple_exercise_4_3_10 :dropdown: @@ -1276,6 +1302,7 @@ must be equal. :::: ::::{grasple} +:iframeclass: dark-light :url: https://embed.grasple.com/exercises/d8894445-4426-4694-8500-229cd47a5288?id=85165 :label: grasple_exercise_4_3_11 :dropdown: @@ -1286,6 +1313,7 @@ must be equal. The remaining exercises are about matrix representations of linear transformations. ::::{grasple} +:iframeclass: dark-light :url: https://embed.grasple.com/exercises/2de2a3b5-1d3f-4e79-9421-393d59b9dc87?id=93047 :label: grasple_exercise_4_3_12 :dropdown: @@ -1294,6 +1322,7 @@ The remaining exercises are about matrix representations of linear transformatio :::: ::::{grasple} +:iframeclass: dark-light :url: https://embed.grasple.com/exercises/01e5c371-0139-458c-8f0a-25f35bc03fcb?id=93053 :label: grasple_exercise_4_3_13 :dropdown: @@ -1302,6 +1331,7 @@ The remaining exercises are about matrix representations of linear transformatio :::: ::::{grasple} +:iframeclass: dark-light :url: https://embed.grasple.com/exercises/dd1af96d-34d7-407e-9877-c1e8b6495e6f?id=85167 :label: grasple_exercise_4_3_14 :dropdown: @@ -1310,6 +1340,7 @@ The remaining exercises are about matrix representations of linear transformatio :::: ::::{grasple} +:iframeclass: dark-light :url: https://embed.grasple.com/exercises/933f3e07-36b6-4db5-a47d-91e276185269?id=85159 :label: grasple_exercise_4_3_15 :dropdown: @@ -1318,6 +1349,7 @@ The remaining exercises are about matrix representations of linear transformatio :::: ::::{grasple} +:iframeclass: dark-light :url: https://embed.grasple.com/exercises/7985ac3f-c432-4b48-9ef1-8ce0914b0f97?id=85162 :label: grasple_exercise_4_3_16 :dropdown: diff --git a/Chapter4/Images/Fig-TheGame.svg b/Chapter4/Images/Fig-TheGame.svg new file mode 100644 index 0000000..02444d2 --- /dev/null +++ b/Chapter4/Images/Fig-TheGame.svg @@ -0,0 +1,16 @@ +<svg width="666" height="329" viewBox="0 0 666 329" xmlns="http://www.w3.org/2000/svg" xmlns:xlink="http://www.w3.org/1999/xlink"> +<mask id="path-1-outside-1_1_2" maskUnits="userSpaceOnUse" x="412" y="125" width="190" height="84" fill="black"> +<rect fill="white" x="412" y="125" width="190" height="84"/> +<path d="M424.659 130.909C424.557 130.045 424.142 129.375 423.415 128.898C422.688 128.42 421.795 128.182 420.739 128.182C419.966 128.182 419.29 128.307 418.71 128.557C418.136 128.807 417.688 129.151 417.364 129.588C417.045 130.026 416.886 130.523 416.886 131.08C416.886 131.545 416.997 131.946 417.219 132.281C417.446 132.611 417.736 132.886 418.088 133.108C418.44 133.324 418.81 133.503 419.196 133.645C419.582 133.781 419.938 133.892 420.261 133.977L422.034 134.455C422.489 134.574 422.994 134.739 423.551 134.949C424.114 135.159 424.651 135.446 425.162 135.81C425.679 136.168 426.105 136.628 426.44 137.19C426.776 137.753 426.943 138.443 426.943 139.261C426.943 140.205 426.696 141.057 426.202 141.818C425.713 142.58 424.997 143.185 424.054 143.634C423.116 144.082 421.977 144.307 420.636 144.307C419.386 144.307 418.304 144.105 417.389 143.702C416.48 143.298 415.764 142.736 415.241 142.014C414.724 141.293 414.432 140.455 414.364 139.5H416.545C416.602 140.159 416.824 140.705 417.21 141.136C417.602 141.562 418.097 141.881 418.693 142.091C419.295 142.295 419.943 142.398 420.636 142.398C421.443 142.398 422.168 142.267 422.81 142.006C423.452 141.739 423.96 141.369 424.335 140.898C424.71 140.42 424.898 139.864 424.898 139.227C424.898 138.648 424.736 138.176 424.412 137.812C424.088 137.449 423.662 137.153 423.134 136.926C422.605 136.699 422.034 136.5 421.42 136.33L419.273 135.716C417.909 135.324 416.83 134.764 416.034 134.037C415.239 133.31 414.841 132.358 414.841 131.182C414.841 130.205 415.105 129.352 415.634 128.625C416.168 127.892 416.884 127.324 417.781 126.92C418.685 126.511 419.693 126.307 420.807 126.307C421.932 126.307 422.932 126.509 423.807 126.912C424.682 127.31 425.375 127.855 425.886 128.548C426.403 129.241 426.676 130.028 426.705 130.909H424.659ZM435.464 144.273C434.237 144.273 433.18 143.983 432.293 143.403C431.407 142.824 430.725 142.026 430.248 141.009C429.771 139.991 429.532 138.83 429.532 137.523C429.532 136.193 429.776 135.02 430.265 134.003C430.759 132.98 431.447 132.182 432.327 131.608C433.214 131.028 434.248 130.739 435.43 130.739C436.35 130.739 437.18 130.909 437.918 131.25C438.657 131.591 439.262 132.068 439.734 132.682C440.205 133.295 440.498 134.011 440.612 134.83H438.6C438.447 134.233 438.106 133.705 437.577 133.244C437.055 132.778 436.35 132.545 435.464 132.545C434.68 132.545 433.992 132.75 433.401 133.159C432.816 133.562 432.359 134.134 432.029 134.872C431.705 135.605 431.543 136.466 431.543 137.455C431.543 138.466 431.702 139.347 432.021 140.097C432.344 140.847 432.799 141.429 433.384 141.844C433.975 142.259 434.668 142.466 435.464 142.466C435.987 142.466 436.461 142.375 436.887 142.193C437.313 142.011 437.674 141.75 437.969 141.409C438.265 141.068 438.475 140.659 438.6 140.182H440.612C440.498 140.955 440.217 141.651 439.768 142.27C439.325 142.884 438.737 143.372 438.004 143.736C437.276 144.094 436.43 144.273 435.464 144.273ZM447.404 144.307C446.575 144.307 445.822 144.151 445.146 143.838C444.469 143.52 443.933 143.062 443.535 142.466C443.137 141.864 442.938 141.136 442.938 140.284C442.938 139.534 443.086 138.926 443.381 138.46C443.677 137.989 444.072 137.619 444.566 137.352C445.06 137.085 445.606 136.886 446.202 136.756C446.805 136.619 447.41 136.511 448.018 136.432C448.813 136.33 449.458 136.253 449.952 136.202C450.452 136.145 450.816 136.051 451.043 135.92C451.276 135.79 451.393 135.562 451.393 135.239V135.17C451.393 134.33 451.163 133.676 450.702 133.21C450.248 132.744 449.558 132.511 448.631 132.511C447.671 132.511 446.918 132.722 446.373 133.142C445.827 133.562 445.444 134.011 445.222 134.489L443.313 133.807C443.654 133.011 444.109 132.392 444.677 131.949C445.251 131.5 445.876 131.187 446.552 131.011C447.234 130.83 447.904 130.739 448.563 130.739C448.984 130.739 449.467 130.79 450.012 130.892C450.563 130.989 451.094 131.19 451.606 131.497C452.123 131.804 452.552 132.267 452.893 132.886C453.234 133.506 453.404 134.335 453.404 135.375V144H451.393V142.227H451.29C451.154 142.511 450.927 142.815 450.609 143.139C450.29 143.463 449.867 143.739 449.339 143.966C448.81 144.193 448.165 144.307 447.404 144.307ZM447.711 142.5C448.506 142.5 449.177 142.344 449.722 142.031C450.273 141.719 450.688 141.315 450.967 140.821C451.251 140.327 451.393 139.807 451.393 139.261V137.42C451.308 137.523 451.12 137.616 450.83 137.702C450.546 137.781 450.217 137.852 449.842 137.915C449.472 137.972 449.112 138.023 448.759 138.068C448.413 138.108 448.131 138.142 447.915 138.17C447.393 138.239 446.904 138.349 446.45 138.503C446.001 138.651 445.637 138.875 445.359 139.176C445.086 139.472 444.95 139.875 444.95 140.386C444.95 141.085 445.208 141.614 445.725 141.972C446.248 142.324 446.91 142.5 447.711 142.5ZM459.087 136.125V144H457.075V130.909H459.018V132.955H459.189C459.496 132.29 459.962 131.756 460.587 131.352C461.212 130.943 462.018 130.739 463.007 130.739C463.893 130.739 464.669 130.92 465.334 131.284C465.999 131.642 466.516 132.188 466.885 132.92C467.254 133.648 467.439 134.568 467.439 135.682V144H465.428V135.818C465.428 134.79 465.161 133.989 464.626 133.415C464.092 132.835 463.359 132.545 462.428 132.545C461.786 132.545 461.212 132.685 460.706 132.963C460.206 133.241 459.811 133.648 459.521 134.182C459.232 134.716 459.087 135.364 459.087 136.125ZM484.478 138.545H486.796L488.739 141.102L489.251 141.784L492.148 145.636H489.83L487.921 143.08L487.444 142.432L484.478 138.545ZM492.864 135.273C492.864 137.114 492.532 138.705 491.867 140.045C491.202 141.386 490.29 142.42 489.131 143.148C487.972 143.875 486.648 144.239 485.16 144.239C483.671 144.239 482.347 143.875 481.188 143.148C480.029 142.42 479.117 141.386 478.452 140.045C477.788 138.705 477.455 137.114 477.455 135.273C477.455 133.432 477.788 131.841 478.452 130.5C479.117 129.159 480.029 128.125 481.188 127.398C482.347 126.67 483.671 126.307 485.16 126.307C486.648 126.307 487.972 126.67 489.131 127.398C490.29 128.125 491.202 129.159 491.867 130.5C492.532 131.841 492.864 133.432 492.864 135.273ZM490.819 135.273C490.819 133.761 490.566 132.486 490.06 131.446C489.56 130.406 488.881 129.619 488.023 129.085C487.171 128.551 486.217 128.284 485.16 128.284C484.103 128.284 483.146 128.551 482.288 129.085C481.435 129.619 480.756 130.406 480.251 131.446C479.751 132.486 479.501 133.761 479.501 135.273C479.501 136.784 479.751 138.06 480.251 139.099C480.756 140.139 481.435 140.926 482.288 141.46C483.146 141.994 484.103 142.261 485.16 142.261C486.217 142.261 487.171 141.994 488.023 141.46C488.881 140.926 489.56 140.139 490.06 139.099C490.566 138.06 490.819 136.784 490.819 135.273ZM496.418 144V126.545H502.316C503.68 126.545 504.799 126.778 505.674 127.244C506.549 127.705 507.197 128.338 507.617 129.145C508.038 129.952 508.248 130.869 508.248 131.898C508.248 132.926 508.038 133.838 507.617 134.634C507.197 135.429 506.552 136.054 505.683 136.509C504.813 136.957 503.702 137.182 502.35 137.182H497.577V135.273H502.282C503.214 135.273 503.964 135.136 504.532 134.864C505.106 134.591 505.521 134.205 505.776 133.705C506.038 133.199 506.168 132.597 506.168 131.898C506.168 131.199 506.038 130.588 505.776 130.065C505.515 129.543 505.097 129.139 504.523 128.855C503.95 128.565 503.191 128.42 502.248 128.42H498.532V144H496.418ZM504.634 136.159L508.93 144H506.475L502.248 136.159H504.634ZM523.565 144.273C522.338 144.273 521.281 143.983 520.395 143.403C519.509 142.824 518.827 142.026 518.349 141.009C517.872 139.991 517.634 138.83 517.634 137.523C517.634 136.193 517.878 135.02 518.366 134.003C518.861 132.98 519.548 132.182 520.429 131.608C521.315 131.028 522.349 130.739 523.531 130.739C524.452 130.739 525.281 130.909 526.02 131.25C526.759 131.591 527.364 132.068 527.835 132.682C528.307 133.295 528.599 134.011 528.713 134.83H526.702C526.548 134.233 526.207 133.705 525.679 133.244C525.156 132.778 524.452 132.545 523.565 132.545C522.781 132.545 522.094 132.75 521.503 133.159C520.918 133.562 520.46 134.134 520.131 134.872C519.807 135.605 519.645 136.466 519.645 137.455C519.645 138.466 519.804 139.347 520.122 140.097C520.446 140.847 520.901 141.429 521.486 141.844C522.077 142.259 522.77 142.466 523.565 142.466C524.088 142.466 524.562 142.375 524.989 142.193C525.415 142.011 525.776 141.75 526.071 141.409C526.366 141.068 526.577 140.659 526.702 140.182H528.713C528.599 140.955 528.318 141.651 527.869 142.27C527.426 142.884 526.838 143.372 526.105 143.736C525.378 144.094 524.531 144.273 523.565 144.273ZM536.972 144.273C535.79 144.273 534.753 143.991 533.861 143.429C532.974 142.866 532.281 142.08 531.781 141.068C531.287 140.057 531.04 138.875 531.04 137.523C531.04 136.159 531.287 134.969 531.781 133.952C532.281 132.935 532.974 132.145 533.861 131.582C534.753 131.02 535.79 130.739 536.972 130.739C538.153 130.739 539.188 131.02 540.074 131.582C540.966 132.145 541.659 132.935 542.153 133.952C542.653 134.969 542.903 136.159 542.903 137.523C542.903 138.875 542.653 140.057 542.153 141.068C541.659 142.08 540.966 142.866 540.074 143.429C539.188 143.991 538.153 144.273 536.972 144.273ZM536.972 142.466C537.869 142.466 538.608 142.236 539.188 141.776C539.767 141.315 540.196 140.71 540.474 139.96C540.753 139.21 540.892 138.398 540.892 137.523C540.892 136.648 540.753 135.832 540.474 135.077C540.196 134.321 539.767 133.71 539.188 133.244C538.608 132.778 537.869 132.545 536.972 132.545C536.074 132.545 535.335 132.778 534.756 133.244C534.176 133.71 533.747 134.321 533.469 135.077C533.19 135.832 533.051 136.648 533.051 137.523C533.051 138.398 533.19 139.21 533.469 139.96C533.747 140.71 534.176 141.315 534.756 141.776C535.335 142.236 536.074 142.466 536.972 142.466ZM550.917 144.273C549.826 144.273 548.863 143.997 548.028 143.446C547.192 142.889 546.539 142.105 546.067 141.094C545.596 140.077 545.36 138.875 545.36 137.489C545.36 136.114 545.596 134.92 546.067 133.909C546.539 132.898 547.195 132.116 548.036 131.565C548.877 131.014 549.849 130.739 550.951 130.739C551.803 130.739 552.477 130.881 552.971 131.165C553.471 131.443 553.852 131.761 554.113 132.119C554.38 132.472 554.587 132.761 554.735 132.989H554.906V126.545H556.917V144H554.974V141.989H554.735C554.587 142.227 554.377 142.528 554.104 142.892C553.832 143.25 553.442 143.571 552.937 143.855C552.431 144.134 551.758 144.273 550.917 144.273ZM551.19 142.466C551.996 142.466 552.678 142.256 553.235 141.835C553.792 141.409 554.215 140.821 554.505 140.071C554.795 139.315 554.94 138.443 554.94 137.455C554.94 136.477 554.798 135.622 554.513 134.889C554.229 134.151 553.809 133.577 553.252 133.168C552.695 132.753 552.008 132.545 551.19 132.545C550.337 132.545 549.627 132.764 549.059 133.202C548.496 133.634 548.073 134.222 547.789 134.966C547.511 135.705 547.371 136.534 547.371 137.455C547.371 138.386 547.513 139.233 547.798 139.994C548.087 140.75 548.513 141.352 549.076 141.801C549.644 142.244 550.349 142.466 551.19 142.466ZM566.369 144.273C565.107 144.273 564.019 143.994 563.104 143.438C562.195 142.875 561.494 142.091 560.999 141.085C560.511 140.074 560.266 138.898 560.266 137.557C560.266 136.216 560.511 135.034 560.999 134.011C561.494 132.983 562.181 132.182 563.062 131.608C563.948 131.028 564.982 130.739 566.164 130.739C566.846 130.739 567.519 130.852 568.184 131.08C568.849 131.307 569.454 131.676 569.999 132.188C570.545 132.693 570.979 133.364 571.303 134.199C571.627 135.034 571.789 136.062 571.789 137.284V138.136H561.698V136.398H569.744C569.744 135.659 569.596 135 569.3 134.42C569.011 133.841 568.596 133.384 568.056 133.048C567.522 132.713 566.891 132.545 566.164 132.545C565.363 132.545 564.67 132.744 564.085 133.142C563.505 133.534 563.059 134.045 562.746 134.676C562.434 135.307 562.278 135.983 562.278 136.705V137.864C562.278 138.852 562.448 139.69 562.789 140.378C563.136 141.06 563.616 141.58 564.229 141.938C564.843 142.29 565.556 142.466 566.369 142.466C566.897 142.466 567.374 142.392 567.8 142.244C568.232 142.091 568.604 141.864 568.917 141.562C569.229 141.256 569.471 140.875 569.641 140.42L571.585 140.966C571.38 141.625 571.036 142.205 570.553 142.705C570.07 143.199 569.474 143.585 568.763 143.864C568.053 144.136 567.255 144.273 566.369 144.273ZM420.534 159.909V161.614H413.75V159.909H420.534ZM415.727 156.773H417.739V169.25C417.739 169.818 417.821 170.244 417.986 170.528C418.156 170.807 418.372 170.994 418.634 171.091C418.901 171.182 419.182 171.227 419.477 171.227C419.699 171.227 419.881 171.216 420.023 171.193C420.165 171.165 420.278 171.142 420.364 171.125L420.773 172.932C420.636 172.983 420.446 173.034 420.202 173.085C419.957 173.142 419.648 173.17 419.273 173.17C418.705 173.17 418.148 173.048 417.602 172.804C417.063 172.56 416.614 172.188 416.256 171.688C415.903 171.188 415.727 170.557 415.727 169.795V156.773ZM428.737 173.273C427.555 173.273 426.518 172.991 425.626 172.429C424.74 171.866 424.047 171.08 423.547 170.068C423.053 169.057 422.805 167.875 422.805 166.523C422.805 165.159 423.053 163.969 423.547 162.952C424.047 161.935 424.74 161.145 425.626 160.582C426.518 160.02 427.555 159.739 428.737 159.739C429.919 159.739 430.953 160.02 431.839 160.582C432.732 161.145 433.425 161.935 433.919 162.952C434.419 163.969 434.669 165.159 434.669 166.523C434.669 167.875 434.419 169.057 433.919 170.068C433.425 171.08 432.732 171.866 431.839 172.429C430.953 172.991 429.919 173.273 428.737 173.273ZM428.737 171.466C429.635 171.466 430.374 171.236 430.953 170.776C431.533 170.315 431.962 169.71 432.24 168.96C432.518 168.21 432.658 167.398 432.658 166.523C432.658 165.648 432.518 164.832 432.24 164.077C431.962 163.321 431.533 162.71 430.953 162.244C430.374 161.778 429.635 161.545 428.737 161.545C427.839 161.545 427.101 161.778 426.521 162.244C425.942 162.71 425.513 163.321 425.234 164.077C424.956 164.832 424.817 165.648 424.817 166.523C424.817 167.398 424.956 168.21 425.234 168.96C425.513 169.71 425.942 170.315 426.521 170.776C427.101 171.236 427.839 171.466 428.737 171.466ZM455.194 159.909L450.353 173H448.308L443.467 159.909H445.648L449.262 170.341H449.398L453.012 159.909H455.194ZM457.849 173V159.909H459.86V173H457.849ZM458.871 157.727C458.479 157.727 458.141 157.594 457.857 157.327C457.579 157.06 457.44 156.739 457.44 156.364C457.44 155.989 457.579 155.668 457.857 155.401C458.141 155.134 458.479 155 458.871 155C459.263 155 459.599 155.134 459.877 155.401C460.161 155.668 460.303 155.989 460.303 156.364C460.303 156.739 460.161 157.06 459.877 157.327C459.599 157.594 459.263 157.727 458.871 157.727ZM469.033 173.273C467.771 173.273 466.683 172.994 465.768 172.438C464.859 171.875 464.158 171.091 463.663 170.085C463.175 169.074 462.93 167.898 462.93 166.557C462.93 165.216 463.175 164.034 463.663 163.011C464.158 161.983 464.845 161.182 465.726 160.608C466.612 160.028 467.646 159.739 468.828 159.739C469.51 159.739 470.183 159.852 470.848 160.08C471.513 160.307 472.118 160.676 472.663 161.188C473.209 161.693 473.643 162.364 473.967 163.199C474.291 164.034 474.453 165.062 474.453 166.284V167.136H464.362V165.398H472.408C472.408 164.659 472.26 164 471.964 163.42C471.675 162.841 471.26 162.384 470.72 162.048C470.186 161.713 469.555 161.545 468.828 161.545C468.027 161.545 467.334 161.744 466.749 162.142C466.169 162.534 465.723 163.045 465.411 163.676C465.098 164.307 464.942 164.983 464.942 165.705V166.864C464.942 167.852 465.112 168.69 465.453 169.378C465.8 170.06 466.28 170.58 466.893 170.938C467.507 171.29 468.22 171.466 469.033 171.466C469.561 171.466 470.038 171.392 470.464 171.244C470.896 171.091 471.268 170.864 471.581 170.562C471.893 170.256 472.135 169.875 472.305 169.42L474.249 169.966C474.044 170.625 473.7 171.205 473.217 171.705C472.734 172.199 472.138 172.585 471.428 172.864C470.717 173.136 469.919 173.273 469.033 173.273ZM480.479 173L476.49 159.909H478.604L481.433 169.932H481.57L484.365 159.909H486.513L489.274 169.898H489.411L492.24 159.909H494.354L490.365 173H488.388L485.524 162.943H485.32L482.456 173H480.479ZM509.456 159.909V161.614H502.672V159.909H509.456ZM504.649 156.773H506.661V169.25C506.661 169.818 506.743 170.244 506.908 170.528C507.078 170.807 507.294 170.994 507.555 171.091C507.822 171.182 508.104 171.227 508.399 171.227C508.621 171.227 508.803 171.216 508.945 171.193C509.087 171.165 509.2 171.142 509.286 171.125L509.695 172.932C509.558 172.983 509.368 173.034 509.124 173.085C508.879 173.142 508.57 173.17 508.195 173.17C507.626 173.17 507.07 173.048 506.524 172.804C505.984 172.56 505.536 172.188 505.178 171.688C504.825 171.188 504.649 170.557 504.649 169.795V156.773ZM514.774 165.125V173H512.763V155.545H514.774V161.955H514.945C515.251 161.278 515.712 160.741 516.325 160.344C516.945 159.94 517.768 159.739 518.797 159.739C519.689 159.739 520.47 159.918 521.141 160.276C521.811 160.628 522.331 161.17 522.7 161.903C523.075 162.631 523.263 163.557 523.263 164.682V173H521.251V164.818C521.251 163.778 520.982 162.974 520.442 162.406C519.908 161.832 519.166 161.545 518.217 161.545C517.558 161.545 516.967 161.685 516.445 161.963C515.928 162.241 515.518 162.648 515.217 163.182C514.922 163.716 514.774 164.364 514.774 165.125ZM526.942 173V159.909H528.954V173H526.942ZM527.965 157.727C527.573 157.727 527.235 157.594 526.951 157.327C526.673 157.06 526.533 156.739 526.533 156.364C526.533 155.989 526.673 155.668 526.951 155.401C527.235 155.134 527.573 155 527.965 155C528.357 155 528.692 155.134 528.971 155.401C529.255 155.668 529.397 155.989 529.397 156.364C529.397 156.739 529.255 157.06 528.971 157.327C528.692 157.594 528.357 157.727 527.965 157.727ZM541.911 162.841L540.104 163.352C539.99 163.051 539.822 162.759 539.601 162.474C539.385 162.185 539.089 161.946 538.714 161.759C538.339 161.571 537.859 161.477 537.274 161.477C536.473 161.477 535.805 161.662 535.271 162.031C534.743 162.395 534.479 162.858 534.479 163.42C534.479 163.92 534.661 164.315 535.024 164.605C535.388 164.895 535.956 165.136 536.729 165.33L538.672 165.807C539.842 166.091 540.714 166.526 541.288 167.111C541.862 167.69 542.149 168.437 542.149 169.352C542.149 170.102 541.933 170.773 541.501 171.364C541.075 171.955 540.479 172.42 539.712 172.761C538.945 173.102 538.053 173.273 537.036 173.273C535.7 173.273 534.595 172.983 533.72 172.403C532.845 171.824 532.291 170.977 532.058 169.864L533.967 169.386C534.149 170.091 534.493 170.619 534.999 170.972C535.51 171.324 536.178 171.5 537.001 171.5C537.939 171.5 538.683 171.301 539.234 170.903C539.791 170.5 540.07 170.017 540.07 169.455C540.07 169 539.911 168.619 539.592 168.312C539.274 168 538.786 167.767 538.126 167.614L535.945 167.102C534.746 166.818 533.865 166.378 533.303 165.781C532.746 165.179 532.467 164.426 532.467 163.523C532.467 162.784 532.675 162.131 533.089 161.562C533.51 160.994 534.081 160.548 534.803 160.224C535.53 159.901 536.354 159.739 537.274 159.739C538.57 159.739 539.587 160.023 540.325 160.591C541.07 161.159 541.598 161.909 541.911 162.841ZM414.841 202V188.909H416.852V202H414.841ZM415.864 186.727C415.472 186.727 415.134 186.594 414.849 186.327C414.571 186.06 414.432 185.739 414.432 185.364C414.432 184.989 414.571 184.668 414.849 184.401C415.134 184.134 415.472 184 415.864 184C416.256 184 416.591 184.134 416.869 184.401C417.153 184.668 417.295 184.989 417.295 185.364C417.295 185.739 417.153 186.06 416.869 186.327C416.591 186.594 416.256 186.727 415.864 186.727ZM422.548 194.125V202H420.536V188.909H422.479V190.955H422.65C422.957 190.29 423.423 189.756 424.048 189.352C424.673 188.943 425.479 188.739 426.468 188.739C427.354 188.739 428.13 188.92 428.795 189.284C429.46 189.642 429.977 190.188 430.346 190.92C430.715 191.648 430.9 192.568 430.9 193.682V202H428.888V193.818C428.888 192.79 428.621 191.989 428.087 191.415C427.553 190.835 426.82 190.545 425.888 190.545C425.246 190.545 424.673 190.685 424.167 190.963C423.667 191.241 423.272 191.648 422.982 192.182C422.692 192.716 422.548 193.364 422.548 194.125ZM440.268 188.909V190.614H433.484V188.909H440.268ZM435.462 185.773H437.473V198.25C437.473 198.818 437.555 199.244 437.72 199.528C437.891 199.807 438.107 199.994 438.368 200.091C438.635 200.182 438.916 200.227 439.212 200.227C439.433 200.227 439.615 200.216 439.757 200.193C439.899 200.165 440.013 200.142 440.098 200.125L440.507 201.932C440.371 201.983 440.18 202.034 439.936 202.085C439.692 202.142 439.382 202.17 439.007 202.17C438.439 202.17 437.882 202.048 437.337 201.804C436.797 201.56 436.348 201.188 435.99 200.688C435.638 200.188 435.462 199.557 435.462 198.795V185.773ZM448.642 202.273C447.381 202.273 446.293 201.994 445.378 201.438C444.469 200.875 443.767 200.091 443.273 199.085C442.784 198.074 442.54 196.898 442.54 195.557C442.54 194.216 442.784 193.034 443.273 192.011C443.767 190.983 444.455 190.182 445.335 189.608C446.222 189.028 447.256 188.739 448.438 188.739C449.119 188.739 449.793 188.852 450.457 189.08C451.122 189.307 451.727 189.676 452.273 190.188C452.818 190.693 453.253 191.364 453.577 192.199C453.901 193.034 454.062 194.062 454.062 195.284V196.136H443.972V194.398H452.017C452.017 193.659 451.869 193 451.574 192.42C451.284 191.841 450.869 191.384 450.33 191.048C449.795 190.713 449.165 190.545 448.438 190.545C447.636 190.545 446.943 190.744 446.358 191.142C445.778 191.534 445.332 192.045 445.02 192.676C444.707 193.307 444.551 193.983 444.551 194.705V195.864C444.551 196.852 444.722 197.69 445.062 198.378C445.409 199.06 445.889 199.58 446.503 199.938C447.116 200.29 447.83 200.466 448.642 200.466C449.17 200.466 449.648 200.392 450.074 200.244C450.506 200.091 450.878 199.864 451.19 199.562C451.503 199.256 451.744 198.875 451.915 198.42L453.858 198.966C453.653 199.625 453.31 200.205 452.827 200.705C452.344 201.199 451.747 201.585 451.037 201.864C450.327 202.136 449.528 202.273 448.642 202.273ZM457.122 202V188.909H459.065V190.886H459.202C459.44 190.239 459.872 189.713 460.497 189.31C461.122 188.906 461.827 188.705 462.611 188.705C462.759 188.705 462.943 188.707 463.165 188.713C463.386 188.719 463.554 188.727 463.668 188.739V190.784C463.599 190.767 463.443 190.741 463.199 190.707C462.96 190.668 462.707 190.648 462.44 190.648C461.804 190.648 461.236 190.781 460.736 191.048C460.241 191.31 459.849 191.673 459.56 192.139C459.276 192.599 459.134 193.125 459.134 193.716V202H457.122ZM469.904 202.307C469.075 202.307 468.322 202.151 467.646 201.838C466.969 201.52 466.433 201.062 466.035 200.466C465.637 199.864 465.438 199.136 465.438 198.284C465.438 197.534 465.586 196.926 465.881 196.46C466.177 195.989 466.572 195.619 467.066 195.352C467.56 195.085 468.106 194.886 468.702 194.756C469.305 194.619 469.91 194.511 470.518 194.432C471.313 194.33 471.958 194.253 472.452 194.202C472.952 194.145 473.316 194.051 473.543 193.92C473.776 193.79 473.893 193.562 473.893 193.239V193.17C473.893 192.33 473.663 191.676 473.202 191.21C472.748 190.744 472.058 190.511 471.131 190.511C470.171 190.511 469.418 190.722 468.873 191.142C468.327 191.562 467.944 192.011 467.722 192.489L465.813 191.807C466.154 191.011 466.609 190.392 467.177 189.949C467.751 189.5 468.376 189.187 469.052 189.011C469.734 188.83 470.404 188.739 471.063 188.739C471.484 188.739 471.967 188.79 472.512 188.892C473.063 188.989 473.594 189.19 474.106 189.497C474.623 189.804 475.052 190.267 475.393 190.886C475.734 191.506 475.904 192.335 475.904 193.375V202H473.893V200.227H473.79C473.654 200.511 473.427 200.815 473.109 201.139C472.79 201.463 472.367 201.739 471.839 201.966C471.31 202.193 470.665 202.307 469.904 202.307ZM470.211 200.5C471.006 200.5 471.677 200.344 472.222 200.031C472.773 199.719 473.188 199.315 473.467 198.821C473.751 198.327 473.893 197.807 473.893 197.261V195.42C473.808 195.523 473.62 195.616 473.33 195.702C473.046 195.781 472.717 195.852 472.342 195.915C471.972 195.972 471.612 196.023 471.259 196.068C470.913 196.108 470.631 196.142 470.415 196.17C469.893 196.239 469.404 196.349 468.95 196.503C468.501 196.651 468.137 196.875 467.859 197.176C467.586 197.472 467.45 197.875 467.45 198.386C467.45 199.085 467.708 199.614 468.225 199.972C468.748 200.324 469.41 200.5 470.211 200.5ZM484.893 202.273C483.666 202.273 482.609 201.983 481.723 201.403C480.837 200.824 480.155 200.026 479.678 199.009C479.2 197.991 478.962 196.83 478.962 195.523C478.962 194.193 479.206 193.02 479.695 192.003C480.189 190.98 480.876 190.182 481.757 189.608C482.643 189.028 483.678 188.739 484.859 188.739C485.78 188.739 486.609 188.909 487.348 189.25C488.087 189.591 488.692 190.068 489.163 190.682C489.635 191.295 489.928 192.011 490.041 192.83H488.03C487.876 192.233 487.536 191.705 487.007 191.244C486.484 190.778 485.78 190.545 484.893 190.545C484.109 190.545 483.422 190.75 482.831 191.159C482.246 191.562 481.788 192.134 481.459 192.872C481.135 193.605 480.973 194.466 480.973 195.455C480.973 196.466 481.132 197.347 481.45 198.097C481.774 198.847 482.229 199.429 482.814 199.844C483.405 200.259 484.098 200.466 484.893 200.466C485.416 200.466 485.891 200.375 486.317 200.193C486.743 200.011 487.104 199.75 487.399 199.409C487.695 199.068 487.905 198.659 488.03 198.182H490.041C489.928 198.955 489.646 199.651 489.197 200.27C488.754 200.884 488.166 201.372 487.433 201.736C486.706 202.094 485.859 202.273 484.893 202.273ZM498.675 188.909V190.614H491.891V188.909H498.675ZM493.868 185.773H495.879V198.25C495.879 198.818 495.962 199.244 496.126 199.528C496.297 199.807 496.513 199.994 496.774 200.091C497.041 200.182 497.322 200.227 497.618 200.227C497.839 200.227 498.021 200.216 498.163 200.193C498.305 200.165 498.419 200.142 498.504 200.125L498.913 201.932C498.777 201.983 498.587 202.034 498.342 202.085C498.098 202.142 497.788 202.17 497.413 202.17C496.845 202.17 496.288 202.048 495.743 201.804C495.203 201.56 494.754 201.188 494.396 200.688C494.044 200.188 493.868 199.557 493.868 198.795V185.773ZM501.7 202V188.909H503.712V202H501.7ZM502.723 186.727C502.331 186.727 501.993 186.594 501.709 186.327C501.43 186.06 501.291 185.739 501.291 185.364C501.291 184.989 501.43 184.668 501.709 184.401C501.993 184.134 502.331 184 502.723 184C503.115 184 503.45 184.134 503.729 184.401C504.013 184.668 504.155 184.989 504.155 185.364C504.155 185.739 504.013 186.06 503.729 186.327C503.45 186.594 503.115 186.727 502.723 186.727ZM518.1 188.909L513.259 202H511.214L506.373 188.909H508.555L512.168 199.341H512.305L515.918 188.909H518.1ZM525.775 202.273C524.513 202.273 523.425 201.994 522.511 201.438C521.602 200.875 520.9 200.091 520.406 199.085C519.917 198.074 519.673 196.898 519.673 195.557C519.673 194.216 519.917 193.034 520.406 192.011C520.9 190.983 521.587 190.182 522.468 189.608C523.354 189.028 524.388 188.739 525.57 188.739C526.252 188.739 526.925 188.852 527.59 189.08C528.255 189.307 528.86 189.676 529.406 190.188C529.951 190.693 530.386 191.364 530.71 192.199C531.033 193.034 531.195 194.062 531.195 195.284V196.136H521.104V194.398H529.15C529.15 193.659 529.002 193 528.707 192.42C528.417 191.841 528.002 191.384 527.462 191.048C526.928 190.713 526.298 190.545 525.57 190.545C524.769 190.545 524.076 190.744 523.491 191.142C522.911 191.534 522.465 192.045 522.153 192.676C521.84 193.307 521.684 193.983 521.684 194.705V195.864C521.684 196.852 521.854 197.69 522.195 198.378C522.542 199.06 523.022 199.58 523.636 199.938C524.249 200.29 524.962 200.466 525.775 200.466C526.303 200.466 526.781 200.392 527.207 200.244C527.638 200.091 528.011 199.864 528.323 199.562C528.636 199.256 528.877 198.875 529.048 198.42L530.991 198.966C530.786 199.625 530.442 200.205 529.96 200.705C529.477 201.199 528.88 201.585 528.17 201.864C527.46 202.136 526.661 202.273 525.775 202.273ZM546.289 207.182C545.317 207.182 544.482 207.057 543.783 206.807C543.085 206.562 542.502 206.239 542.036 205.835C541.576 205.438 541.21 205.011 540.937 204.557L542.539 203.432C542.721 203.67 542.951 203.943 543.229 204.25C543.508 204.562 543.888 204.832 544.371 205.06C544.86 205.293 545.499 205.409 546.289 205.409C547.346 205.409 548.218 205.153 548.906 204.642C549.593 204.131 549.937 203.33 549.937 202.239V199.58H549.766C549.619 199.818 549.408 200.114 549.136 200.466C548.869 200.812 548.482 201.122 547.977 201.395C547.477 201.662 546.8 201.795 545.948 201.795C544.891 201.795 543.942 201.545 543.102 201.045C542.266 200.545 541.604 199.818 541.116 198.864C540.633 197.909 540.391 196.75 540.391 195.386C540.391 194.045 540.627 192.878 541.099 191.884C541.57 190.884 542.227 190.111 543.067 189.565C543.908 189.014 544.88 188.739 545.982 188.739C546.835 188.739 547.511 188.881 548.011 189.165C548.516 189.443 548.903 189.761 549.17 190.119C549.442 190.472 549.653 190.761 549.8 190.989H550.005V188.909H551.948V202.375C551.948 203.5 551.692 204.415 551.181 205.119C550.675 205.83 549.994 206.349 549.136 206.679C548.283 207.014 547.335 207.182 546.289 207.182ZM546.221 199.989C547.028 199.989 547.71 199.804 548.266 199.435C548.823 199.065 549.246 198.534 549.536 197.841C549.826 197.148 549.971 196.318 549.971 195.352C549.971 194.409 549.829 193.577 549.545 192.855C549.261 192.134 548.84 191.568 548.283 191.159C547.727 190.75 547.039 190.545 546.221 190.545C545.369 190.545 544.658 190.761 544.09 191.193C543.528 191.625 543.104 192.205 542.82 192.932C542.542 193.659 542.403 194.466 542.403 195.352C542.403 196.261 542.545 197.065 542.829 197.764C543.119 198.457 543.545 199.003 544.107 199.401C544.675 199.793 545.38 199.989 546.221 199.989ZM559.482 202.307C558.653 202.307 557.9 202.151 557.224 201.838C556.548 201.52 556.011 201.062 555.613 200.466C555.215 199.864 555.016 199.136 555.016 198.284C555.016 197.534 555.164 196.926 555.46 196.46C555.755 195.989 556.15 195.619 556.644 195.352C557.138 195.085 557.684 194.886 558.281 194.756C558.883 194.619 559.488 194.511 560.096 194.432C560.891 194.33 561.536 194.253 562.031 194.202C562.531 194.145 562.894 194.051 563.121 193.92C563.354 193.79 563.471 193.562 563.471 193.239V193.17C563.471 192.33 563.241 191.676 562.781 191.21C562.326 190.744 561.636 190.511 560.71 190.511C559.749 190.511 558.996 190.722 558.451 191.142C557.906 191.562 557.522 192.011 557.3 192.489L555.391 191.807C555.732 191.011 556.187 190.392 556.755 189.949C557.329 189.5 557.954 189.187 558.63 189.011C559.312 188.83 559.982 188.739 560.641 188.739C561.062 188.739 561.545 188.79 562.09 188.892C562.641 188.989 563.173 189.19 563.684 189.497C564.201 189.804 564.63 190.267 564.971 190.886C565.312 191.506 565.482 192.335 565.482 193.375V202H563.471V200.227H563.369C563.232 200.511 563.005 200.815 562.687 201.139C562.369 201.463 561.945 201.739 561.417 201.966C560.888 202.193 560.244 202.307 559.482 202.307ZM559.789 200.5C560.585 200.5 561.255 200.344 561.8 200.031C562.352 199.719 562.766 199.315 563.045 198.821C563.329 198.327 563.471 197.807 563.471 197.261V195.42C563.386 195.523 563.198 195.616 562.908 195.702C562.624 195.781 562.295 195.852 561.92 195.915C561.55 195.972 561.19 196.023 560.837 196.068C560.491 196.108 560.21 196.142 559.994 196.17C559.471 196.239 558.982 196.349 558.528 196.503C558.079 196.651 557.715 196.875 557.437 197.176C557.164 197.472 557.028 197.875 557.028 198.386C557.028 199.085 557.286 199.614 557.803 199.972C558.326 200.324 558.988 200.5 559.789 200.5ZM569.153 202V188.909H571.097V190.955H571.267C571.54 190.256 571.98 189.713 572.588 189.327C573.196 188.935 573.926 188.739 574.778 188.739C575.642 188.739 576.361 188.935 576.935 189.327C577.514 189.713 577.966 190.256 578.29 190.955H578.426C578.761 190.278 579.264 189.741 579.935 189.344C580.605 188.94 581.409 188.739 582.347 188.739C583.517 188.739 584.474 189.105 585.219 189.838C585.963 190.565 586.335 191.699 586.335 193.239V202H584.324V193.239C584.324 192.273 584.06 191.582 583.531 191.168C583.003 190.753 582.381 190.545 581.665 190.545C580.744 190.545 580.031 190.824 579.526 191.381C579.02 191.932 578.767 192.631 578.767 193.477V202H576.722V193.034C576.722 192.29 576.48 191.69 575.997 191.236C575.514 190.776 574.892 190.545 574.131 190.545C573.608 190.545 573.119 190.685 572.665 190.963C572.216 191.241 571.852 191.628 571.574 192.122C571.301 192.611 571.165 193.176 571.165 193.818V202H569.153ZM595.501 202.273C594.24 202.273 593.152 201.994 592.237 201.438C591.328 200.875 590.626 200.091 590.132 199.085C589.643 198.074 589.399 196.898 589.399 195.557C589.399 194.216 589.643 193.034 590.132 192.011C590.626 190.983 591.314 190.182 592.195 189.608C593.081 189.028 594.115 188.739 595.297 188.739C595.979 188.739 596.652 188.852 597.317 189.08C597.982 189.307 598.587 189.676 599.132 190.188C599.678 190.693 600.112 191.364 600.436 192.199C600.76 193.034 600.922 194.062 600.922 195.284V196.136H590.831V194.398H598.876C598.876 193.659 598.729 193 598.433 192.42C598.143 191.841 597.729 191.384 597.189 191.048C596.655 190.713 596.024 190.545 595.297 190.545C594.496 190.545 593.803 190.744 593.217 191.142C592.638 191.534 592.192 192.045 591.879 192.676C591.567 193.307 591.411 193.983 591.411 194.705V195.864C591.411 196.852 591.581 197.69 591.922 198.378C592.268 199.06 592.749 199.58 593.362 199.938C593.976 200.29 594.689 200.466 595.501 200.466C596.03 200.466 596.507 200.392 596.933 200.244C597.365 200.091 597.737 199.864 598.05 199.562C598.362 199.256 598.604 198.875 598.774 198.42L600.717 198.966C600.513 199.625 600.169 200.205 599.686 200.705C599.203 201.199 598.607 201.585 597.896 201.864C597.186 202.136 596.388 202.273 595.501 202.273Z"/> +</mask> +<path d="M424.659 130.909C424.557 130.045 424.142 129.375 423.415 128.898C422.688 128.42 421.795 128.182 420.739 128.182C419.966 128.182 419.29 128.307 418.71 128.557C418.136 128.807 417.688 129.151 417.364 129.588C417.045 130.026 416.886 130.523 416.886 131.08C416.886 131.545 416.997 131.946 417.219 132.281C417.446 132.611 417.736 132.886 418.088 133.108C418.44 133.324 418.81 133.503 419.196 133.645C419.582 133.781 419.938 133.892 420.261 133.977L422.034 134.455C422.489 134.574 422.994 134.739 423.551 134.949C424.114 135.159 424.651 135.446 425.162 135.81C425.679 136.168 426.105 136.628 426.44 137.19C426.776 137.753 426.943 138.443 426.943 139.261C426.943 140.205 426.696 141.057 426.202 141.818C425.713 142.58 424.997 143.185 424.054 143.634C423.116 144.082 421.977 144.307 420.636 144.307C419.386 144.307 418.304 144.105 417.389 143.702C416.48 143.298 415.764 142.736 415.241 142.014C414.724 141.293 414.432 140.455 414.364 139.5H416.545C416.602 140.159 416.824 140.705 417.21 141.136C417.602 141.562 418.097 141.881 418.693 142.091C419.295 142.295 419.943 142.398 420.636 142.398C421.443 142.398 422.168 142.267 422.81 142.006C423.452 141.739 423.96 141.369 424.335 140.898C424.71 140.42 424.898 139.864 424.898 139.227C424.898 138.648 424.736 138.176 424.412 137.812C424.088 137.449 423.662 137.153 423.134 136.926C422.605 136.699 422.034 136.5 421.42 136.33L419.273 135.716C417.909 135.324 416.83 134.764 416.034 134.037C415.239 133.31 414.841 132.358 414.841 131.182C414.841 130.205 415.105 129.352 415.634 128.625C416.168 127.892 416.884 127.324 417.781 126.92C418.685 126.511 419.693 126.307 420.807 126.307C421.932 126.307 422.932 126.509 423.807 126.912C424.682 127.31 425.375 127.855 425.886 128.548C426.403 129.241 426.676 130.028 426.705 130.909H424.659ZM435.464 144.273C434.237 144.273 433.18 143.983 432.293 143.403C431.407 142.824 430.725 142.026 430.248 141.009C429.771 139.991 429.532 138.83 429.532 137.523C429.532 136.193 429.776 135.02 430.265 134.003C430.759 132.98 431.447 132.182 432.327 131.608C433.214 131.028 434.248 130.739 435.43 130.739C436.35 130.739 437.18 130.909 437.918 131.25C438.657 131.591 439.262 132.068 439.734 132.682C440.205 133.295 440.498 134.011 440.612 134.83H438.6C438.447 134.233 438.106 133.705 437.577 133.244C437.055 132.778 436.35 132.545 435.464 132.545C434.68 132.545 433.992 132.75 433.401 133.159C432.816 133.562 432.359 134.134 432.029 134.872C431.705 135.605 431.543 136.466 431.543 137.455C431.543 138.466 431.702 139.347 432.021 140.097C432.344 140.847 432.799 141.429 433.384 141.844C433.975 142.259 434.668 142.466 435.464 142.466C435.987 142.466 436.461 142.375 436.887 142.193C437.313 142.011 437.674 141.75 437.969 141.409C438.265 141.068 438.475 140.659 438.6 140.182H440.612C440.498 140.955 440.217 141.651 439.768 142.27C439.325 142.884 438.737 143.372 438.004 143.736C437.276 144.094 436.43 144.273 435.464 144.273ZM447.404 144.307C446.575 144.307 445.822 144.151 445.146 143.838C444.469 143.52 443.933 143.062 443.535 142.466C443.137 141.864 442.938 141.136 442.938 140.284C442.938 139.534 443.086 138.926 443.381 138.46C443.677 137.989 444.072 137.619 444.566 137.352C445.06 137.085 445.606 136.886 446.202 136.756C446.805 136.619 447.41 136.511 448.018 136.432C448.813 136.33 449.458 136.253 449.952 136.202C450.452 136.145 450.816 136.051 451.043 135.92C451.276 135.79 451.393 135.562 451.393 135.239V135.17C451.393 134.33 451.163 133.676 450.702 133.21C450.248 132.744 449.558 132.511 448.631 132.511C447.671 132.511 446.918 132.722 446.373 133.142C445.827 133.562 445.444 134.011 445.222 134.489L443.313 133.807C443.654 133.011 444.109 132.392 444.677 131.949C445.251 131.5 445.876 131.187 446.552 131.011C447.234 130.83 447.904 130.739 448.563 130.739C448.984 130.739 449.467 130.79 450.012 130.892C450.563 130.989 451.094 131.19 451.606 131.497C452.123 131.804 452.552 132.267 452.893 132.886C453.234 133.506 453.404 134.335 453.404 135.375V144H451.393V142.227H451.29C451.154 142.511 450.927 142.815 450.609 143.139C450.29 143.463 449.867 143.739 449.339 143.966C448.81 144.193 448.165 144.307 447.404 144.307ZM447.711 142.5C448.506 142.5 449.177 142.344 449.722 142.031C450.273 141.719 450.688 141.315 450.967 140.821C451.251 140.327 451.393 139.807 451.393 139.261V137.42C451.308 137.523 451.12 137.616 450.83 137.702C450.546 137.781 450.217 137.852 449.842 137.915C449.472 137.972 449.112 138.023 448.759 138.068C448.413 138.108 448.131 138.142 447.915 138.17C447.393 138.239 446.904 138.349 446.45 138.503C446.001 138.651 445.637 138.875 445.359 139.176C445.086 139.472 444.95 139.875 444.95 140.386C444.95 141.085 445.208 141.614 445.725 141.972C446.248 142.324 446.91 142.5 447.711 142.5ZM459.087 136.125V144H457.075V130.909H459.018V132.955H459.189C459.496 132.29 459.962 131.756 460.587 131.352C461.212 130.943 462.018 130.739 463.007 130.739C463.893 130.739 464.669 130.92 465.334 131.284C465.999 131.642 466.516 132.188 466.885 132.92C467.254 133.648 467.439 134.568 467.439 135.682V144H465.428V135.818C465.428 134.79 465.161 133.989 464.626 133.415C464.092 132.835 463.359 132.545 462.428 132.545C461.786 132.545 461.212 132.685 460.706 132.963C460.206 133.241 459.811 133.648 459.521 134.182C459.232 134.716 459.087 135.364 459.087 136.125ZM484.478 138.545H486.796L488.739 141.102L489.251 141.784L492.148 145.636H489.83L487.921 143.08L487.444 142.432L484.478 138.545ZM492.864 135.273C492.864 137.114 492.532 138.705 491.867 140.045C491.202 141.386 490.29 142.42 489.131 143.148C487.972 143.875 486.648 144.239 485.16 144.239C483.671 144.239 482.347 143.875 481.188 143.148C480.029 142.42 479.117 141.386 478.452 140.045C477.788 138.705 477.455 137.114 477.455 135.273C477.455 133.432 477.788 131.841 478.452 130.5C479.117 129.159 480.029 128.125 481.188 127.398C482.347 126.67 483.671 126.307 485.16 126.307C486.648 126.307 487.972 126.67 489.131 127.398C490.29 128.125 491.202 129.159 491.867 130.5C492.532 131.841 492.864 133.432 492.864 135.273ZM490.819 135.273C490.819 133.761 490.566 132.486 490.06 131.446C489.56 130.406 488.881 129.619 488.023 129.085C487.171 128.551 486.217 128.284 485.16 128.284C484.103 128.284 483.146 128.551 482.288 129.085C481.435 129.619 480.756 130.406 480.251 131.446C479.751 132.486 479.501 133.761 479.501 135.273C479.501 136.784 479.751 138.06 480.251 139.099C480.756 140.139 481.435 140.926 482.288 141.46C483.146 141.994 484.103 142.261 485.16 142.261C486.217 142.261 487.171 141.994 488.023 141.46C488.881 140.926 489.56 140.139 490.06 139.099C490.566 138.06 490.819 136.784 490.819 135.273ZM496.418 144V126.545H502.316C503.68 126.545 504.799 126.778 505.674 127.244C506.549 127.705 507.197 128.338 507.617 129.145C508.038 129.952 508.248 130.869 508.248 131.898C508.248 132.926 508.038 133.838 507.617 134.634C507.197 135.429 506.552 136.054 505.683 136.509C504.813 136.957 503.702 137.182 502.35 137.182H497.577V135.273H502.282C503.214 135.273 503.964 135.136 504.532 134.864C505.106 134.591 505.521 134.205 505.776 133.705C506.038 133.199 506.168 132.597 506.168 131.898C506.168 131.199 506.038 130.588 505.776 130.065C505.515 129.543 505.097 129.139 504.523 128.855C503.95 128.565 503.191 128.42 502.248 128.42H498.532V144H496.418ZM504.634 136.159L508.93 144H506.475L502.248 136.159H504.634ZM523.565 144.273C522.338 144.273 521.281 143.983 520.395 143.403C519.509 142.824 518.827 142.026 518.349 141.009C517.872 139.991 517.634 138.83 517.634 137.523C517.634 136.193 517.878 135.02 518.366 134.003C518.861 132.98 519.548 132.182 520.429 131.608C521.315 131.028 522.349 130.739 523.531 130.739C524.452 130.739 525.281 130.909 526.02 131.25C526.759 131.591 527.364 132.068 527.835 132.682C528.307 133.295 528.599 134.011 528.713 134.83H526.702C526.548 134.233 526.207 133.705 525.679 133.244C525.156 132.778 524.452 132.545 523.565 132.545C522.781 132.545 522.094 132.75 521.503 133.159C520.918 133.562 520.46 134.134 520.131 134.872C519.807 135.605 519.645 136.466 519.645 137.455C519.645 138.466 519.804 139.347 520.122 140.097C520.446 140.847 520.901 141.429 521.486 141.844C522.077 142.259 522.77 142.466 523.565 142.466C524.088 142.466 524.562 142.375 524.989 142.193C525.415 142.011 525.776 141.75 526.071 141.409C526.366 141.068 526.577 140.659 526.702 140.182H528.713C528.599 140.955 528.318 141.651 527.869 142.27C527.426 142.884 526.838 143.372 526.105 143.736C525.378 144.094 524.531 144.273 523.565 144.273ZM536.972 144.273C535.79 144.273 534.753 143.991 533.861 143.429C532.974 142.866 532.281 142.08 531.781 141.068C531.287 140.057 531.04 138.875 531.04 137.523C531.04 136.159 531.287 134.969 531.781 133.952C532.281 132.935 532.974 132.145 533.861 131.582C534.753 131.02 535.79 130.739 536.972 130.739C538.153 130.739 539.188 131.02 540.074 131.582C540.966 132.145 541.659 132.935 542.153 133.952C542.653 134.969 542.903 136.159 542.903 137.523C542.903 138.875 542.653 140.057 542.153 141.068C541.659 142.08 540.966 142.866 540.074 143.429C539.188 143.991 538.153 144.273 536.972 144.273ZM536.972 142.466C537.869 142.466 538.608 142.236 539.188 141.776C539.767 141.315 540.196 140.71 540.474 139.96C540.753 139.21 540.892 138.398 540.892 137.523C540.892 136.648 540.753 135.832 540.474 135.077C540.196 134.321 539.767 133.71 539.188 133.244C538.608 132.778 537.869 132.545 536.972 132.545C536.074 132.545 535.335 132.778 534.756 133.244C534.176 133.71 533.747 134.321 533.469 135.077C533.19 135.832 533.051 136.648 533.051 137.523C533.051 138.398 533.19 139.21 533.469 139.96C533.747 140.71 534.176 141.315 534.756 141.776C535.335 142.236 536.074 142.466 536.972 142.466ZM550.917 144.273C549.826 144.273 548.863 143.997 548.028 143.446C547.192 142.889 546.539 142.105 546.067 141.094C545.596 140.077 545.36 138.875 545.36 137.489C545.36 136.114 545.596 134.92 546.067 133.909C546.539 132.898 547.195 132.116 548.036 131.565C548.877 131.014 549.849 130.739 550.951 130.739C551.803 130.739 552.477 130.881 552.971 131.165C553.471 131.443 553.852 131.761 554.113 132.119C554.38 132.472 554.587 132.761 554.735 132.989H554.906V126.545H556.917V144H554.974V141.989H554.735C554.587 142.227 554.377 142.528 554.104 142.892C553.832 143.25 553.442 143.571 552.937 143.855C552.431 144.134 551.758 144.273 550.917 144.273ZM551.19 142.466C551.996 142.466 552.678 142.256 553.235 141.835C553.792 141.409 554.215 140.821 554.505 140.071C554.795 139.315 554.94 138.443 554.94 137.455C554.94 136.477 554.798 135.622 554.513 134.889C554.229 134.151 553.809 133.577 553.252 133.168C552.695 132.753 552.008 132.545 551.19 132.545C550.337 132.545 549.627 132.764 549.059 133.202C548.496 133.634 548.073 134.222 547.789 134.966C547.511 135.705 547.371 136.534 547.371 137.455C547.371 138.386 547.513 139.233 547.798 139.994C548.087 140.75 548.513 141.352 549.076 141.801C549.644 142.244 550.349 142.466 551.19 142.466ZM566.369 144.273C565.107 144.273 564.019 143.994 563.104 143.438C562.195 142.875 561.494 142.091 560.999 141.085C560.511 140.074 560.266 138.898 560.266 137.557C560.266 136.216 560.511 135.034 560.999 134.011C561.494 132.983 562.181 132.182 563.062 131.608C563.948 131.028 564.982 130.739 566.164 130.739C566.846 130.739 567.519 130.852 568.184 131.08C568.849 131.307 569.454 131.676 569.999 132.188C570.545 132.693 570.979 133.364 571.303 134.199C571.627 135.034 571.789 136.062 571.789 137.284V138.136H561.698V136.398H569.744C569.744 135.659 569.596 135 569.3 134.42C569.011 133.841 568.596 133.384 568.056 133.048C567.522 132.713 566.891 132.545 566.164 132.545C565.363 132.545 564.67 132.744 564.085 133.142C563.505 133.534 563.059 134.045 562.746 134.676C562.434 135.307 562.278 135.983 562.278 136.705V137.864C562.278 138.852 562.448 139.69 562.789 140.378C563.136 141.06 563.616 141.58 564.229 141.938C564.843 142.29 565.556 142.466 566.369 142.466C566.897 142.466 567.374 142.392 567.8 142.244C568.232 142.091 568.604 141.864 568.917 141.562C569.229 141.256 569.471 140.875 569.641 140.42L571.585 140.966C571.38 141.625 571.036 142.205 570.553 142.705C570.07 143.199 569.474 143.585 568.763 143.864C568.053 144.136 567.255 144.273 566.369 144.273ZM420.534 159.909V161.614H413.75V159.909H420.534ZM415.727 156.773H417.739V169.25C417.739 169.818 417.821 170.244 417.986 170.528C418.156 170.807 418.372 170.994 418.634 171.091C418.901 171.182 419.182 171.227 419.477 171.227C419.699 171.227 419.881 171.216 420.023 171.193C420.165 171.165 420.278 171.142 420.364 171.125L420.773 172.932C420.636 172.983 420.446 173.034 420.202 173.085C419.957 173.142 419.648 173.17 419.273 173.17C418.705 173.17 418.148 173.048 417.602 172.804C417.063 172.56 416.614 172.188 416.256 171.688C415.903 171.188 415.727 170.557 415.727 169.795V156.773ZM428.737 173.273C427.555 173.273 426.518 172.991 425.626 172.429C424.74 171.866 424.047 171.08 423.547 170.068C423.053 169.057 422.805 167.875 422.805 166.523C422.805 165.159 423.053 163.969 423.547 162.952C424.047 161.935 424.74 161.145 425.626 160.582C426.518 160.02 427.555 159.739 428.737 159.739C429.919 159.739 430.953 160.02 431.839 160.582C432.732 161.145 433.425 161.935 433.919 162.952C434.419 163.969 434.669 165.159 434.669 166.523C434.669 167.875 434.419 169.057 433.919 170.068C433.425 171.08 432.732 171.866 431.839 172.429C430.953 172.991 429.919 173.273 428.737 173.273ZM428.737 171.466C429.635 171.466 430.374 171.236 430.953 170.776C431.533 170.315 431.962 169.71 432.24 168.96C432.518 168.21 432.658 167.398 432.658 166.523C432.658 165.648 432.518 164.832 432.24 164.077C431.962 163.321 431.533 162.71 430.953 162.244C430.374 161.778 429.635 161.545 428.737 161.545C427.839 161.545 427.101 161.778 426.521 162.244C425.942 162.71 425.513 163.321 425.234 164.077C424.956 164.832 424.817 165.648 424.817 166.523C424.817 167.398 424.956 168.21 425.234 168.96C425.513 169.71 425.942 170.315 426.521 170.776C427.101 171.236 427.839 171.466 428.737 171.466ZM455.194 159.909L450.353 173H448.308L443.467 159.909H445.648L449.262 170.341H449.398L453.012 159.909H455.194ZM457.849 173V159.909H459.86V173H457.849ZM458.871 157.727C458.479 157.727 458.141 157.594 457.857 157.327C457.579 157.06 457.44 156.739 457.44 156.364C457.44 155.989 457.579 155.668 457.857 155.401C458.141 155.134 458.479 155 458.871 155C459.263 155 459.599 155.134 459.877 155.401C460.161 155.668 460.303 155.989 460.303 156.364C460.303 156.739 460.161 157.06 459.877 157.327C459.599 157.594 459.263 157.727 458.871 157.727ZM469.033 173.273C467.771 173.273 466.683 172.994 465.768 172.438C464.859 171.875 464.158 171.091 463.663 170.085C463.175 169.074 462.93 167.898 462.93 166.557C462.93 165.216 463.175 164.034 463.663 163.011C464.158 161.983 464.845 161.182 465.726 160.608C466.612 160.028 467.646 159.739 468.828 159.739C469.51 159.739 470.183 159.852 470.848 160.08C471.513 160.307 472.118 160.676 472.663 161.188C473.209 161.693 473.643 162.364 473.967 163.199C474.291 164.034 474.453 165.062 474.453 166.284V167.136H464.362V165.398H472.408C472.408 164.659 472.26 164 471.964 163.42C471.675 162.841 471.26 162.384 470.72 162.048C470.186 161.713 469.555 161.545 468.828 161.545C468.027 161.545 467.334 161.744 466.749 162.142C466.169 162.534 465.723 163.045 465.411 163.676C465.098 164.307 464.942 164.983 464.942 165.705V166.864C464.942 167.852 465.112 168.69 465.453 169.378C465.8 170.06 466.28 170.58 466.893 170.938C467.507 171.29 468.22 171.466 469.033 171.466C469.561 171.466 470.038 171.392 470.464 171.244C470.896 171.091 471.268 170.864 471.581 170.562C471.893 170.256 472.135 169.875 472.305 169.42L474.249 169.966C474.044 170.625 473.7 171.205 473.217 171.705C472.734 172.199 472.138 172.585 471.428 172.864C470.717 173.136 469.919 173.273 469.033 173.273ZM480.479 173L476.49 159.909H478.604L481.433 169.932H481.57L484.365 159.909H486.513L489.274 169.898H489.411L492.24 159.909H494.354L490.365 173H488.388L485.524 162.943H485.32L482.456 173H480.479ZM509.456 159.909V161.614H502.672V159.909H509.456ZM504.649 156.773H506.661V169.25C506.661 169.818 506.743 170.244 506.908 170.528C507.078 170.807 507.294 170.994 507.555 171.091C507.822 171.182 508.104 171.227 508.399 171.227C508.621 171.227 508.803 171.216 508.945 171.193C509.087 171.165 509.2 171.142 509.286 171.125L509.695 172.932C509.558 172.983 509.368 173.034 509.124 173.085C508.879 173.142 508.57 173.17 508.195 173.17C507.626 173.17 507.07 173.048 506.524 172.804C505.984 172.56 505.536 172.188 505.178 171.688C504.825 171.188 504.649 170.557 504.649 169.795V156.773ZM514.774 165.125V173H512.763V155.545H514.774V161.955H514.945C515.251 161.278 515.712 160.741 516.325 160.344C516.945 159.94 517.768 159.739 518.797 159.739C519.689 159.739 520.47 159.918 521.141 160.276C521.811 160.628 522.331 161.17 522.7 161.903C523.075 162.631 523.263 163.557 523.263 164.682V173H521.251V164.818C521.251 163.778 520.982 162.974 520.442 162.406C519.908 161.832 519.166 161.545 518.217 161.545C517.558 161.545 516.967 161.685 516.445 161.963C515.928 162.241 515.518 162.648 515.217 163.182C514.922 163.716 514.774 164.364 514.774 165.125ZM526.942 173V159.909H528.954V173H526.942ZM527.965 157.727C527.573 157.727 527.235 157.594 526.951 157.327C526.673 157.06 526.533 156.739 526.533 156.364C526.533 155.989 526.673 155.668 526.951 155.401C527.235 155.134 527.573 155 527.965 155C528.357 155 528.692 155.134 528.971 155.401C529.255 155.668 529.397 155.989 529.397 156.364C529.397 156.739 529.255 157.06 528.971 157.327C528.692 157.594 528.357 157.727 527.965 157.727ZM541.911 162.841L540.104 163.352C539.99 163.051 539.822 162.759 539.601 162.474C539.385 162.185 539.089 161.946 538.714 161.759C538.339 161.571 537.859 161.477 537.274 161.477C536.473 161.477 535.805 161.662 535.271 162.031C534.743 162.395 534.479 162.858 534.479 163.42C534.479 163.92 534.661 164.315 535.024 164.605C535.388 164.895 535.956 165.136 536.729 165.33L538.672 165.807C539.842 166.091 540.714 166.526 541.288 167.111C541.862 167.69 542.149 168.437 542.149 169.352C542.149 170.102 541.933 170.773 541.501 171.364C541.075 171.955 540.479 172.42 539.712 172.761C538.945 173.102 538.053 173.273 537.036 173.273C535.7 173.273 534.595 172.983 533.72 172.403C532.845 171.824 532.291 170.977 532.058 169.864L533.967 169.386C534.149 170.091 534.493 170.619 534.999 170.972C535.51 171.324 536.178 171.5 537.001 171.5C537.939 171.5 538.683 171.301 539.234 170.903C539.791 170.5 540.07 170.017 540.07 169.455C540.07 169 539.911 168.619 539.592 168.312C539.274 168 538.786 167.767 538.126 167.614L535.945 167.102C534.746 166.818 533.865 166.378 533.303 165.781C532.746 165.179 532.467 164.426 532.467 163.523C532.467 162.784 532.675 162.131 533.089 161.562C533.51 160.994 534.081 160.548 534.803 160.224C535.53 159.901 536.354 159.739 537.274 159.739C538.57 159.739 539.587 160.023 540.325 160.591C541.07 161.159 541.598 161.909 541.911 162.841ZM414.841 202V188.909H416.852V202H414.841ZM415.864 186.727C415.472 186.727 415.134 186.594 414.849 186.327C414.571 186.06 414.432 185.739 414.432 185.364C414.432 184.989 414.571 184.668 414.849 184.401C415.134 184.134 415.472 184 415.864 184C416.256 184 416.591 184.134 416.869 184.401C417.153 184.668 417.295 184.989 417.295 185.364C417.295 185.739 417.153 186.06 416.869 186.327C416.591 186.594 416.256 186.727 415.864 186.727ZM422.548 194.125V202H420.536V188.909H422.479V190.955H422.65C422.957 190.29 423.423 189.756 424.048 189.352C424.673 188.943 425.479 188.739 426.468 188.739C427.354 188.739 428.13 188.92 428.795 189.284C429.46 189.642 429.977 190.188 430.346 190.92C430.715 191.648 430.9 192.568 430.9 193.682V202H428.888V193.818C428.888 192.79 428.621 191.989 428.087 191.415C427.553 190.835 426.82 190.545 425.888 190.545C425.246 190.545 424.673 190.685 424.167 190.963C423.667 191.241 423.272 191.648 422.982 192.182C422.692 192.716 422.548 193.364 422.548 194.125ZM440.268 188.909V190.614H433.484V188.909H440.268ZM435.462 185.773H437.473V198.25C437.473 198.818 437.555 199.244 437.72 199.528C437.891 199.807 438.107 199.994 438.368 200.091C438.635 200.182 438.916 200.227 439.212 200.227C439.433 200.227 439.615 200.216 439.757 200.193C439.899 200.165 440.013 200.142 440.098 200.125L440.507 201.932C440.371 201.983 440.18 202.034 439.936 202.085C439.692 202.142 439.382 202.17 439.007 202.17C438.439 202.17 437.882 202.048 437.337 201.804C436.797 201.56 436.348 201.188 435.99 200.688C435.638 200.188 435.462 199.557 435.462 198.795V185.773ZM448.642 202.273C447.381 202.273 446.293 201.994 445.378 201.438C444.469 200.875 443.767 200.091 443.273 199.085C442.784 198.074 442.54 196.898 442.54 195.557C442.54 194.216 442.784 193.034 443.273 192.011C443.767 190.983 444.455 190.182 445.335 189.608C446.222 189.028 447.256 188.739 448.438 188.739C449.119 188.739 449.793 188.852 450.457 189.08C451.122 189.307 451.727 189.676 452.273 190.188C452.818 190.693 453.253 191.364 453.577 192.199C453.901 193.034 454.062 194.062 454.062 195.284V196.136H443.972V194.398H452.017C452.017 193.659 451.869 193 451.574 192.42C451.284 191.841 450.869 191.384 450.33 191.048C449.795 190.713 449.165 190.545 448.438 190.545C447.636 190.545 446.943 190.744 446.358 191.142C445.778 191.534 445.332 192.045 445.02 192.676C444.707 193.307 444.551 193.983 444.551 194.705V195.864C444.551 196.852 444.722 197.69 445.062 198.378C445.409 199.06 445.889 199.58 446.503 199.938C447.116 200.29 447.83 200.466 448.642 200.466C449.17 200.466 449.648 200.392 450.074 200.244C450.506 200.091 450.878 199.864 451.19 199.562C451.503 199.256 451.744 198.875 451.915 198.42L453.858 198.966C453.653 199.625 453.31 200.205 452.827 200.705C452.344 201.199 451.747 201.585 451.037 201.864C450.327 202.136 449.528 202.273 448.642 202.273ZM457.122 202V188.909H459.065V190.886H459.202C459.44 190.239 459.872 189.713 460.497 189.31C461.122 188.906 461.827 188.705 462.611 188.705C462.759 188.705 462.943 188.707 463.165 188.713C463.386 188.719 463.554 188.727 463.668 188.739V190.784C463.599 190.767 463.443 190.741 463.199 190.707C462.96 190.668 462.707 190.648 462.44 190.648C461.804 190.648 461.236 190.781 460.736 191.048C460.241 191.31 459.849 191.673 459.56 192.139C459.276 192.599 459.134 193.125 459.134 193.716V202H457.122ZM469.904 202.307C469.075 202.307 468.322 202.151 467.646 201.838C466.969 201.52 466.433 201.062 466.035 200.466C465.637 199.864 465.438 199.136 465.438 198.284C465.438 197.534 465.586 196.926 465.881 196.46C466.177 195.989 466.572 195.619 467.066 195.352C467.56 195.085 468.106 194.886 468.702 194.756C469.305 194.619 469.91 194.511 470.518 194.432C471.313 194.33 471.958 194.253 472.452 194.202C472.952 194.145 473.316 194.051 473.543 193.92C473.776 193.79 473.893 193.562 473.893 193.239V193.17C473.893 192.33 473.663 191.676 473.202 191.21C472.748 190.744 472.058 190.511 471.131 190.511C470.171 190.511 469.418 190.722 468.873 191.142C468.327 191.562 467.944 192.011 467.722 192.489L465.813 191.807C466.154 191.011 466.609 190.392 467.177 189.949C467.751 189.5 468.376 189.187 469.052 189.011C469.734 188.83 470.404 188.739 471.063 188.739C471.484 188.739 471.967 188.79 472.512 188.892C473.063 188.989 473.594 189.19 474.106 189.497C474.623 189.804 475.052 190.267 475.393 190.886C475.734 191.506 475.904 192.335 475.904 193.375V202H473.893V200.227H473.79C473.654 200.511 473.427 200.815 473.109 201.139C472.79 201.463 472.367 201.739 471.839 201.966C471.31 202.193 470.665 202.307 469.904 202.307ZM470.211 200.5C471.006 200.5 471.677 200.344 472.222 200.031C472.773 199.719 473.188 199.315 473.467 198.821C473.751 198.327 473.893 197.807 473.893 197.261V195.42C473.808 195.523 473.62 195.616 473.33 195.702C473.046 195.781 472.717 195.852 472.342 195.915C471.972 195.972 471.612 196.023 471.259 196.068C470.913 196.108 470.631 196.142 470.415 196.17C469.893 196.239 469.404 196.349 468.95 196.503C468.501 196.651 468.137 196.875 467.859 197.176C467.586 197.472 467.45 197.875 467.45 198.386C467.45 199.085 467.708 199.614 468.225 199.972C468.748 200.324 469.41 200.5 470.211 200.5ZM484.893 202.273C483.666 202.273 482.609 201.983 481.723 201.403C480.837 200.824 480.155 200.026 479.678 199.009C479.2 197.991 478.962 196.83 478.962 195.523C478.962 194.193 479.206 193.02 479.695 192.003C480.189 190.98 480.876 190.182 481.757 189.608C482.643 189.028 483.678 188.739 484.859 188.739C485.78 188.739 486.609 188.909 487.348 189.25C488.087 189.591 488.692 190.068 489.163 190.682C489.635 191.295 489.928 192.011 490.041 192.83H488.03C487.876 192.233 487.536 191.705 487.007 191.244C486.484 190.778 485.78 190.545 484.893 190.545C484.109 190.545 483.422 190.75 482.831 191.159C482.246 191.562 481.788 192.134 481.459 192.872C481.135 193.605 480.973 194.466 480.973 195.455C480.973 196.466 481.132 197.347 481.45 198.097C481.774 198.847 482.229 199.429 482.814 199.844C483.405 200.259 484.098 200.466 484.893 200.466C485.416 200.466 485.891 200.375 486.317 200.193C486.743 200.011 487.104 199.75 487.399 199.409C487.695 199.068 487.905 198.659 488.03 198.182H490.041C489.928 198.955 489.646 199.651 489.197 200.27C488.754 200.884 488.166 201.372 487.433 201.736C486.706 202.094 485.859 202.273 484.893 202.273ZM498.675 188.909V190.614H491.891V188.909H498.675ZM493.868 185.773H495.879V198.25C495.879 198.818 495.962 199.244 496.126 199.528C496.297 199.807 496.513 199.994 496.774 200.091C497.041 200.182 497.322 200.227 497.618 200.227C497.839 200.227 498.021 200.216 498.163 200.193C498.305 200.165 498.419 200.142 498.504 200.125L498.913 201.932C498.777 201.983 498.587 202.034 498.342 202.085C498.098 202.142 497.788 202.17 497.413 202.17C496.845 202.17 496.288 202.048 495.743 201.804C495.203 201.56 494.754 201.188 494.396 200.688C494.044 200.188 493.868 199.557 493.868 198.795V185.773ZM501.7 202V188.909H503.712V202H501.7ZM502.723 186.727C502.331 186.727 501.993 186.594 501.709 186.327C501.43 186.06 501.291 185.739 501.291 185.364C501.291 184.989 501.43 184.668 501.709 184.401C501.993 184.134 502.331 184 502.723 184C503.115 184 503.45 184.134 503.729 184.401C504.013 184.668 504.155 184.989 504.155 185.364C504.155 185.739 504.013 186.06 503.729 186.327C503.45 186.594 503.115 186.727 502.723 186.727ZM518.1 188.909L513.259 202H511.214L506.373 188.909H508.555L512.168 199.341H512.305L515.918 188.909H518.1ZM525.775 202.273C524.513 202.273 523.425 201.994 522.511 201.438C521.602 200.875 520.9 200.091 520.406 199.085C519.917 198.074 519.673 196.898 519.673 195.557C519.673 194.216 519.917 193.034 520.406 192.011C520.9 190.983 521.587 190.182 522.468 189.608C523.354 189.028 524.388 188.739 525.57 188.739C526.252 188.739 526.925 188.852 527.59 189.08C528.255 189.307 528.86 189.676 529.406 190.188C529.951 190.693 530.386 191.364 530.71 192.199C531.033 193.034 531.195 194.062 531.195 195.284V196.136H521.104V194.398H529.15C529.15 193.659 529.002 193 528.707 192.42C528.417 191.841 528.002 191.384 527.462 191.048C526.928 190.713 526.298 190.545 525.57 190.545C524.769 190.545 524.076 190.744 523.491 191.142C522.911 191.534 522.465 192.045 522.153 192.676C521.84 193.307 521.684 193.983 521.684 194.705V195.864C521.684 196.852 521.854 197.69 522.195 198.378C522.542 199.06 523.022 199.58 523.636 199.938C524.249 200.29 524.962 200.466 525.775 200.466C526.303 200.466 526.781 200.392 527.207 200.244C527.638 200.091 528.011 199.864 528.323 199.562C528.636 199.256 528.877 198.875 529.048 198.42L530.991 198.966C530.786 199.625 530.442 200.205 529.96 200.705C529.477 201.199 528.88 201.585 528.17 201.864C527.46 202.136 526.661 202.273 525.775 202.273ZM546.289 207.182C545.317 207.182 544.482 207.057 543.783 206.807C543.085 206.562 542.502 206.239 542.036 205.835C541.576 205.438 541.21 205.011 540.937 204.557L542.539 203.432C542.721 203.67 542.951 203.943 543.229 204.25C543.508 204.562 543.888 204.832 544.371 205.06C544.86 205.293 545.499 205.409 546.289 205.409C547.346 205.409 548.218 205.153 548.906 204.642C549.593 204.131 549.937 203.33 549.937 202.239V199.58H549.766C549.619 199.818 549.408 200.114 549.136 200.466C548.869 200.812 548.482 201.122 547.977 201.395C547.477 201.662 546.8 201.795 545.948 201.795C544.891 201.795 543.942 201.545 543.102 201.045C542.266 200.545 541.604 199.818 541.116 198.864C540.633 197.909 540.391 196.75 540.391 195.386C540.391 194.045 540.627 192.878 541.099 191.884C541.57 190.884 542.227 190.111 543.067 189.565C543.908 189.014 544.88 188.739 545.982 188.739C546.835 188.739 547.511 188.881 548.011 189.165C548.516 189.443 548.903 189.761 549.17 190.119C549.442 190.472 549.653 190.761 549.8 190.989H550.005V188.909H551.948V202.375C551.948 203.5 551.692 204.415 551.181 205.119C550.675 205.83 549.994 206.349 549.136 206.679C548.283 207.014 547.335 207.182 546.289 207.182ZM546.221 199.989C547.028 199.989 547.71 199.804 548.266 199.435C548.823 199.065 549.246 198.534 549.536 197.841C549.826 197.148 549.971 196.318 549.971 195.352C549.971 194.409 549.829 193.577 549.545 192.855C549.261 192.134 548.84 191.568 548.283 191.159C547.727 190.75 547.039 190.545 546.221 190.545C545.369 190.545 544.658 190.761 544.09 191.193C543.528 191.625 543.104 192.205 542.82 192.932C542.542 193.659 542.403 194.466 542.403 195.352C542.403 196.261 542.545 197.065 542.829 197.764C543.119 198.457 543.545 199.003 544.107 199.401C544.675 199.793 545.38 199.989 546.221 199.989ZM559.482 202.307C558.653 202.307 557.9 202.151 557.224 201.838C556.548 201.52 556.011 201.062 555.613 200.466C555.215 199.864 555.016 199.136 555.016 198.284C555.016 197.534 555.164 196.926 555.46 196.46C555.755 195.989 556.15 195.619 556.644 195.352C557.138 195.085 557.684 194.886 558.281 194.756C558.883 194.619 559.488 194.511 560.096 194.432C560.891 194.33 561.536 194.253 562.031 194.202C562.531 194.145 562.894 194.051 563.121 193.92C563.354 193.79 563.471 193.562 563.471 193.239V193.17C563.471 192.33 563.241 191.676 562.781 191.21C562.326 190.744 561.636 190.511 560.71 190.511C559.749 190.511 558.996 190.722 558.451 191.142C557.906 191.562 557.522 192.011 557.3 192.489L555.391 191.807C555.732 191.011 556.187 190.392 556.755 189.949C557.329 189.5 557.954 189.187 558.63 189.011C559.312 188.83 559.982 188.739 560.641 188.739C561.062 188.739 561.545 188.79 562.09 188.892C562.641 188.989 563.173 189.19 563.684 189.497C564.201 189.804 564.63 190.267 564.971 190.886C565.312 191.506 565.482 192.335 565.482 193.375V202H563.471V200.227H563.369C563.232 200.511 563.005 200.815 562.687 201.139C562.369 201.463 561.945 201.739 561.417 201.966C560.888 202.193 560.244 202.307 559.482 202.307ZM559.789 200.5C560.585 200.5 561.255 200.344 561.8 200.031C562.352 199.719 562.766 199.315 563.045 198.821C563.329 198.327 563.471 197.807 563.471 197.261V195.42C563.386 195.523 563.198 195.616 562.908 195.702C562.624 195.781 562.295 195.852 561.92 195.915C561.55 195.972 561.19 196.023 560.837 196.068C560.491 196.108 560.21 196.142 559.994 196.17C559.471 196.239 558.982 196.349 558.528 196.503C558.079 196.651 557.715 196.875 557.437 197.176C557.164 197.472 557.028 197.875 557.028 198.386C557.028 199.085 557.286 199.614 557.803 199.972C558.326 200.324 558.988 200.5 559.789 200.5ZM569.153 202V188.909H571.097V190.955H571.267C571.54 190.256 571.98 189.713 572.588 189.327C573.196 188.935 573.926 188.739 574.778 188.739C575.642 188.739 576.361 188.935 576.935 189.327C577.514 189.713 577.966 190.256 578.29 190.955H578.426C578.761 190.278 579.264 189.741 579.935 189.344C580.605 188.94 581.409 188.739 582.347 188.739C583.517 188.739 584.474 189.105 585.219 189.838C585.963 190.565 586.335 191.699 586.335 193.239V202H584.324V193.239C584.324 192.273 584.06 191.582 583.531 191.168C583.003 190.753 582.381 190.545 581.665 190.545C580.744 190.545 580.031 190.824 579.526 191.381C579.02 191.932 578.767 192.631 578.767 193.477V202H576.722V193.034C576.722 192.29 576.48 191.69 575.997 191.236C575.514 190.776 574.892 190.545 574.131 190.545C573.608 190.545 573.119 190.685 572.665 190.963C572.216 191.241 571.852 191.628 571.574 192.122C571.301 192.611 571.165 193.176 571.165 193.818V202H569.153ZM595.501 202.273C594.24 202.273 593.152 201.994 592.237 201.438C591.328 200.875 590.626 200.091 590.132 199.085C589.643 198.074 589.399 196.898 589.399 195.557C589.399 194.216 589.643 193.034 590.132 192.011C590.626 190.983 591.314 190.182 592.195 189.608C593.081 189.028 594.115 188.739 595.297 188.739C595.979 188.739 596.652 188.852 597.317 189.08C597.982 189.307 598.587 189.676 599.132 190.188C599.678 190.693 600.112 191.364 600.436 192.199C600.76 193.034 600.922 194.062 600.922 195.284V196.136H590.831V194.398H598.876C598.876 193.659 598.729 193 598.433 192.42C598.143 191.841 597.729 191.384 597.189 191.048C596.655 190.713 596.024 190.545 595.297 190.545C594.496 190.545 593.803 190.744 593.217 191.142C592.638 191.534 592.192 192.045 591.879 192.676C591.567 193.307 591.411 193.983 591.411 194.705V195.864C591.411 196.852 591.581 197.69 591.922 198.378C592.268 199.06 592.749 199.58 593.362 199.938C593.976 200.29 594.689 200.466 595.501 200.466C596.03 200.466 596.507 200.392 596.933 200.244C597.365 200.091 597.737 199.864 598.05 199.562C598.362 199.256 598.604 198.875 598.774 198.42L600.717 198.966C600.513 199.625 600.169 200.205 599.686 200.705C599.203 201.199 598.607 201.585 597.896 201.864C597.186 202.136 596.388 202.273 595.501 202.273Z" fill="black"/> +<path d="M424.659 130.909L423.666 131.027L423.771 131.909H424.659V130.909ZM423.415 128.898L422.866 129.734L422.866 129.734L423.415 128.898ZM418.71 128.557L418.314 127.639L418.311 127.64L418.71 128.557ZM417.364 129.588L416.56 128.993L416.555 129L417.364 129.588ZM417.219 132.281L416.385 132.833L416.39 132.841L416.396 132.849L417.219 132.281ZM418.088 133.108L417.556 133.954L417.566 133.961L418.088 133.108ZM419.196 133.645L418.851 134.584L418.863 134.588L419.196 133.645ZM420.261 133.977L420.521 133.012L420.516 133.01L420.261 133.977ZM422.034 134.455L421.774 135.42L421.78 135.422L422.034 134.455ZM423.551 134.949L423.198 135.884L423.201 135.886L423.551 134.949ZM425.162 135.81L424.582 136.625L424.593 136.632L425.162 135.81ZM426.44 137.19L427.299 136.678L427.299 136.678L426.44 137.19ZM426.202 141.818L425.363 141.274L425.36 141.278L426.202 141.818ZM424.054 143.634L423.624 142.731L423.622 142.732L424.054 143.634ZM417.389 143.702L416.984 144.616L416.986 144.617L417.389 143.702ZM415.241 142.014L414.429 142.597L414.432 142.601L415.241 142.014ZM414.364 139.5V138.5H413.29L413.366 139.571L414.364 139.5ZM416.545 139.5L417.542 139.414L417.463 138.5H416.545V139.5ZM417.21 141.136L416.465 141.803L416.474 141.813L417.21 141.136ZM418.693 142.091L418.361 143.034L418.372 143.038L418.693 142.091ZM422.81 142.006L423.187 142.932L423.194 142.929L422.81 142.006ZM424.335 140.898L425.118 141.52L425.122 141.516L424.335 140.898ZM424.412 137.812L425.159 137.147L425.159 137.147L424.412 137.812ZM423.134 136.926L422.738 137.845L422.738 137.845L423.134 136.926ZM421.42 136.33L421.146 137.291L421.153 137.293L421.42 136.33ZM419.273 135.716L418.996 136.677L418.998 136.677L419.273 135.716ZM416.034 134.037L415.359 134.775L415.359 134.775L416.034 134.037ZM415.634 128.625L414.825 128.036L414.825 128.037L415.634 128.625ZM417.781 126.92L418.191 127.833L418.194 127.831L417.781 126.92ZM423.807 126.912L423.388 127.82L423.393 127.822L423.807 126.912ZM425.886 128.548L425.082 129.142L425.085 129.146L425.886 128.548ZM426.705 130.909V131.909H427.737L427.704 130.877L426.705 130.909ZM425.652 130.791C425.515 129.634 424.938 128.701 423.963 128.062L422.866 129.734C423.346 130.049 423.599 130.457 423.666 131.027L425.652 130.791ZM423.963 128.062C423.041 127.456 421.948 127.182 420.739 127.182V129.182C421.643 129.182 422.334 129.385 422.866 129.734L423.963 128.062ZM420.739 127.182C419.859 127.182 419.043 127.324 418.314 127.639L419.106 129.475C419.536 129.29 420.072 129.182 420.739 129.182V127.182ZM418.311 127.64C417.601 127.949 417.003 128.395 416.56 128.993L418.167 130.183C418.372 129.906 418.672 129.664 419.11 129.474L418.311 127.64ZM416.555 129C416.109 129.614 415.886 130.318 415.886 131.08H417.886C417.886 130.727 417.982 130.438 418.172 130.176L416.555 129ZM415.886 131.08C415.886 131.71 416.038 132.309 416.385 132.833L418.053 131.73C417.956 131.583 417.886 131.381 417.886 131.08H415.886ZM416.396 132.849C416.703 133.295 417.093 133.664 417.556 133.954L418.621 132.261C418.378 132.109 418.189 131.927 418.042 131.714L416.396 132.849ZM417.566 133.961C417.974 134.211 418.403 134.419 418.851 134.583L419.541 132.706C419.217 132.587 418.907 132.437 418.611 132.255L417.566 133.961ZM418.863 134.588C419.27 134.731 419.652 134.851 420.007 134.944L420.516 133.01C420.223 132.933 419.895 132.831 419.529 132.702L418.863 134.588ZM420.001 134.943L421.774 135.42L422.294 133.489L420.521 133.012L420.001 134.943ZM421.78 135.422C422.194 135.53 422.666 135.683 423.198 135.884L423.904 134.013C423.323 133.794 422.784 133.617 422.288 133.487L421.78 135.422ZM423.201 135.886C423.679 136.064 424.139 136.309 424.582 136.625L425.741 134.995C425.162 134.583 424.549 134.254 423.901 134.012L423.201 135.886ZM424.593 136.632C424.987 136.905 425.316 137.258 425.581 137.702L427.299 136.678C426.894 135.998 426.371 135.43 425.731 134.987L424.593 136.632ZM425.581 137.702C425.804 138.076 425.943 138.579 425.943 139.261H427.943C427.943 138.308 427.747 137.43 427.299 136.678L425.581 137.702ZM425.943 139.261C425.943 140.019 425.748 140.681 425.363 141.274L427.04 142.363C427.644 141.433 427.943 140.39 427.943 139.261H425.943ZM425.36 141.278C424.987 141.859 424.426 142.349 423.624 142.731L424.484 144.536C425.569 144.02 426.439 143.3 427.043 142.358L425.36 141.278ZM423.622 142.732C422.853 143.1 421.87 143.307 420.636 143.307V145.307C422.085 145.307 423.38 145.065 424.486 144.535L423.622 142.732ZM420.636 143.307C419.492 143.307 418.553 143.122 417.793 142.787L416.986 144.617C418.055 145.088 419.281 145.307 420.636 145.307V143.307ZM417.795 142.788C417.028 142.447 416.459 141.99 416.051 141.428L414.432 142.601C415.07 143.481 415.932 144.149 416.984 144.616L417.795 142.788ZM416.054 141.432C415.653 140.872 415.417 140.214 415.361 139.429L413.366 139.571C413.446 140.695 413.796 141.713 414.429 142.597L416.054 141.432ZM414.364 140.5H416.545V138.5H414.364V140.5ZM415.549 139.586C415.622 140.429 415.914 141.188 416.465 141.803L417.955 140.47C417.733 140.221 417.583 139.889 417.542 139.414L415.549 139.586ZM416.474 141.813C416.987 142.371 417.625 142.775 418.361 143.034L419.026 141.148C418.569 140.987 418.217 140.754 417.946 140.459L416.474 141.813ZM418.372 143.038C419.086 143.281 419.844 143.398 420.636 143.398V141.398C420.043 141.398 419.505 141.31 419.015 141.144L418.372 143.038ZM420.636 143.398C421.552 143.398 422.407 143.249 423.187 142.932L422.433 141.079C421.928 141.285 421.335 141.398 420.636 141.398V143.398ZM423.194 142.929C423.968 142.607 424.622 142.143 425.118 141.52L423.553 140.275C423.298 140.595 422.936 140.87 422.426 141.082L423.194 142.929ZM425.122 141.516C425.642 140.853 425.898 140.076 425.898 139.227H423.898C423.898 139.651 423.778 139.988 423.549 140.28L425.122 141.516ZM425.898 139.227C425.898 138.452 425.676 137.728 425.159 137.147L423.665 138.478C423.796 138.624 423.898 138.844 423.898 139.227H425.898ZM425.159 137.147C424.722 136.657 424.167 136.282 423.529 136.008L422.738 137.845C423.157 138.025 423.455 138.241 423.665 138.478L425.159 137.147ZM423.529 136.008C422.955 135.761 422.341 135.547 421.688 135.366L421.153 137.293C421.728 137.453 422.256 137.637 422.738 137.845L423.529 136.008ZM421.695 135.368L419.547 134.754L418.998 136.677L421.146 137.291L421.695 135.368ZM419.549 134.755C418.289 134.392 417.36 133.895 416.709 133.299L415.359 134.775C416.299 135.634 417.53 136.255 418.996 136.677L419.549 134.755ZM416.709 133.299C416.141 132.78 415.841 132.106 415.841 131.182H413.841C413.841 132.61 414.336 133.84 415.359 134.775L416.709 133.299ZM415.841 131.182C415.841 130.396 416.049 129.754 416.443 129.213L414.825 128.037C414.161 128.95 413.841 130.013 413.841 131.182H415.841ZM416.442 129.214C416.865 128.633 417.438 128.171 418.191 127.833L417.371 126.008C416.329 126.477 415.47 127.151 414.825 128.036L416.442 129.214ZM418.194 127.831C418.952 127.488 419.818 127.307 420.807 127.307V125.307C419.568 125.307 418.417 125.535 417.369 126.009L418.194 127.831ZM420.807 127.307C421.811 127.307 422.665 127.486 423.388 127.82L424.226 126.004C423.199 125.531 422.052 125.307 420.807 125.307V127.307ZM423.393 127.822C424.131 128.158 424.683 128.601 425.082 129.142L426.691 127.955C426.067 127.109 425.232 126.461 424.221 126.002L423.393 127.822ZM425.085 129.146C425.477 129.672 425.683 130.261 425.705 130.941L427.704 130.877C427.669 129.796 427.33 128.811 426.688 127.95L425.085 129.146ZM426.705 129.909H424.659V131.909H426.705V129.909ZM432.293 143.403L431.746 144.24L431.746 144.24L432.293 143.403ZM430.265 134.003L429.365 133.568L429.364 133.57L430.265 134.003ZM432.327 131.608L432.873 132.446L432.875 132.445L432.327 131.608ZM439.734 132.682L440.527 132.072L440.527 132.072L439.734 132.682ZM440.612 134.83V135.83H441.76L441.602 134.692L440.612 134.83ZM438.6 134.83L437.632 135.079L437.825 135.83H438.6V134.83ZM437.577 133.244L436.912 133.991L436.921 133.998L437.577 133.244ZM433.401 133.159L433.969 133.982L433.97 133.981L433.401 133.159ZM432.029 134.872L431.116 134.465L431.114 134.468L432.029 134.872ZM432.021 140.097L431.1 140.487L431.103 140.493L432.021 140.097ZM433.384 141.844L432.806 142.66L432.81 142.662L433.384 141.844ZM436.887 142.193L436.495 141.273L436.495 141.273L436.887 142.193ZM437.969 141.409L438.725 142.064L438.725 142.064L437.969 141.409ZM438.6 140.182V139.182H437.828L437.633 139.928L438.6 140.182ZM440.612 140.182L441.601 140.327L441.769 139.182H440.612V140.182ZM439.768 142.27L438.958 141.683L438.957 141.684L439.768 142.27ZM438.004 143.736L438.445 144.633L438.448 144.632L438.004 143.736ZM435.464 143.273C434.399 143.273 433.54 143.024 432.841 142.566L431.746 144.24C432.82 144.942 434.074 145.273 435.464 145.273V143.273ZM432.841 142.566C432.119 142.095 431.557 141.443 431.153 140.584L429.343 141.433C429.894 142.608 430.695 143.553 431.746 144.24L432.841 142.566ZM431.153 140.584C430.748 139.72 430.532 138.707 430.532 137.523H428.532C428.532 138.953 428.794 140.263 429.343 141.433L431.153 140.584ZM430.532 137.523C430.532 136.317 430.753 135.296 431.166 134.436L429.364 133.57C428.799 134.744 428.532 136.07 428.532 137.523H430.532ZM431.165 134.438C431.587 133.566 432.158 132.912 432.873 132.446L431.781 130.77C430.736 131.451 429.932 132.395 429.365 133.568L431.165 134.438ZM432.875 132.445C433.58 131.984 434.419 131.739 435.43 131.739V129.739C434.077 129.739 432.848 130.073 431.78 130.771L432.875 132.445ZM435.43 131.739C436.225 131.739 436.908 131.885 437.499 132.158L438.337 130.342C437.451 129.933 436.476 129.739 435.43 129.739V131.739ZM437.499 132.158C438.099 132.435 438.573 132.812 438.941 133.291L440.527 132.072C439.951 131.324 439.215 130.747 438.337 130.342L437.499 132.158ZM438.941 133.291C439.3 133.758 439.53 134.309 439.621 134.967L441.602 134.692C441.466 133.714 441.111 132.833 440.527 132.072L438.941 133.291ZM440.612 133.83H438.6V135.83H440.612V133.83ZM439.569 134.581C439.358 133.762 438.893 133.064 438.234 132.49L436.921 133.998C437.318 134.345 437.535 134.704 437.632 135.079L439.569 134.581ZM438.243 132.498C437.492 131.829 436.528 131.545 435.464 131.545V133.545C436.172 133.545 436.617 133.728 436.912 133.991L438.243 132.498ZM435.464 131.545C434.496 131.545 433.605 131.801 432.832 132.337L433.97 133.981C434.379 133.699 434.864 133.545 435.464 133.545V131.545ZM432.834 132.336C432.077 132.857 431.51 133.582 431.116 134.465L432.942 135.28C433.208 134.685 433.555 134.268 433.969 133.982L432.834 132.336ZM431.114 134.468C430.723 135.354 430.543 136.358 430.543 137.455H432.543C432.543 136.573 432.688 135.856 432.944 135.276L431.114 134.468ZM430.543 137.455C430.543 138.569 430.718 139.588 431.1 140.487L432.941 139.706C432.686 139.106 432.543 138.363 432.543 137.455H430.543ZM431.103 140.493C431.489 141.387 432.051 142.125 432.806 142.66L433.962 141.028C433.547 140.733 433.2 140.306 432.939 139.7L431.103 140.493ZM432.81 142.662C433.586 143.207 434.485 143.466 435.464 143.466V141.466C434.852 141.466 434.364 141.31 433.959 141.025L432.81 142.662ZM435.464 143.466C436.104 143.466 436.714 143.354 437.28 143.113L436.495 141.273C436.208 141.396 435.869 141.466 435.464 141.466V143.466ZM437.28 143.113C437.841 142.873 438.328 142.523 438.725 142.064L437.214 140.754C437.02 140.977 436.785 141.149 436.495 141.273L437.28 143.113ZM438.725 142.064C439.13 141.597 439.407 141.047 439.568 140.435L437.633 139.928C437.543 140.272 437.4 140.54 437.214 140.754L438.725 142.064ZM438.6 141.182H440.612V139.182H438.6V141.182ZM439.622 140.036C439.531 140.653 439.31 141.197 438.958 141.683L440.577 142.857C441.123 142.104 441.464 141.256 441.601 140.327L439.622 140.036ZM438.957 141.684C438.617 142.156 438.159 142.543 437.559 142.84L438.448 144.632C439.314 144.202 440.033 143.611 440.578 142.855L438.957 141.684ZM437.562 142.839C436.996 143.117 436.306 143.273 435.464 143.273V145.273C436.554 145.273 437.557 145.07 438.445 144.633L437.562 142.839ZM445.146 143.838L444.72 144.743L444.726 144.746L445.146 143.838ZM443.535 142.466L442.7 143.017L442.703 143.021L443.535 142.466ZM443.381 138.46L444.226 138.996L444.229 138.991L443.381 138.46ZM446.202 136.756L446.416 137.733L446.423 137.731L446.202 136.756ZM448.018 136.432L447.89 135.44L447.888 135.44L448.018 136.432ZM449.952 136.202L450.055 137.196L450.065 137.195L449.952 136.202ZM451.043 135.92L450.554 135.048L450.545 135.054L451.043 135.92ZM450.702 133.21L449.987 133.909L449.991 133.913L450.702 133.21ZM446.373 133.142L446.983 133.934L446.983 133.934L446.373 133.142ZM445.222 134.489L444.886 135.43L445.745 135.737L446.129 134.91L445.222 134.489ZM443.313 133.807L442.394 133.413L441.975 134.391L442.977 134.749L443.313 133.807ZM444.677 131.949L445.292 132.737L445.293 132.737L444.677 131.949ZM446.552 131.011L446.804 131.979L446.81 131.978L446.552 131.011ZM450.012 130.892L449.828 131.875L449.839 131.877L450.012 130.892ZM451.606 131.497L451.091 132.355L451.096 132.357L451.606 131.497ZM452.893 132.886L452.017 133.369L452.017 133.369L452.893 132.886ZM453.404 144V145H454.404V144H453.404ZM451.393 144H450.393V145H451.393V144ZM451.393 142.227H452.393V141.227H451.393V142.227ZM451.29 142.227V141.227H450.661L450.389 141.795L451.29 142.227ZM450.609 143.139L451.322 143.84L451.322 143.84L450.609 143.139ZM449.339 143.966L448.944 143.047L449.339 143.966ZM449.722 142.031L449.229 141.161L449.225 141.164L449.722 142.031ZM450.967 140.821L450.1 140.323L450.095 140.33L450.967 140.821ZM451.393 137.42H452.393V134.658L450.625 136.78L451.393 137.42ZM450.83 137.702L451.1 138.665L451.112 138.661L450.83 137.702ZM449.842 137.915L449.994 138.903L450.006 138.901L449.842 137.915ZM448.759 138.068L448.873 139.062L448.887 139.06L448.759 138.068ZM447.915 138.17L448.045 139.162L448.046 139.162L447.915 138.17ZM446.45 138.503L446.762 139.453L446.769 139.45L446.45 138.503ZM445.359 139.176L444.624 138.497L444.624 138.498L445.359 139.176ZM445.725 141.972L445.156 142.794L445.166 142.801L445.725 141.972ZM447.404 143.307C446.703 143.307 446.095 143.175 445.565 142.93L444.726 144.746C445.548 145.126 446.446 145.307 447.404 145.307V143.307ZM445.571 142.933C445.053 142.689 444.659 142.35 444.367 141.911L442.703 143.021C443.206 143.775 443.886 144.351 444.72 144.743L445.571 142.933ZM444.369 141.915C444.098 141.504 443.938 140.977 443.938 140.284H441.938C441.938 141.296 442.176 142.223 442.7 143.017L444.369 141.915ZM443.938 140.284C443.938 139.658 444.062 139.254 444.226 138.996L442.537 137.925C442.11 138.599 441.938 139.41 441.938 140.284H443.938ZM444.229 138.991C444.432 138.668 444.698 138.418 445.041 138.232L444.091 136.472C443.446 136.821 442.922 137.31 442.534 137.929L444.229 138.991ZM445.041 138.232C445.447 138.013 445.903 137.845 446.416 137.733L445.988 135.779C445.309 135.928 444.674 136.157 444.091 136.472L445.041 138.232ZM446.423 137.731C446.996 137.601 447.57 137.499 448.147 137.423L447.888 135.44C447.249 135.524 446.614 135.637 445.982 135.78L446.423 137.731ZM448.145 137.424C448.937 137.322 449.573 137.246 450.055 137.196L449.85 135.207C449.344 135.259 448.69 135.337 447.89 135.44L448.145 137.424ZM450.065 137.195C450.599 137.135 451.131 137.023 451.542 136.787L450.545 135.054C450.501 135.079 450.306 135.155 449.84 135.208L450.065 137.195ZM451.533 136.793C452.153 136.445 452.393 135.833 452.393 135.239H450.393C450.393 135.283 450.385 135.256 450.415 135.196C450.431 135.166 450.453 135.134 450.481 135.106C450.508 135.078 450.535 135.059 450.554 135.048L451.533 136.793ZM452.393 135.239V135.17H450.393V135.239H452.393ZM452.393 135.17C452.393 134.145 452.107 133.21 451.414 132.507L449.991 133.913C450.218 134.143 450.393 134.515 450.393 135.17H452.393ZM451.418 132.512C450.708 131.784 449.712 131.511 448.631 131.511V133.511C449.403 133.511 449.788 133.705 449.987 133.909L451.418 132.512ZM448.631 131.511C447.536 131.511 446.54 131.751 445.762 132.35L446.983 133.934C447.297 133.693 447.807 133.511 448.631 133.511V131.511ZM445.762 132.35C445.128 132.839 444.622 133.407 444.315 134.068L446.129 134.91C446.266 134.616 446.527 134.286 446.983 133.934L445.762 132.35ZM445.559 133.547L443.65 132.865L442.977 134.749L444.886 135.43L445.559 133.547ZM444.232 134.201C444.52 133.529 444.881 133.058 445.292 132.737L444.062 131.16C443.336 131.726 442.788 132.493 442.394 133.413L444.232 134.201ZM445.293 132.737C445.764 132.368 446.266 132.119 446.804 131.979L446.3 130.044C445.486 130.256 444.738 130.632 444.061 131.161L445.293 132.737ZM446.81 131.978C447.413 131.817 447.997 131.739 448.563 131.739V129.739C447.811 129.739 447.054 129.842 446.294 130.045L446.81 131.978ZM448.563 131.739C448.906 131.739 449.325 131.781 449.828 131.875L450.196 129.909C449.608 129.799 449.061 129.739 448.563 129.739V131.739ZM449.839 131.877C450.262 131.951 450.678 132.107 451.091 132.355L452.12 130.64C451.511 130.274 450.864 130.026 450.185 129.907L449.839 131.877ZM451.096 132.357C451.434 132.558 451.747 132.878 452.017 133.369L453.769 132.404C453.357 131.656 452.812 131.05 452.116 130.637L451.096 132.357ZM452.017 133.369C452.247 133.787 452.404 134.43 452.404 135.375H454.404C454.404 134.24 454.22 133.225 453.769 132.404L452.017 133.369ZM452.404 135.375V144H454.404V135.375H452.404ZM453.404 143H451.393V145H453.404V143ZM452.393 144V142.227H450.393V144H452.393ZM451.393 141.227H451.29V143.227H451.393V141.227ZM450.389 141.795C450.316 141.946 450.167 142.161 449.895 142.438L451.322 143.84C451.686 143.469 451.992 143.076 452.192 142.66L450.389 141.795ZM449.895 142.438C449.689 142.649 449.383 142.858 448.944 143.047L449.734 144.885C450.351 144.619 450.892 144.278 451.322 143.84L449.895 142.438ZM448.944 143.047C448.573 143.207 448.071 143.307 447.404 143.307V145.307C448.26 145.307 449.047 145.18 449.734 144.885L448.944 143.047ZM447.711 143.5C448.635 143.5 449.488 143.318 450.219 142.899L449.225 141.164C448.866 141.369 448.378 141.5 447.711 141.5V143.5ZM450.216 142.901C450.906 142.51 451.46 141.982 451.838 141.312L450.095 140.33C449.916 140.648 449.641 140.928 449.229 141.161L450.216 142.901ZM451.834 141.319C452.201 140.681 452.393 139.99 452.393 139.261H450.393C450.393 139.624 450.301 139.973 450.1 140.323L451.834 141.319ZM452.393 139.261V137.42H450.393V139.261H452.393ZM450.625 136.78C450.669 136.727 450.709 136.696 450.726 136.684C450.744 136.67 450.751 136.668 450.741 136.673C450.731 136.678 450.711 136.687 450.677 136.7C450.644 136.712 450.601 136.727 450.548 136.742L451.112 138.661C451.292 138.608 451.471 138.544 451.635 138.462C451.789 138.385 451.994 138.261 452.161 138.061L450.625 136.78ZM450.561 136.739C450.319 136.806 450.026 136.87 449.677 136.928L450.006 138.901C450.407 138.834 450.773 138.756 451.1 138.665L450.561 136.739ZM449.69 136.926C449.328 136.982 448.975 137.032 448.631 137.076L448.887 139.06C449.248 139.013 449.617 138.961 449.994 138.903L449.69 136.926ZM448.645 137.075C448.296 137.115 448.009 137.15 447.785 137.179L448.046 139.162C448.254 139.135 448.529 139.101 448.873 139.062L448.645 137.075ZM447.786 137.179C447.205 137.255 446.652 137.379 446.13 137.555L446.769 139.45C447.156 139.32 447.581 139.223 448.045 139.162L447.786 137.179ZM446.137 137.553C445.552 137.746 445.035 138.054 444.624 138.497L446.093 139.855C446.24 139.696 446.45 139.556 446.762 139.453L446.137 137.553ZM444.624 138.498C444.138 139.024 443.95 139.694 443.95 140.386H445.95C445.95 140.056 446.034 139.919 446.093 139.854L444.624 138.498ZM443.95 140.386C443.95 141.371 444.336 142.226 445.156 142.794L446.294 141.149C446.08 141.001 445.95 140.8 445.95 140.386H443.95ZM445.166 142.801C445.894 143.291 446.764 143.5 447.711 143.5V141.5C447.055 141.5 446.602 141.357 446.284 141.142L445.166 142.801ZM459.087 144V145H460.087V144H459.087ZM457.075 144H456.075V145H457.075V144ZM457.075 130.909V129.909H456.075V130.909H457.075ZM459.018 130.909H460.018V129.909H459.018V130.909ZM459.018 132.955H458.018V133.955H459.018V132.955ZM459.189 132.955V133.955H459.829L460.097 133.374L459.189 132.955ZM460.587 131.352L461.129 132.192L461.134 132.189L460.587 131.352ZM465.334 131.284L464.854 132.161L464.86 132.165L465.334 131.284ZM466.885 132.92L465.992 133.37L465.993 133.373L466.885 132.92ZM467.439 144V145H468.439V144H467.439ZM465.428 144H464.428V145H465.428V144ZM464.626 133.415L463.891 134.092L463.894 134.096L464.626 133.415ZM460.706 132.963L460.224 132.087L460.219 132.089L460.706 132.963ZM459.521 134.182L458.642 133.705L458.642 133.705L459.521 134.182ZM458.087 136.125V144H460.087V136.125H458.087ZM459.087 143H457.075V145H459.087V143ZM458.075 144V130.909H456.075V144H458.075ZM457.075 131.909H459.018V129.909H457.075V131.909ZM458.018 130.909V132.955H460.018V130.909H458.018ZM459.018 133.955H459.189V131.955H459.018V133.955ZM460.097 133.374C460.323 132.884 460.661 132.495 461.129 132.192L460.044 130.512C459.263 131.017 458.669 131.696 458.281 132.535L460.097 133.374ZM461.134 132.189C461.552 131.916 462.151 131.739 463.007 131.739V129.739C461.886 129.739 460.872 129.971 460.039 130.516L461.134 132.189ZM463.007 131.739C463.754 131.739 464.359 131.891 464.854 132.161L465.814 130.407C464.979 129.95 464.033 129.739 463.007 129.739V131.739ZM464.86 132.165C465.328 132.417 465.706 132.804 465.992 133.37L467.778 132.47C467.325 131.571 466.669 130.867 465.808 130.404L464.86 132.165ZM465.993 133.373C466.27 133.919 466.439 134.671 466.439 135.682H468.439C468.439 134.465 468.238 133.377 467.777 132.468L465.993 133.373ZM466.439 135.682V144H468.439V135.682H466.439ZM467.439 143H465.428V145H467.439V143ZM466.428 144V135.818H464.428V144H466.428ZM466.428 135.818C466.428 134.618 466.113 133.544 465.358 132.733L463.894 134.096C464.208 134.433 464.428 134.962 464.428 135.818H466.428ZM465.362 132.737C464.604 131.915 463.583 131.545 462.428 131.545V133.545C463.135 133.545 463.581 133.756 463.891 134.092L465.362 132.737ZM462.428 131.545C461.636 131.545 460.893 131.718 460.224 132.087L461.188 133.839C461.53 133.651 461.935 133.545 462.428 133.545V131.545ZM460.219 132.089C459.543 132.466 459.017 133.015 458.642 133.705L460.4 134.659C460.605 134.281 460.869 134.017 461.192 133.837L460.219 132.089ZM458.642 133.705C458.255 134.418 458.087 135.238 458.087 136.125H460.087C460.087 135.489 460.208 135.014 460.4 134.659L458.642 133.705ZM484.478 138.545V137.545H482.457L483.683 139.152L484.478 138.545ZM486.796 138.545L487.592 137.94L487.292 137.545H486.796V138.545ZM488.739 141.102L489.539 140.502L489.536 140.497L488.739 141.102ZM489.251 141.784L488.451 142.384L488.452 142.385L489.251 141.784ZM492.148 145.636V146.636H494.152L492.948 145.035L492.148 145.636ZM489.83 145.636L489.029 146.235L489.329 146.636H489.83V145.636ZM487.921 143.08L487.116 143.673L487.12 143.678L487.921 143.08ZM487.444 142.432L488.249 141.839L488.244 141.832L488.239 141.825L487.444 142.432ZM491.867 140.045L490.971 139.601L490.971 139.601L491.867 140.045ZM489.131 143.148L489.663 143.995L489.663 143.995L489.131 143.148ZM481.188 143.148L480.657 143.995L480.657 143.995L481.188 143.148ZM478.452 140.045L479.348 139.601L479.348 139.601L478.452 140.045ZM489.131 127.398L489.663 126.551L489.663 126.551L489.131 127.398ZM491.867 130.5L490.971 130.944L490.971 130.944L491.867 130.5ZM490.06 131.446L489.159 131.879L489.161 131.883L490.06 131.446ZM488.023 129.085L487.492 129.933L487.495 129.934L488.023 129.085ZM482.288 129.085L481.759 128.236L481.757 128.238L482.288 129.085ZM480.251 131.446L479.351 131.009L479.349 131.013L480.251 131.446ZM480.251 139.099L479.349 139.533L479.351 139.537L480.251 139.099ZM482.288 141.46L481.757 142.308L481.759 142.309L482.288 141.46ZM488.023 141.46L487.495 140.611L487.492 140.613L488.023 141.46ZM490.06 139.099L489.161 138.662L489.159 138.666L490.06 139.099ZM484.478 139.545H486.796V137.545H484.478V139.545ZM486 139.151L487.943 141.707L489.536 140.497L487.592 137.94L486 139.151ZM487.939 141.702L488.451 142.384L490.051 141.184L489.539 140.502L487.939 141.702ZM488.452 142.385L491.349 146.237L492.948 145.035L490.05 141.183L488.452 142.385ZM492.148 144.636H489.83V146.636H492.148V144.636ZM490.632 145.038L488.722 142.481L487.12 143.678L489.029 146.235L490.632 145.038ZM488.726 142.486L488.249 141.839L486.639 143.025L487.116 143.673L488.726 142.486ZM488.239 141.825L485.273 137.939L483.683 139.152L486.649 143.038L488.239 141.825ZM491.864 135.273C491.864 136.994 491.554 138.427 490.971 139.601L492.763 140.49C493.51 138.983 493.864 137.233 493.864 135.273H491.864ZM490.971 139.601C490.381 140.793 489.588 141.681 488.6 142.301L489.663 143.995C490.993 143.16 492.024 141.98 492.763 140.49L490.971 139.601ZM488.6 142.301C487.614 142.919 486.478 143.239 485.16 143.239V145.239C486.819 145.239 488.331 144.831 489.663 143.995L488.6 142.301ZM485.16 143.239C483.842 143.239 482.706 142.919 481.72 142.301L480.657 143.995C481.989 144.831 483.5 145.239 485.16 145.239V143.239ZM481.72 142.301C480.731 141.681 479.939 140.793 479.348 139.601L477.556 140.49C478.295 141.98 479.327 143.16 480.657 143.995L481.72 142.301ZM479.348 139.601C478.766 138.427 478.455 136.994 478.455 135.273H476.455C476.455 137.233 476.809 138.983 477.556 140.49L479.348 139.601ZM478.455 135.273C478.455 133.551 478.766 132.119 479.348 130.944L477.556 130.056C476.809 131.563 476.455 133.313 476.455 135.273H478.455ZM479.348 130.944C479.939 129.753 480.731 128.865 481.72 128.245L480.657 126.551C479.327 127.385 478.295 128.566 477.556 130.056L479.348 130.944ZM481.72 128.245C482.706 127.626 483.842 127.307 485.16 127.307V125.307C483.5 125.307 481.989 125.715 480.657 126.551L481.72 128.245ZM485.16 127.307C486.478 127.307 487.614 127.626 488.6 128.245L489.663 126.551C488.331 125.715 486.819 125.307 485.16 125.307V127.307ZM488.6 128.245C489.588 128.865 490.381 129.753 490.971 130.944L492.763 130.056C492.024 128.566 490.993 127.385 489.663 126.551L488.6 128.245ZM490.971 130.944C491.554 132.119 491.864 133.551 491.864 135.273H493.864C493.864 133.313 493.51 131.563 492.763 130.056L490.971 130.944ZM491.819 135.273C491.819 133.655 491.549 132.22 490.96 131.009L489.161 131.883C489.583 132.752 489.819 133.868 489.819 135.273H491.819ZM490.962 131.013C490.391 129.827 489.593 128.884 488.552 128.236L487.495 129.934C488.17 130.354 488.729 130.986 489.159 131.879L490.962 131.013ZM488.554 128.238C487.535 127.599 486.394 127.284 485.16 127.284V129.284C486.039 129.284 486.808 129.503 487.492 129.933L488.554 128.238ZM485.16 127.284C483.925 127.284 482.783 127.599 481.759 128.236L482.816 129.934C483.508 129.503 484.281 129.284 485.16 129.284V127.284ZM481.757 128.238C480.723 128.886 479.927 129.826 479.351 131.009L481.15 131.883C481.586 130.986 482.148 130.353 482.819 129.933L481.757 128.238ZM479.349 131.013C478.768 132.223 478.501 133.656 478.501 135.273H480.501C480.501 133.867 480.734 132.749 481.152 131.879L479.349 131.013ZM478.501 135.273C478.501 136.89 478.768 138.323 479.349 139.533L481.152 138.666C480.734 137.797 480.501 136.679 480.501 135.273H478.501ZM479.351 139.537C479.927 140.719 480.723 141.66 481.757 142.308L482.819 140.613C482.148 140.192 481.586 139.559 481.15 138.662L479.351 139.537ZM481.759 142.309C482.783 142.947 483.925 143.261 485.16 143.261V141.261C484.281 141.261 483.508 141.042 482.816 140.611L481.759 142.309ZM485.16 143.261C486.394 143.261 487.535 142.947 488.554 142.308L487.492 140.613C486.808 141.042 486.039 141.261 485.16 141.261V143.261ZM488.552 142.309C489.593 141.661 490.391 140.719 490.962 139.533L489.159 138.666C488.729 139.56 488.17 140.191 487.495 140.611L488.552 142.309ZM490.96 139.537C491.549 138.326 491.819 136.891 491.819 135.273H489.819C489.819 136.677 489.583 137.794 489.161 138.662L490.96 139.537ZM496.418 144H495.418V145H496.418V144ZM496.418 126.545V125.545H495.418V126.545H496.418ZM505.674 127.244L505.204 128.127L505.208 128.129L505.674 127.244ZM507.617 129.145L506.73 129.607L506.73 129.607L507.617 129.145ZM507.617 134.634L506.733 134.166L506.733 134.166L507.617 134.634ZM505.683 136.509L506.141 137.397L506.146 137.395L505.683 136.509ZM497.577 137.182H496.577V138.182H497.577V137.182ZM497.577 135.273V134.273H496.577V135.273H497.577ZM504.532 134.864L504.103 133.96L504.099 133.962L504.532 134.864ZM505.776 133.705L504.888 133.245L504.886 133.249L505.776 133.705ZM504.523 128.855L504.073 129.748L504.08 129.751L504.523 128.855ZM498.532 128.42V127.42H497.532V128.42H498.532ZM498.532 144V145H499.532V144H498.532ZM504.634 136.159L505.511 135.679L505.227 135.159H504.634V136.159ZM508.93 144V145H510.618L509.807 143.52L508.93 144ZM506.475 144L505.595 144.475L505.878 145H506.475V144ZM502.248 136.159V135.159H500.573L501.368 136.634L502.248 136.159ZM497.418 144V126.545H495.418V144H497.418ZM496.418 127.545H502.316V125.545H496.418V127.545ZM502.316 127.545C503.574 127.545 504.518 127.762 505.204 128.127L506.144 126.362C505.08 125.795 503.785 125.545 502.316 125.545V127.545ZM505.208 128.129C505.92 128.503 506.412 128.997 506.73 129.607L508.504 128.683C507.981 127.68 507.178 126.906 506.14 126.359L505.208 128.129ZM506.73 129.607C507.067 130.253 507.248 131.009 507.248 131.898H509.248C509.248 130.73 509.008 129.65 508.504 128.683L506.73 129.607ZM507.248 131.898C507.248 132.787 507.067 133.534 506.733 134.166L508.501 135.101C509.008 134.142 509.248 133.066 509.248 131.898H507.248ZM506.733 134.166C506.416 134.766 505.926 135.253 505.219 135.622L506.146 137.395C507.178 136.855 507.978 136.091 508.501 135.101L506.733 134.166ZM505.224 135.62C504.54 135.973 503.601 136.182 502.35 136.182V138.182C503.804 138.182 505.086 137.942 506.141 137.397L505.224 135.62ZM502.35 136.182H497.577V138.182H502.35V136.182ZM498.577 137.182V135.273H496.577V137.182H498.577ZM497.577 136.273H502.282V134.273H497.577V136.273ZM502.282 136.273C503.298 136.273 504.213 136.126 504.965 135.765L504.099 133.962C503.715 134.147 503.13 134.273 502.282 134.273V136.273ZM504.961 135.767C505.706 135.413 506.298 134.881 506.667 134.16L504.886 133.249C504.743 133.528 504.505 133.769 504.103 133.96L504.961 135.767ZM506.665 134.164C507.014 133.487 507.168 132.721 507.168 131.898H505.168C505.168 132.473 505.061 132.91 504.888 133.245L506.665 134.164ZM507.168 131.898C507.168 131.074 507.014 130.304 506.671 129.618L504.882 130.513C505.061 130.872 505.168 131.324 505.168 131.898H507.168ZM506.671 129.618C506.303 128.882 505.716 128.33 504.967 127.959L504.08 129.751C504.478 129.949 504.727 130.203 504.882 130.513L506.671 129.618ZM504.974 127.962C504.211 127.577 503.28 127.42 502.248 127.42V129.42C503.102 129.42 503.689 129.554 504.073 129.748L504.974 127.962ZM502.248 127.42H498.532V129.42H502.248V127.42ZM497.532 128.42V144H499.532V128.42H497.532ZM498.532 143H496.418V145H498.532V143ZM503.757 136.64L508.053 144.48L509.807 143.52L505.511 135.679L503.757 136.64ZM508.93 143H506.475V145H508.93V143ZM507.355 143.525L503.128 135.685L501.368 136.634L505.595 144.475L507.355 143.525ZM502.248 137.159H504.634V135.159H502.248V137.159ZM520.395 143.403L519.848 144.24L519.848 144.24L520.395 143.403ZM518.366 134.003L517.466 133.568L517.465 133.57L518.366 134.003ZM520.429 131.608L520.975 132.446L520.976 132.445L520.429 131.608ZM527.835 132.682L528.628 132.072L528.628 132.072L527.835 132.682ZM528.713 134.83V135.83H529.862L529.704 134.692L528.713 134.83ZM526.702 134.83L525.733 135.079L525.926 135.83H526.702V134.83ZM525.679 133.244L525.014 133.991L525.022 133.998L525.679 133.244ZM521.503 133.159L522.07 133.982L522.072 133.981L521.503 133.159ZM520.131 134.872L519.217 134.465L519.216 134.468L520.131 134.872ZM520.122 140.097L519.202 140.487L519.204 140.493L520.122 140.097ZM521.486 141.844L520.908 142.66L520.911 142.662L521.486 141.844ZM524.989 142.193L524.596 141.273L524.596 141.273L524.989 142.193ZM526.071 141.409L526.827 142.064L526.827 142.064L526.071 141.409ZM526.702 140.182V139.182H525.93L525.734 139.928L526.702 140.182ZM528.713 140.182L529.702 140.327L529.871 139.182H528.713V140.182ZM527.869 142.27L527.06 141.683L527.059 141.684L527.869 142.27ZM526.105 143.736L526.547 144.633L526.55 144.632L526.105 143.736ZM523.565 143.273C522.501 143.273 521.641 143.024 520.942 142.566L519.848 144.24C520.921 144.942 522.175 145.273 523.565 145.273V143.273ZM520.942 142.566C520.221 142.095 519.658 141.443 519.255 140.584L517.444 141.433C517.995 142.608 518.796 143.553 519.848 144.24L520.942 142.566ZM519.255 140.584C518.849 139.72 518.634 138.707 518.634 137.523H516.634C516.634 138.953 516.895 140.263 517.444 141.433L519.255 140.584ZM518.634 137.523C518.634 136.317 518.855 135.296 519.268 134.436L517.465 133.57C516.901 134.744 516.634 136.07 516.634 137.523H518.634ZM519.267 134.438C519.689 133.566 520.259 132.912 520.975 132.446L519.883 130.77C518.837 131.451 518.033 132.395 517.466 133.568L519.267 134.438ZM520.976 132.445C521.681 131.984 522.52 131.739 523.531 131.739V129.739C522.178 129.739 520.949 130.073 519.882 130.771L520.976 132.445ZM523.531 131.739C524.326 131.739 525.01 131.885 525.601 132.158L526.439 130.342C525.553 129.933 524.577 129.739 523.531 129.739V131.739ZM525.601 132.158C526.2 132.435 526.674 132.812 527.042 133.291L528.628 132.072C528.053 131.324 527.317 130.747 526.439 130.342L525.601 132.158ZM527.042 133.291C527.401 133.758 527.631 134.309 527.723 134.967L529.704 134.692C529.568 133.714 529.212 132.833 528.628 132.072L527.042 133.291ZM528.713 133.83H526.702V135.83H528.713V133.83ZM527.67 134.581C527.46 133.762 526.995 133.064 526.336 132.49L525.022 133.998C525.42 134.345 525.637 134.704 525.733 135.079L527.67 134.581ZM526.344 132.498C525.594 131.829 524.63 131.545 523.565 131.545V133.545C524.274 133.545 524.719 133.728 525.014 133.991L526.344 132.498ZM523.565 131.545C522.597 131.545 521.707 131.801 520.934 132.337L522.072 133.981C522.48 133.699 522.965 133.545 523.565 133.545V131.545ZM520.935 132.336C520.179 132.857 519.611 133.582 519.217 134.465L521.044 135.28C521.309 134.685 521.656 134.268 522.07 133.982L520.935 132.336ZM519.216 134.468C518.824 135.354 518.645 136.358 518.645 137.455H520.645C520.645 136.573 520.789 135.856 521.045 135.276L519.216 134.468ZM518.645 137.455C518.645 138.569 518.82 139.588 519.202 140.487L521.043 139.706C520.788 139.106 520.645 138.363 520.645 137.455H518.645ZM519.204 140.493C519.59 141.387 520.153 142.125 520.908 142.66L522.064 141.028C521.648 140.733 521.302 140.306 521.04 139.7L519.204 140.493ZM520.911 142.662C521.688 143.207 522.586 143.466 523.565 143.466V141.466C522.954 141.466 522.466 141.31 522.06 141.025L520.911 142.662ZM523.565 143.466C524.206 143.466 524.816 143.354 525.381 143.113L524.596 141.273C524.309 141.396 523.97 141.466 523.565 141.466V143.466ZM525.381 143.113C525.943 142.873 526.429 142.523 526.827 142.064L525.315 140.754C525.122 140.977 524.887 141.149 524.596 141.273L525.381 143.113ZM526.827 142.064C527.232 141.597 527.509 141.047 527.669 140.435L525.734 139.928C525.644 140.272 525.501 140.54 525.315 140.754L526.827 142.064ZM526.702 141.182H528.713V139.182H526.702V141.182ZM527.724 140.036C527.633 140.653 527.412 141.197 527.06 141.683L528.679 142.857C529.225 142.104 529.566 141.256 529.702 140.327L527.724 140.036ZM527.059 141.684C526.718 142.156 526.26 142.543 525.661 142.84L526.55 144.632C527.416 144.202 528.134 143.611 528.68 142.855L527.059 141.684ZM525.664 142.839C525.098 143.117 524.407 143.273 523.565 143.273V145.273C524.655 145.273 525.658 145.07 526.547 144.633L525.664 142.839ZM533.861 143.429L533.325 144.273L533.327 144.275L533.861 143.429ZM531.781 141.068L530.883 141.507L530.885 141.511L531.781 141.068ZM531.781 133.952L530.884 133.511L530.882 133.515L531.781 133.952ZM533.861 131.582L533.327 130.737L533.325 130.738L533.861 131.582ZM540.074 131.582L539.538 132.427L539.54 132.428L540.074 131.582ZM542.153 133.952L541.254 134.389L541.256 134.393L542.153 133.952ZM542.153 141.068L541.257 140.625L541.255 140.629L542.153 141.068ZM540.074 143.429L539.54 142.583L539.538 142.585L540.074 143.429ZM539.188 141.776L538.566 140.992L538.566 140.992L539.188 141.776ZM540.474 139.96L541.412 140.308L541.412 140.308L540.474 139.96ZM540.474 135.077L541.413 134.731L541.413 134.731L540.474 135.077ZM539.188 133.244L539.814 132.465L539.814 132.465L539.188 133.244ZM534.756 133.244L534.129 132.465L534.129 132.465L534.756 133.244ZM533.469 135.077L532.53 134.731L532.53 134.731L533.469 135.077ZM533.469 139.96L532.531 140.308L532.531 140.308L533.469 139.96ZM534.756 141.776L535.378 140.992L535.378 140.992L534.756 141.776ZM536.972 143.273C535.955 143.273 535.108 143.033 534.394 142.583L533.327 144.275C534.398 144.95 535.624 145.273 536.972 145.273V143.273ZM534.397 142.585C533.677 142.128 533.103 141.485 532.678 140.625L530.885 141.511C531.46 142.674 532.272 143.605 533.325 144.273L534.397 142.585ZM532.68 140.629C532.264 139.779 532.04 138.753 532.04 137.523H530.04C530.04 138.997 530.31 140.334 530.883 141.507L532.68 140.629ZM532.04 137.523C532.04 136.28 532.265 135.244 532.681 134.389L530.882 133.515C530.309 134.693 530.04 136.038 530.04 137.523H532.04ZM532.679 134.393C533.104 133.527 533.678 132.883 534.397 132.427L533.325 130.738C532.271 131.407 531.458 132.342 530.884 133.511L532.679 134.393ZM534.394 132.428C535.108 131.978 535.955 131.739 536.972 131.739V129.739C535.624 129.739 534.398 130.062 533.327 130.737L534.394 132.428ZM536.972 131.739C537.988 131.739 538.831 131.978 539.538 132.427L540.61 130.738C539.544 130.061 538.319 129.739 536.972 129.739V131.739ZM539.54 132.428C540.263 132.884 540.835 133.527 541.254 134.389L543.053 133.515C542.483 132.342 541.668 131.406 540.607 130.737L539.54 132.428ZM541.256 134.393C541.676 135.248 541.903 136.281 541.903 137.523H543.903C543.903 136.037 543.631 134.69 543.051 133.511L541.256 134.393ZM541.903 137.523C541.903 138.751 541.677 139.776 541.257 140.625L543.05 141.511C543.63 140.337 543.903 138.999 543.903 137.523H541.903ZM541.255 140.629C540.836 141.485 540.265 142.126 539.54 142.583L540.607 144.275C541.667 143.607 542.482 142.674 543.052 141.507L541.255 140.629ZM539.538 142.585C538.831 143.033 537.988 143.273 536.972 143.273V145.273C538.319 145.273 539.544 144.95 540.61 144.273L539.538 142.585ZM536.972 143.466C538.045 143.466 539.018 143.187 539.809 142.559L538.566 140.992C538.198 141.284 537.693 141.466 536.972 141.466V143.466ZM539.809 142.559C540.543 141.976 541.075 141.215 541.412 140.308L539.537 139.612C539.317 140.205 538.991 140.655 538.566 140.992L539.809 142.559ZM541.412 140.308C541.735 139.437 541.892 138.505 541.892 137.523H539.892C539.892 138.29 539.77 138.984 539.537 139.612L541.412 140.308ZM541.892 137.523C541.892 136.54 541.735 135.607 541.413 134.731L539.536 135.422C539.77 136.058 539.892 136.755 539.892 137.523H541.892ZM541.413 134.731C541.077 133.82 540.547 133.054 539.814 132.465L538.561 134.024C538.987 134.367 539.315 134.822 539.536 135.422L541.413 134.731ZM539.814 132.465C539.022 131.828 538.048 131.545 536.972 131.545V133.545C537.69 133.545 538.194 133.728 538.561 134.024L539.814 132.465ZM536.972 131.545C535.895 131.545 534.921 131.828 534.129 132.465L535.382 134.024C535.749 133.728 536.253 133.545 536.972 133.545V131.545ZM534.129 132.465C533.397 133.054 532.866 133.82 532.53 134.731L534.407 135.422C534.628 134.822 534.956 134.367 535.382 134.024L534.129 132.465ZM532.53 134.731C532.208 135.607 532.051 136.54 532.051 137.523H534.051C534.051 136.755 534.173 136.058 534.407 135.422L532.53 134.731ZM532.051 137.523C532.051 138.505 532.208 139.437 532.531 140.308L534.406 139.612C534.173 138.984 534.051 138.29 534.051 137.523H532.051ZM532.531 140.308C532.868 141.215 533.4 141.976 534.134 142.559L535.378 140.992C534.953 140.655 534.626 140.205 534.406 139.612L532.531 140.308ZM534.134 142.559C534.926 143.187 535.898 143.466 536.972 143.466V141.466C536.25 141.466 535.745 141.284 535.378 140.992L534.134 142.559ZM548.028 143.446L547.473 144.278L547.477 144.281L548.028 143.446ZM546.067 141.094L545.16 141.514L545.161 141.516L546.067 141.094ZM546.067 133.909L545.161 133.486L545.161 133.486L546.067 133.909ZM548.036 131.565L547.488 130.729L547.488 130.729L548.036 131.565ZM552.971 131.165L552.473 132.032L552.484 132.038L552.971 131.165ZM554.113 132.119L553.305 132.709L553.311 132.716L553.316 132.723L554.113 132.119ZM554.735 132.989L553.897 133.534L554.192 133.989H554.735V132.989ZM554.906 132.989V133.989H555.906V132.989H554.906ZM554.906 126.545V125.545H553.906V126.545H554.906ZM556.917 126.545H557.917V125.545H556.917V126.545ZM556.917 144V145H557.917V144H556.917ZM554.974 144H553.974V145H554.974V144ZM554.974 141.989H555.974V140.989H554.974V141.989ZM554.735 141.989V140.989H554.178L553.885 141.462L554.735 141.989ZM554.104 142.892L554.9 143.498L554.904 143.492L554.104 142.892ZM552.937 143.855L553.419 144.731L553.427 144.727L552.937 143.855ZM553.235 141.835L553.838 142.633L553.843 142.629L553.235 141.835ZM554.505 140.071L555.438 140.431L555.439 140.429L554.505 140.071ZM554.513 134.889L553.58 135.248L553.581 135.251L554.513 134.889ZM553.252 133.168L552.655 133.97L552.66 133.973L553.252 133.168ZM549.059 133.202L549.668 133.995L549.669 133.994L549.059 133.202ZM547.789 134.966L546.855 134.609L546.853 134.613L547.789 134.966ZM547.798 139.994L546.861 140.344L546.864 140.352L547.798 139.994ZM549.076 141.801L548.452 142.583L548.461 142.59L549.076 141.801ZM550.917 143.273C550.003 143.273 549.236 143.045 548.578 142.611L547.477 144.281C548.49 144.949 549.649 145.273 550.917 145.273V143.273ZM548.582 142.614C547.916 142.17 547.377 141.535 546.974 140.671L545.161 141.516C545.701 142.675 546.469 143.608 547.473 144.278L548.582 142.614ZM546.975 140.673C546.577 139.815 546.36 138.763 546.36 137.489H544.36C544.36 138.987 544.615 140.338 545.16 141.514L546.975 140.673ZM546.36 137.489C546.36 136.227 546.577 135.184 546.974 134.332L545.161 133.486C544.615 134.657 544.36 136.001 544.36 137.489H546.36ZM546.974 134.332C547.376 133.47 547.916 132.84 548.584 132.402L547.488 130.729C546.475 131.393 545.702 132.326 545.161 133.486L546.974 134.332ZM548.584 132.402C549.247 131.968 550.024 131.739 550.951 131.739V129.739C549.673 129.739 548.507 130.061 547.488 130.729L548.584 132.402ZM550.951 131.739C551.709 131.739 552.187 131.868 552.473 132.032L553.469 130.298C552.766 129.894 551.898 129.739 550.951 129.739V131.739ZM552.484 132.038C552.893 132.266 553.15 132.497 553.305 132.709L554.921 131.53C554.553 131.026 554.048 130.62 553.457 130.291L552.484 132.038ZM553.316 132.723C553.576 133.067 553.768 133.335 553.897 133.534L555.574 132.444C555.407 132.188 555.184 131.876 554.91 131.515L553.316 132.723ZM554.735 133.989H554.906V131.989H554.735V133.989ZM555.906 132.989V126.545H553.906V132.989H555.906ZM554.906 127.545H556.917V125.545H554.906V127.545ZM555.917 126.545V144H557.917V126.545H555.917ZM556.917 143H554.974V145H556.917V143ZM555.974 144V141.989H553.974V144H555.974ZM554.974 140.989H554.735V142.989H554.974V140.989ZM553.885 141.462C553.759 141.665 553.569 141.94 553.304 142.292L554.904 143.492C555.186 143.117 555.415 142.789 555.585 142.515L553.885 141.462ZM553.309 142.286C553.139 142.509 552.867 142.748 552.447 142.983L553.427 144.727C554.018 144.395 554.524 143.991 554.9 143.498L553.309 142.286ZM552.454 142.979C552.149 143.147 551.661 143.273 550.917 143.273V145.273C551.855 145.273 552.713 145.12 553.419 144.731L552.454 142.979ZM551.19 143.466C552.179 143.466 553.081 143.205 553.838 142.633L552.632 141.037C552.275 141.307 551.814 141.466 551.19 141.466V143.466ZM553.843 142.629C554.566 142.076 555.092 141.327 555.438 140.431L553.572 139.711C553.339 140.315 553.018 140.743 552.627 141.041L553.843 142.629ZM555.439 140.429C555.781 139.537 555.94 138.539 555.94 137.455H553.94C553.94 138.347 553.809 139.094 553.571 139.713L555.439 140.429ZM555.94 137.455C555.94 136.383 555.784 135.4 555.446 134.528L553.581 135.251C553.811 135.844 553.94 136.572 553.94 137.455H555.94ZM555.447 134.53C555.104 133.64 554.577 132.9 553.844 132.362L552.66 133.973C553.041 134.254 553.354 134.661 553.58 135.248L555.447 134.53ZM553.85 132.366C553.091 131.8 552.183 131.545 551.19 131.545V133.545C551.832 133.545 552.3 133.705 552.655 133.97L553.85 132.366ZM551.19 131.545C550.16 131.545 549.223 131.813 548.449 132.409L549.669 133.994C550.031 133.715 550.515 133.545 551.19 133.545V131.545ZM548.45 132.408C547.723 132.966 547.196 133.714 546.855 134.609L548.723 135.322C548.95 134.729 549.27 134.301 549.668 133.995L548.45 132.408ZM546.853 134.613C546.526 135.482 546.371 136.433 546.371 137.455H548.371C548.371 136.635 548.495 135.927 548.725 135.319L546.853 134.613ZM546.371 137.455C546.371 138.488 546.529 139.456 546.861 140.344L548.734 139.645C548.498 139.01 548.371 138.284 548.371 137.455H546.371ZM546.864 140.352C547.209 141.253 547.734 142.009 548.452 142.583L549.7 141.019C549.293 140.695 548.965 140.247 548.731 139.636L546.864 140.352ZM548.461 142.59C549.233 143.192 550.165 143.466 551.19 143.466V141.466C550.533 141.466 550.055 141.297 549.691 141.013L548.461 142.59ZM563.104 143.438L562.578 144.288L562.584 144.292L563.104 143.438ZM560.999 141.085L560.099 141.52L560.102 141.526L560.999 141.085ZM560.999 134.011L560.098 133.578L560.097 133.58L560.999 134.011ZM563.062 131.608L563.608 132.446L563.609 132.445L563.062 131.608ZM568.184 131.08L568.507 130.133L568.507 130.133L568.184 131.08ZM569.999 132.188L569.315 132.917L569.319 132.921L569.999 132.188ZM571.303 134.199L572.236 133.837L572.236 133.837L571.303 134.199ZM571.789 138.136V139.136H572.789V138.136H571.789ZM561.698 138.136H560.698V139.136H561.698V138.136ZM561.698 136.398V135.398H560.698V136.398H561.698ZM569.744 136.398V137.398H570.744V136.398H569.744ZM569.3 134.42L568.406 134.868L568.41 134.875L569.3 134.42ZM568.056 133.048L567.524 133.895L567.529 133.898L568.056 133.048ZM564.085 133.142L564.645 133.97L564.647 133.969L564.085 133.142ZM562.746 134.676L561.85 134.232L561.85 134.232L562.746 134.676ZM562.789 140.378L561.893 140.822L561.898 140.831L562.789 140.378ZM564.229 141.938L563.726 142.801L563.732 142.805L564.229 141.938ZM567.8 142.244L568.128 143.189L568.135 143.187L567.8 142.244ZM568.917 141.562L569.611 142.283L569.617 142.276L568.917 141.562ZM569.641 140.42L569.912 139.458L569.027 139.209L568.705 140.069L569.641 140.42ZM571.585 140.966L572.54 141.262L572.844 140.281L571.855 140.003L571.585 140.966ZM570.553 142.705L571.269 143.403L571.273 143.399L570.553 142.705ZM568.763 143.864L569.122 144.797L569.128 144.795L568.763 143.864ZM566.369 143.273C565.258 143.273 564.356 143.029 563.624 142.583L562.584 144.292C563.682 144.96 564.957 145.273 566.369 145.273V143.273ZM563.631 142.587C562.889 142.128 562.312 141.49 561.897 140.644L560.102 141.526C560.675 142.692 561.502 143.622 562.578 144.288L563.631 142.587ZM561.9 140.65C561.488 139.798 561.266 138.776 561.266 137.557H559.266C559.266 139.02 559.533 140.349 560.099 141.52L561.9 140.65ZM561.266 137.557C561.266 136.338 561.488 135.308 561.902 134.442L560.097 133.58C559.533 134.76 559.266 136.094 559.266 137.557H561.266ZM561.901 134.445C562.323 133.566 562.893 132.911 563.608 132.446L562.516 130.77C561.469 131.452 560.665 132.4 560.098 133.578L561.901 134.445ZM563.609 132.445C564.314 131.984 565.153 131.739 566.164 131.739V129.739C564.811 129.739 563.582 130.073 562.515 130.771L563.609 132.445ZM566.164 131.739C566.732 131.739 567.297 131.833 567.86 132.026L568.507 130.133C567.742 129.872 566.959 129.739 566.164 129.739V131.739ZM567.86 132.026C568.383 132.204 568.867 132.496 569.315 132.917L570.683 131.458C570.041 130.856 569.315 130.409 568.507 130.133L567.86 132.026ZM569.319 132.921C569.733 133.304 570.091 133.838 570.371 134.56L572.236 133.837C571.868 132.889 571.356 132.082 570.679 131.454L569.319 132.921ZM570.371 134.56C570.637 135.247 570.789 136.144 570.789 137.284H572.789C572.789 135.981 572.617 134.821 572.236 133.837L570.371 134.56ZM570.789 137.284V138.136H572.789V137.284H570.789ZM571.789 137.136H561.698V139.136H571.789V137.136ZM562.698 138.136V136.398H560.698V138.136H562.698ZM561.698 137.398H569.744V135.398H561.698V137.398ZM570.744 136.398C570.744 135.523 570.568 134.704 570.191 133.966L568.41 134.875C568.624 135.296 568.744 135.795 568.744 136.398H570.744ZM570.195 133.973C569.824 133.232 569.284 132.634 568.584 132.199L567.529 133.898C567.908 134.133 568.197 134.45 568.406 134.868L570.195 133.973ZM568.588 132.201C567.871 131.752 567.05 131.545 566.164 131.545V133.545C566.733 133.545 567.173 133.675 567.524 133.895L568.588 132.201ZM566.164 131.545C565.19 131.545 564.295 131.79 563.522 132.315L564.647 133.969C565.045 133.699 565.536 133.545 566.164 133.545V131.545ZM563.524 132.314C562.801 132.803 562.239 133.447 561.85 134.232L563.642 135.12C563.879 134.643 564.209 134.265 564.645 133.97L563.524 132.314ZM561.85 134.232C561.468 135.004 561.278 135.833 561.278 136.705H563.278C563.278 136.133 563.4 135.609 563.642 135.12L561.85 134.232ZM561.278 136.705V137.864H563.278V136.705H561.278ZM561.278 137.864C561.278 138.963 561.467 139.963 561.893 140.822L563.685 139.934C563.429 139.418 563.278 138.741 563.278 137.864H561.278ZM561.898 140.831C562.324 141.67 562.933 142.339 563.726 142.801L564.733 141.074C564.298 140.82 563.947 140.449 563.68 139.925L561.898 140.831ZM563.732 142.805C564.518 143.256 565.408 143.466 566.369 143.466V141.466C565.705 141.466 565.168 141.323 564.727 141.07L563.732 142.805ZM566.369 143.466C566.99 143.466 567.58 143.379 568.128 143.189L567.473 141.299C567.168 141.405 566.804 141.466 566.369 141.466V143.466ZM568.135 143.187C568.694 142.988 569.19 142.688 569.611 142.283L568.223 140.842C568.019 141.039 567.771 141.194 567.466 141.302L568.135 143.187ZM569.617 142.276C570.045 141.856 570.362 141.348 570.578 140.772L568.705 140.069C568.58 140.402 568.414 140.655 568.216 140.849L569.617 142.276ZM569.371 141.383L571.314 141.929L571.855 140.003L569.912 139.458L569.371 141.383ZM570.629 140.67C570.472 141.178 570.209 141.621 569.834 142.01L571.273 143.399C571.863 142.788 572.288 142.072 572.54 141.262L570.629 140.67ZM569.838 142.006C569.464 142.389 568.991 142.7 568.399 142.933L569.128 144.795C569.957 144.47 570.677 144.009 571.269 143.403L569.838 142.006ZM568.405 142.93C567.826 143.152 567.152 143.273 566.369 143.273V145.273C567.358 145.273 568.28 145.12 569.122 144.797L568.405 142.93ZM420.534 159.909H421.534V158.909H420.534V159.909ZM420.534 161.614V162.614H421.534V161.614H420.534ZM413.75 161.614H412.75V162.614H413.75V161.614ZM413.75 159.909V158.909H412.75V159.909H413.75ZM415.727 156.773V155.773H414.727V156.773H415.727ZM417.739 156.773H418.739V155.773H417.739V156.773ZM417.986 170.528L417.121 171.03L417.127 171.04L417.133 171.051L417.986 170.528ZM418.634 171.091L418.287 172.029L418.299 172.033L418.311 172.038L418.634 171.091ZM420.023 171.193L420.181 172.181L420.2 172.178L420.219 172.174L420.023 171.193ZM420.364 171.125L421.339 170.904L421.124 169.953L420.168 170.144L420.364 171.125ZM420.773 172.932L421.124 173.868L421.941 173.562L421.748 172.711L420.773 172.932ZM420.202 173.085L419.997 172.106L419.986 172.109L419.975 172.111L420.202 173.085ZM417.602 172.804L417.19 173.715L417.193 173.717L417.602 172.804ZM416.256 171.688L415.438 172.263L415.443 172.27L416.256 171.688ZM419.534 159.909V161.614H421.534V159.909H419.534ZM420.534 160.614H413.75V162.614H420.534V160.614ZM414.75 161.614V159.909H412.75V161.614H414.75ZM413.75 160.909H420.534V158.909H413.75V160.909ZM415.727 157.773H417.739V155.773H415.727V157.773ZM416.739 156.773V169.25H418.739V156.773H416.739ZM416.739 169.25C416.739 169.882 416.825 170.519 417.121 171.03L418.851 170.027C418.818 169.969 418.739 169.754 418.739 169.25H416.739ZM417.133 171.051C417.4 171.486 417.78 171.842 418.287 172.029L418.98 170.153C418.964 170.147 418.913 170.127 418.839 170.006L417.133 171.051ZM418.311 172.038C418.687 172.165 419.077 172.227 419.477 172.227V170.227C419.286 170.227 419.114 170.198 418.956 170.144L418.311 172.038ZM419.477 172.227C419.727 172.227 419.966 172.215 420.181 172.181L419.865 170.206C419.795 170.217 419.671 170.227 419.477 170.227V172.227ZM420.219 172.174C420.361 172.145 420.475 172.123 420.56 172.106L420.168 170.144C420.082 170.161 419.969 170.184 419.827 170.213L420.219 172.174ZM419.388 171.346L419.797 173.153L421.748 172.711L421.339 170.904L419.388 171.346ZM420.422 171.995C420.355 172.021 420.221 172.059 419.997 172.106L420.407 174.064C420.671 174.009 420.918 173.945 421.124 173.868L420.422 171.995ZM419.975 172.111C419.832 172.145 419.605 172.17 419.273 172.17V174.17C419.69 174.17 420.083 174.14 420.428 174.059L419.975 172.111ZM419.273 172.17C418.853 172.17 418.435 172.081 418.011 171.891L417.193 173.717C417.861 174.015 418.556 174.17 419.273 174.17V172.17ZM418.015 171.893C417.641 171.724 417.328 171.468 417.069 171.105L415.443 172.27C415.899 172.907 416.484 173.395 417.19 173.715L418.015 171.893ZM417.073 171.112C416.866 170.817 416.727 170.402 416.727 169.795H414.727C414.727 170.712 414.941 171.558 415.438 172.263L417.073 171.112ZM416.727 169.795V156.773H414.727V169.795H416.727ZM425.626 172.429L425.091 173.273L425.093 173.275L425.626 172.429ZM423.547 170.068L422.648 170.507L422.65 170.511L423.547 170.068ZM423.547 162.952L422.649 162.511L422.647 162.515L423.547 162.952ZM425.626 160.582L425.093 159.737L425.091 159.738L425.626 160.582ZM431.839 160.582L431.304 161.427L431.306 161.428L431.839 160.582ZM433.919 162.952L433.02 163.389L433.022 163.393L433.919 162.952ZM433.919 170.068L433.023 169.625L433.021 169.629L433.919 170.068ZM431.839 172.429L431.306 171.583L431.304 171.585L431.839 172.429ZM430.953 170.776L430.331 169.992L430.331 169.992L430.953 170.776ZM432.24 168.96L433.178 169.308L433.178 169.308L432.24 168.96ZM432.24 164.077L433.178 163.731L433.178 163.731L432.24 164.077ZM430.953 162.244L431.58 161.465L431.58 161.465L430.953 162.244ZM426.521 162.244L425.895 161.465L425.895 161.465L426.521 162.244ZM425.234 164.077L424.296 163.731L424.296 163.731L425.234 164.077ZM425.234 168.96L424.297 169.308L424.297 169.308L425.234 168.96ZM426.521 170.776L427.143 169.992L427.143 169.992L426.521 170.776ZM428.737 172.273C427.721 172.273 426.873 172.033 426.16 171.583L425.093 173.275C426.164 173.95 427.39 174.273 428.737 174.273V172.273ZM426.162 171.585C425.442 171.128 424.868 170.485 424.443 169.625L422.65 170.511C423.225 171.674 424.038 172.605 425.091 173.273L426.162 171.585ZM424.445 169.629C424.03 168.779 423.805 167.753 423.805 166.523H421.805C421.805 167.997 422.075 169.334 422.648 170.507L424.445 169.629ZM423.805 166.523C423.805 165.28 424.03 164.244 424.446 163.389L422.647 162.515C422.075 163.693 421.805 165.038 421.805 166.523H423.805ZM424.444 163.393C424.87 162.527 425.444 161.883 426.162 161.427L425.091 159.738C424.037 160.407 423.224 161.342 422.649 162.511L424.444 163.393ZM426.16 161.428C426.873 160.978 427.721 160.739 428.737 160.739V158.739C427.39 158.739 426.164 159.062 425.093 159.737L426.16 161.428ZM428.737 160.739C429.754 160.739 430.597 160.978 431.304 161.427L432.375 159.738C431.309 159.061 430.084 158.739 428.737 158.739V160.739ZM431.306 161.428C432.029 161.884 432.601 162.527 433.02 163.389L434.818 162.515C434.249 161.342 433.434 160.406 432.373 159.737L431.306 161.428ZM433.022 163.393C433.442 164.248 433.669 165.281 433.669 166.523H435.669C435.669 165.037 435.396 163.69 434.816 162.511L433.022 163.393ZM433.669 166.523C433.669 167.751 433.442 168.776 433.023 169.625L434.815 170.511C435.396 169.337 435.669 167.999 435.669 166.523H433.669ZM433.021 169.629C432.602 170.485 432.03 171.126 431.306 171.583L432.373 173.275C433.433 172.607 434.247 171.674 434.817 170.507L433.021 169.629ZM431.304 171.585C430.597 172.033 429.754 172.273 428.737 172.273V174.273C430.084 174.273 431.309 173.95 432.375 173.273L431.304 171.585ZM428.737 172.466C429.811 172.466 430.783 172.187 431.575 171.559L430.331 169.992C429.964 170.284 429.459 170.466 428.737 170.466V172.466ZM431.575 171.559C432.309 170.976 432.841 170.215 433.178 169.308L431.303 168.612C431.082 169.205 430.756 169.655 430.331 169.992L431.575 171.559ZM433.178 169.308C433.501 168.437 433.658 167.505 433.658 166.523H431.658C431.658 167.29 431.536 167.984 431.303 168.612L433.178 169.308ZM433.658 166.523C433.658 165.54 433.501 164.607 433.178 163.731L431.302 164.422C431.536 165.058 431.658 165.755 431.658 166.523H433.658ZM433.178 163.731C432.843 162.82 432.312 162.054 431.58 161.465L430.327 163.024C430.753 163.367 431.081 163.822 431.302 164.422L433.178 163.731ZM431.58 161.465C430.788 160.828 429.814 160.545 428.737 160.545V162.545C429.456 162.545 429.959 162.728 430.327 163.024L431.58 161.465ZM428.737 160.545C427.661 160.545 426.687 160.828 425.895 161.465L427.148 163.024C427.515 162.728 428.018 162.545 428.737 162.545V160.545ZM425.895 161.465C425.162 162.054 424.632 162.82 424.296 163.731L426.173 164.422C426.394 163.822 426.721 163.367 427.148 163.024L425.895 161.465ZM424.296 163.731C423.973 164.607 423.817 165.54 423.817 166.523H425.817C425.817 165.755 425.938 165.058 426.173 164.422L424.296 163.731ZM423.817 166.523C423.817 167.505 423.973 168.437 424.297 169.308L426.172 168.612C425.939 167.984 425.817 167.29 425.817 166.523H423.817ZM424.297 169.308C424.633 170.215 425.165 170.976 425.899 171.559L427.143 169.992C426.718 169.655 426.392 169.205 426.172 168.612L424.297 169.308ZM425.899 171.559C426.691 172.187 427.663 172.466 428.737 172.466V170.466C428.016 170.466 427.511 170.284 427.143 169.992L425.899 171.559ZM455.194 159.909L456.132 160.256L456.63 158.909H455.194V159.909ZM450.353 173V174H451.049L451.291 173.347L450.353 173ZM448.308 173L447.37 173.347L447.611 174H448.308V173ZM443.467 159.909V158.909H442.031L442.529 160.256L443.467 159.909ZM445.648 159.909L446.593 159.582L446.36 158.909H445.648V159.909ZM449.262 170.341L448.317 170.668L448.55 171.341H449.262V170.341ZM449.398 170.341V171.341H450.11L450.343 170.668L449.398 170.341ZM453.012 159.909V158.909H452.3L452.067 159.582L453.012 159.909ZM454.256 159.562L449.415 172.653L451.291 173.347L456.132 160.256L454.256 159.562ZM450.353 172H448.308V174H450.353V172ZM449.245 172.653L444.405 159.562L442.529 160.256L447.37 173.347L449.245 172.653ZM443.467 160.909H445.648V158.909H443.467V160.909ZM444.704 160.236L448.317 170.668L450.207 170.014L446.593 159.582L444.704 160.236ZM449.262 171.341H449.398V169.341H449.262V171.341ZM450.343 170.668L453.957 160.236L452.067 159.582L448.454 170.014L450.343 170.668ZM453.012 160.909H455.194V158.909H453.012V160.909ZM457.849 173H456.849V174H457.849V173ZM457.849 159.909V158.909H456.849V159.909H457.849ZM459.86 159.909H460.86V158.909H459.86V159.909ZM459.86 173V174H460.86V173H459.86ZM457.857 157.327L457.165 158.048L457.172 158.055L457.857 157.327ZM457.857 155.401L457.172 154.672L457.165 154.679L457.857 155.401ZM459.877 155.401L459.185 156.122L459.192 156.129L459.877 155.401ZM459.877 157.327L459.192 156.598L459.185 156.605L459.877 157.327ZM458.849 173V159.909H456.849V173H458.849ZM457.849 160.909H459.86V158.909H457.849V160.909ZM458.86 159.909V173H460.86V159.909H458.86ZM459.86 172H457.849V174H459.86V172ZM458.871 156.727C458.732 156.727 458.64 156.69 458.542 156.598L457.172 158.055C457.643 158.498 458.226 158.727 458.871 158.727V156.727ZM458.549 156.605C458.461 156.52 458.44 156.457 458.44 156.364H456.44C456.44 157.02 456.696 157.599 457.165 158.048L458.549 156.605ZM458.44 156.364C458.44 156.27 458.461 156.207 458.549 156.122L457.165 154.679C456.696 155.128 456.44 155.707 456.44 156.364H458.44ZM458.542 156.129C458.64 156.038 458.732 156 458.871 156V154C458.226 154 457.643 154.23 457.172 154.672L458.542 156.129ZM458.871 156C459.01 156 459.096 156.037 459.185 156.122L460.569 154.679C460.101 154.23 459.517 154 458.871 154V156ZM459.192 156.129C459.284 156.216 459.303 156.277 459.303 156.364H461.303C461.303 155.701 461.038 155.12 460.562 154.672L459.192 156.129ZM459.303 156.364C459.303 156.451 459.284 156.512 459.192 156.598L460.562 158.055C461.038 157.608 461.303 157.027 461.303 156.364H459.303ZM459.185 156.605C459.096 156.69 459.01 156.727 458.871 156.727V158.727C459.517 158.727 460.101 158.497 460.569 158.048L459.185 156.605ZM465.768 172.438L465.242 173.288L465.249 173.292L465.768 172.438ZM463.663 170.085L462.763 170.52L462.766 170.526L463.663 170.085ZM463.663 163.011L462.762 162.578L462.761 162.58L463.663 163.011ZM465.726 160.608L466.272 161.446L466.273 161.445L465.726 160.608ZM470.848 160.08L471.172 159.133L471.172 159.133L470.848 160.08ZM472.663 161.188L471.979 161.917L471.983 161.921L472.663 161.188ZM473.967 163.199L474.9 162.837L474.9 162.837L473.967 163.199ZM474.453 167.136V168.136H475.453V167.136H474.453ZM464.362 167.136H463.362V168.136H464.362V167.136ZM464.362 165.398V164.398H463.362V165.398H464.362ZM472.408 165.398V166.398H473.408V165.398H472.408ZM471.964 163.42L471.07 163.868L471.074 163.875L471.964 163.42ZM470.72 162.048L470.189 162.895L470.193 162.898L470.72 162.048ZM466.749 162.142L467.309 162.97L467.311 162.969L466.749 162.142ZM465.411 163.676L464.514 163.232L464.514 163.232L465.411 163.676ZM465.453 169.378L464.557 169.822L464.562 169.831L465.453 169.378ZM466.893 170.938L466.39 171.801L466.396 171.805L466.893 170.938ZM470.464 171.244L470.792 172.189L470.799 172.187L470.464 171.244ZM471.581 170.562L472.275 171.283L472.282 171.276L471.581 170.562ZM472.305 169.42L472.576 168.458L471.692 168.209L471.369 169.069L472.305 169.42ZM474.249 169.966L475.204 170.262L475.508 169.281L474.519 169.003L474.249 169.966ZM473.217 171.705L473.933 172.403L473.937 172.399L473.217 171.705ZM471.428 172.864L471.786 173.797L471.793 173.795L471.428 172.864ZM469.033 172.273C467.922 172.273 467.021 172.029 466.288 171.583L465.249 173.292C466.346 173.96 467.621 174.273 469.033 174.273V172.273ZM466.295 171.587C465.553 171.128 464.976 170.49 464.561 169.644L462.766 170.526C463.339 171.692 464.166 172.622 465.242 173.288L466.295 171.587ZM464.564 169.65C464.152 168.798 463.93 167.776 463.93 166.557H461.93C461.93 168.02 462.197 169.349 462.763 170.52L464.564 169.65ZM463.93 166.557C463.93 165.338 464.152 164.308 464.566 163.442L462.761 162.58C462.197 163.76 461.93 165.094 461.93 166.557H463.93ZM464.565 163.445C464.987 162.566 465.557 161.911 466.272 161.446L465.18 159.77C464.133 160.452 463.329 161.4 462.762 162.578L464.565 163.445ZM466.273 161.445C466.978 160.984 467.817 160.739 468.828 160.739V158.739C467.475 158.739 466.246 159.073 465.179 159.771L466.273 161.445ZM468.828 160.739C469.397 160.739 469.961 160.833 470.525 161.026L471.172 159.133C470.406 158.872 469.623 158.739 468.828 158.739V160.739ZM470.525 161.026C471.047 161.204 471.531 161.496 471.979 161.917L473.347 160.458C472.705 159.856 471.979 159.409 471.172 159.133L470.525 161.026ZM471.983 161.921C472.397 162.304 472.755 162.838 473.035 163.56L474.9 162.837C474.532 161.889 474.02 161.082 473.343 160.454L471.983 161.921ZM473.035 163.56C473.301 164.247 473.453 165.144 473.453 166.284H475.453C475.453 164.981 475.281 163.821 474.9 162.837L473.035 163.56ZM473.453 166.284V167.136H475.453V166.284H473.453ZM474.453 166.136H464.362V168.136H474.453V166.136ZM465.362 167.136V165.398H463.362V167.136H465.362ZM464.362 166.398H472.408V164.398H464.362V166.398ZM473.408 165.398C473.408 164.523 473.232 163.704 472.855 162.966L471.074 163.875C471.288 164.296 471.408 164.795 471.408 165.398H473.408ZM472.859 162.973C472.488 162.232 471.948 161.634 471.248 161.199L470.193 162.898C470.572 163.133 470.861 163.45 471.07 163.868L472.859 162.973ZM471.252 161.201C470.535 160.752 469.714 160.545 468.828 160.545V162.545C469.397 162.545 469.837 162.675 470.189 162.895L471.252 161.201ZM468.828 160.545C467.854 160.545 466.959 160.79 466.186 161.315L467.311 162.969C467.709 162.699 468.2 162.545 468.828 162.545V160.545ZM466.188 161.314C465.465 161.803 464.903 162.447 464.514 163.232L466.307 164.12C466.543 163.643 466.873 163.265 467.309 162.97L466.188 161.314ZM464.514 163.232C464.132 164.004 463.942 164.833 463.942 165.705H465.942C465.942 165.133 466.064 164.609 466.307 164.12L464.514 163.232ZM463.942 165.705V166.864H465.942V165.705H463.942ZM463.942 166.864C463.942 167.963 464.131 168.963 464.557 169.822L466.349 168.934C466.093 168.418 465.942 167.741 465.942 166.864H463.942ZM464.562 169.831C464.988 170.67 465.597 171.339 466.39 171.801L467.397 170.074C466.962 169.82 466.611 169.449 466.345 168.925L464.562 169.831ZM466.396 171.805C467.182 172.256 468.072 172.466 469.033 172.466V170.466C468.369 170.466 467.832 170.323 467.391 170.07L466.396 171.805ZM469.033 172.466C469.654 172.466 470.244 172.379 470.792 172.189L470.137 170.299C469.832 170.405 469.468 170.466 469.033 170.466V172.466ZM470.799 172.187C471.358 171.988 471.854 171.688 472.275 171.283L470.887 169.842C470.683 170.039 470.435 170.194 470.13 170.302L470.799 172.187ZM472.282 171.276C472.709 170.856 473.026 170.348 473.242 169.772L471.369 169.069C471.244 169.402 471.078 169.655 470.88 169.849L472.282 171.276ZM472.035 170.383L473.978 170.929L474.519 169.003L472.576 168.458L472.035 170.383ZM473.294 169.67C473.136 170.178 472.873 170.621 472.498 171.01L473.937 172.399C474.527 171.788 474.952 171.072 475.204 170.262L473.294 169.67ZM472.502 171.006C472.128 171.389 471.655 171.7 471.063 171.933L471.793 173.795C472.621 173.47 473.341 173.009 473.933 172.403L472.502 171.006ZM471.069 171.93C470.49 172.152 469.816 172.273 469.033 172.273V174.273C470.022 174.273 470.944 174.12 471.786 173.797L471.069 171.93ZM480.479 173L479.522 173.291L479.738 174H480.479V173ZM476.49 159.909V158.909H475.14L475.533 160.201L476.49 159.909ZM478.604 159.909L479.566 159.637L479.36 158.909H478.604V159.909ZM481.433 169.932L480.471 170.204L480.676 170.932H481.433V169.932ZM481.57 169.932V170.932H482.329L482.533 170.2L481.57 169.932ZM484.365 159.909V158.909H483.606L483.402 159.64L484.365 159.909ZM486.513 159.909L487.477 159.643L487.274 158.909H486.513V159.909ZM489.274 169.898L488.31 170.164L488.513 170.898H489.274V169.898ZM489.411 169.898V170.898H490.167L490.373 170.17L489.411 169.898ZM492.24 159.909V158.909H491.484L491.278 159.637L492.24 159.909ZM494.354 159.909L495.31 160.201L495.704 158.909H494.354V159.909ZM490.365 173V174H491.106L491.322 173.291L490.365 173ZM488.388 173L487.426 173.274L487.633 174H488.388V173ZM485.524 162.943L486.486 162.669L486.279 161.943H485.524V162.943ZM485.32 162.943V161.943H484.565L484.358 162.669L485.32 162.943ZM482.456 173V174H483.211L483.418 173.274L482.456 173ZM481.435 172.709L477.447 159.618L475.533 160.201L479.522 173.291L481.435 172.709ZM476.49 160.909H478.604V158.909H476.49V160.909ZM477.641 160.181L480.471 170.204L482.396 169.66L479.566 159.637L477.641 160.181ZM481.433 170.932H481.57V168.932H481.433V170.932ZM482.533 170.2L485.328 160.178L483.402 159.64L480.606 169.663L482.533 170.2ZM484.365 160.909H486.513V158.909H484.365V160.909ZM485.549 160.176L488.31 170.164L490.238 169.631L487.477 159.643L485.549 160.176ZM489.274 170.898H489.411V168.898H489.274V170.898ZM490.373 170.17L493.202 160.182L491.278 159.637L488.448 169.625L490.373 170.17ZM492.24 160.909H494.354V158.909H492.24V160.909ZM493.397 159.618L489.408 172.709L491.322 173.291L495.31 160.201L493.397 159.618ZM490.365 172H488.388V174H490.365V172ZM489.35 172.726L486.486 162.669L484.562 163.217L487.426 173.274L489.35 172.726ZM485.524 161.943H485.32V163.943H485.524V161.943ZM484.358 162.669L481.494 172.726L483.418 173.274L486.281 163.217L484.358 162.669ZM482.456 172H480.479V174H482.456V172ZM509.456 159.909H510.456V158.909H509.456V159.909ZM509.456 161.614V162.614H510.456V161.614H509.456ZM502.672 161.614H501.672V162.614H502.672V161.614ZM502.672 159.909V158.909H501.672V159.909H502.672ZM504.649 156.773V155.773H503.649V156.773H504.649ZM506.661 156.773H507.661V155.773H506.661V156.773ZM506.908 170.528L506.043 171.03L506.049 171.04L506.055 171.051L506.908 170.528ZM507.555 171.091L507.209 172.029L507.221 172.033L507.233 172.038L507.555 171.091ZM508.945 171.193L509.103 172.181L509.122 172.178L509.141 172.174L508.945 171.193ZM509.286 171.125L510.261 170.904L510.046 169.953L509.089 170.144L509.286 171.125ZM509.695 172.932L510.046 173.868L510.863 173.562L510.67 172.711L509.695 172.932ZM509.124 173.085L508.919 172.106L508.908 172.109L508.897 172.111L509.124 173.085ZM506.524 172.804L506.112 173.715L506.115 173.717L506.524 172.804ZM505.178 171.688L504.36 172.263L504.364 172.27L505.178 171.688ZM508.456 159.909V161.614H510.456V159.909H508.456ZM509.456 160.614H502.672V162.614H509.456V160.614ZM503.672 161.614V159.909H501.672V161.614H503.672ZM502.672 160.909H509.456V158.909H502.672V160.909ZM504.649 157.773H506.661V155.773H504.649V157.773ZM505.661 156.773V169.25H507.661V156.773H505.661ZM505.661 169.25C505.661 169.882 505.746 170.519 506.043 171.03L507.773 170.027C507.739 169.969 507.661 169.754 507.661 169.25H505.661ZM506.055 171.051C506.322 171.486 506.702 171.842 507.209 172.029L507.902 170.153C507.886 170.147 507.835 170.127 507.761 170.006L506.055 171.051ZM507.233 172.038C507.609 172.165 507.999 172.227 508.399 172.227V170.227C508.208 170.227 508.036 170.198 507.878 170.144L507.233 172.038ZM508.399 172.227C508.649 172.227 508.888 172.215 509.103 172.181L508.787 170.206C508.717 170.217 508.593 170.227 508.399 170.227V172.227ZM509.141 172.174C509.283 172.145 509.396 172.123 509.482 172.106L509.089 170.144C509.004 170.161 508.891 170.184 508.748 170.213L509.141 172.174ZM508.31 171.346L508.719 173.153L510.67 172.711L510.261 170.904L508.31 171.346ZM509.343 171.995C509.277 172.021 509.143 172.059 508.919 172.106L509.328 174.064C509.593 174.009 509.84 173.945 510.046 173.868L509.343 171.995ZM508.897 172.111C508.754 172.145 508.527 172.17 508.195 172.17V174.17C508.612 174.17 509.005 174.14 509.35 174.059L508.897 172.111ZM508.195 172.17C507.775 172.17 507.357 172.081 506.933 171.891L506.115 173.717C506.783 174.015 507.478 174.17 508.195 174.17V172.17ZM506.937 171.893C506.563 171.724 506.25 171.468 505.991 171.105L504.364 172.27C504.821 172.907 505.406 173.395 506.112 173.715L506.937 171.893ZM505.995 171.112C505.788 170.817 505.649 170.402 505.649 169.795H503.649C503.649 170.712 503.863 171.558 504.36 172.263L505.995 171.112ZM505.649 169.795V156.773H503.649V169.795H505.649ZM514.774 173V174H515.774V173H514.774ZM512.763 173H511.763V174H512.763V173ZM512.763 155.545V154.545H511.763V155.545H512.763ZM514.774 155.545H515.774V154.545H514.774V155.545ZM514.774 161.955H513.774V162.955H514.774V161.955ZM514.945 161.955V162.955H515.589L515.855 162.368L514.945 161.955ZM516.325 160.344L516.869 161.183L516.871 161.182L516.325 160.344ZM521.141 160.276L520.67 161.158L520.675 161.161L521.141 160.276ZM522.7 161.903L521.807 162.353L521.811 162.362L522.7 161.903ZM523.263 173V174H524.263V173H523.263ZM521.251 173H520.251V174H521.251V173ZM520.442 162.406L519.71 163.088L519.717 163.095L520.442 162.406ZM516.445 161.963L515.975 161.08L515.971 161.083L516.445 161.963ZM515.217 163.182L514.346 162.691L514.342 162.698L515.217 163.182ZM513.774 165.125V173H515.774V165.125H513.774ZM514.774 172H512.763V174H514.774V172ZM513.763 173V155.545H511.763V173H513.763ZM512.763 156.545H514.774V154.545H512.763V156.545ZM513.774 155.545V161.955H515.774V155.545H513.774ZM514.774 162.955H514.945V160.955H514.774V162.955ZM515.855 162.368C516.084 161.863 516.419 161.475 516.869 161.183L515.781 159.505C515.005 160.008 514.419 160.694 514.034 161.541L515.855 162.368ZM516.871 161.182C517.276 160.918 517.889 160.739 518.797 160.739V158.739C517.648 158.739 516.613 158.963 515.779 159.506L516.871 161.182ZM518.797 160.739C519.553 160.739 520.167 160.89 520.67 161.158L521.612 159.393C520.773 158.946 519.825 158.739 518.797 158.739V160.739ZM520.675 161.161C521.146 161.408 521.523 161.79 521.807 162.353L523.593 161.453C523.138 160.551 522.476 159.848 521.606 159.39L520.675 161.161ZM521.811 162.362C522.091 162.904 522.263 163.66 522.263 164.682H524.263C524.263 163.454 524.059 162.357 523.589 161.445L521.811 162.362ZM522.263 164.682V173H524.263V164.682H522.263ZM523.263 172H521.251V174H523.263V172ZM522.251 173V164.818H520.251V173H522.251ZM522.251 164.818C522.251 163.608 521.935 162.526 521.167 161.718L519.717 163.095C520.029 163.423 520.251 163.949 520.251 164.818H522.251ZM521.174 161.725C520.411 160.906 519.381 160.545 518.217 160.545V162.545C518.952 162.545 519.404 162.759 519.71 163.088L521.174 161.725ZM518.217 160.545C517.413 160.545 516.658 160.717 515.975 161.08L516.915 162.846C517.277 162.653 517.703 162.545 518.217 162.545V160.545ZM515.971 161.083C515.279 161.455 514.736 162 514.346 162.691L516.088 163.673C516.301 163.296 516.576 163.028 516.919 162.844L515.971 161.083ZM514.342 162.698C513.947 163.412 513.774 164.236 513.774 165.125H515.774C515.774 164.492 515.897 164.019 516.092 163.666L514.342 162.698ZM526.942 173H525.942V174H526.942V173ZM526.942 159.909V158.909H525.942V159.909H526.942ZM528.954 159.909H529.954V158.909H528.954V159.909ZM528.954 173V174H529.954V173H528.954ZM526.951 157.327L526.259 158.048L526.266 158.055L526.951 157.327ZM526.951 155.401L526.266 154.672L526.259 154.679L526.951 155.401ZM528.971 155.401L528.279 156.122L528.286 156.129L528.971 155.401ZM528.971 157.327L528.286 156.598L528.279 156.605L528.971 157.327ZM527.942 173V159.909H525.942V173H527.942ZM526.942 160.909H528.954V158.909H526.942V160.909ZM527.954 159.909V173H529.954V159.909H527.954ZM528.954 172H526.942V174H528.954V172ZM527.965 156.727C527.826 156.727 527.733 156.69 527.636 156.598L526.266 158.055C526.737 158.498 527.32 158.727 527.965 158.727V156.727ZM527.643 156.605C527.555 156.52 527.533 156.457 527.533 156.364H525.533C525.533 157.02 525.79 157.599 526.259 158.048L527.643 156.605ZM527.533 156.364C527.533 156.27 527.555 156.207 527.643 156.122L526.259 154.679C525.79 155.128 525.533 155.707 525.533 156.364H527.533ZM527.636 156.129C527.733 156.038 527.826 156 527.965 156V154C527.32 154 526.737 154.23 526.266 154.672L527.636 156.129ZM527.965 156C528.104 156 528.19 156.037 528.279 156.122L529.663 154.679C529.195 154.23 528.611 154 527.965 154V156ZM528.286 156.129C528.378 156.216 528.397 156.277 528.397 156.364H530.397C530.397 155.701 530.132 155.12 529.656 154.672L528.286 156.129ZM528.397 156.364C528.397 156.451 528.378 156.512 528.286 156.598L529.656 158.055C530.132 157.608 530.397 157.027 530.397 156.364H528.397ZM528.279 156.605C528.19 156.69 528.104 156.727 527.965 156.727V158.727C528.611 158.727 529.195 158.497 529.663 158.048L528.279 156.605ZM541.911 162.841L542.183 163.803L543.192 163.517L542.859 162.523L541.911 162.841ZM540.104 163.352L539.168 163.705L539.492 164.565L540.376 164.314L540.104 163.352ZM539.601 162.474L538.799 163.072L538.806 163.081L538.812 163.089L539.601 162.474ZM538.714 161.759L539.162 160.864L539.162 160.864L538.714 161.759ZM535.271 162.031L535.838 162.855L535.84 162.854L535.271 162.031ZM535.024 164.605L534.401 165.387L534.401 165.387L535.024 164.605ZM536.729 165.33L536.486 166.3L536.49 166.301L536.729 165.33ZM538.672 165.807L538.433 166.778L538.436 166.779L538.672 165.807ZM541.288 167.111L540.574 167.811L540.578 167.814L541.288 167.111ZM541.501 171.364L540.694 170.774L540.69 170.779L541.501 171.364ZM533.72 172.403L534.272 171.57L534.272 171.57L533.72 172.403ZM532.058 169.864L531.816 168.893L530.882 169.127L531.079 170.068L532.058 169.864ZM533.967 169.386L534.936 169.136L534.688 168.176L533.725 168.416L533.967 169.386ZM534.999 170.972L534.427 171.792L534.431 171.795L534.999 170.972ZM539.234 170.903L539.82 171.714L539.821 171.713L539.234 170.903ZM539.592 168.312L538.892 169.026L538.898 169.032L539.592 168.312ZM538.126 167.614L537.898 168.587L537.9 168.588L538.126 167.614ZM535.945 167.102L535.714 168.075L535.716 168.076L535.945 167.102ZM533.303 165.781L532.568 166.46L532.575 166.467L533.303 165.781ZM533.089 161.562L532.286 160.968L532.282 160.973L533.089 161.562ZM534.803 160.224L534.396 159.311L534.393 159.312L534.803 160.224ZM540.325 160.591L539.716 161.384L539.719 161.386L540.325 160.591ZM541.638 161.879L539.831 162.39L540.376 164.314L542.183 163.803L541.638 161.879ZM541.039 162.999C540.886 162.593 540.666 162.214 540.389 161.859L538.812 163.089C538.979 163.303 539.094 163.509 539.168 163.705L541.039 162.999ZM540.403 161.877C540.08 161.443 539.654 161.11 539.162 160.864L538.267 162.653C538.525 162.782 538.69 162.926 538.799 163.072L540.403 161.877ZM539.162 160.864C538.604 160.585 537.957 160.477 537.274 160.477V162.477C537.762 162.477 538.075 162.557 538.267 162.653L539.162 160.864ZM537.274 160.477C536.318 160.477 535.439 160.699 534.703 161.209L535.84 162.854C536.171 162.625 536.628 162.477 537.274 162.477V160.477ZM534.704 161.207C533.949 161.727 533.479 162.479 533.479 163.42H535.479C535.479 163.237 535.537 163.062 535.838 162.855L534.704 161.207ZM533.479 163.42C533.479 164.199 533.779 164.892 534.401 165.387L535.647 163.823C535.542 163.739 535.479 163.642 535.479 163.42H533.479ZM534.401 165.387C534.929 165.808 535.66 166.093 536.486 166.3L536.971 164.359C536.252 164.18 535.846 163.981 535.647 163.823L534.401 165.387ZM536.49 166.301L538.433 166.778L538.91 164.836L536.967 164.358L536.49 166.301ZM538.436 166.779C539.505 167.038 540.179 167.408 540.574 167.811L542.002 166.411C541.25 165.643 540.18 165.144 538.908 164.835L538.436 166.779ZM540.578 167.814C540.943 168.183 541.149 168.666 541.149 169.352H543.149C543.149 168.209 542.781 167.197 541.999 166.407L540.578 167.814ZM541.149 169.352C541.149 169.896 540.997 170.358 540.694 170.774L542.309 171.954C542.869 171.187 543.149 170.309 543.149 169.352H541.149ZM540.69 170.779C540.383 171.205 539.936 171.567 539.306 171.848L540.118 173.675C541.022 173.273 541.768 172.704 542.313 171.949L540.69 170.779ZM539.306 171.848C538.69 172.121 537.942 172.273 537.036 172.273V174.273C538.163 174.273 539.199 174.084 540.118 173.675L539.306 171.848ZM537.036 172.273C535.843 172.273 534.944 172.015 534.272 171.57L533.168 173.237C534.246 173.951 535.557 174.273 537.036 174.273V172.273ZM534.272 171.57C533.636 171.148 533.221 170.539 533.037 169.659L531.079 170.068C531.361 171.416 532.054 172.499 533.168 173.237L534.272 171.57ZM532.301 170.834L534.21 170.357L533.725 168.416L531.816 168.893L532.301 170.834ZM532.999 169.636C533.229 170.528 533.691 171.279 534.427 171.792L535.57 170.151C535.295 169.959 535.069 169.654 534.936 169.136L532.999 169.636ZM534.431 171.795C535.156 172.294 536.04 172.5 537.001 172.5V170.5C536.315 170.5 535.864 170.353 535.566 170.148L534.431 171.795ZM537.001 172.5C538.071 172.5 539.044 172.274 539.82 171.714L538.649 170.093C538.322 170.328 537.807 170.5 537.001 170.5V172.5ZM539.821 171.713C540.573 171.169 541.07 170.41 541.07 169.455H539.07C539.07 169.624 539.01 169.831 538.648 170.094L539.821 171.713ZM541.07 169.455C541.07 168.737 540.806 168.094 540.286 167.593L538.898 169.032C539.015 169.145 539.07 169.263 539.07 169.455H541.07ZM540.293 167.599C539.793 167.108 539.105 166.815 538.353 166.64L537.9 168.588C538.466 168.719 538.756 168.892 538.892 169.026L540.293 167.599ZM538.355 166.64L536.173 166.129L535.716 168.076L537.898 168.587L538.355 166.64ZM536.175 166.129C535.077 165.869 534.407 165.495 534.03 165.095L532.575 166.467C533.323 167.261 534.414 167.767 535.714 168.075L536.175 166.129ZM534.037 165.102C533.669 164.704 533.467 164.202 533.467 163.523H531.467C531.467 164.65 531.823 165.654 532.568 166.46L534.037 165.102ZM533.467 163.523C533.467 162.985 533.614 162.54 533.897 162.152L532.282 160.973C531.736 161.721 531.467 162.583 531.467 163.523H533.467ZM533.893 162.157C534.2 161.743 534.628 161.399 535.212 161.137L534.393 159.312C533.534 159.698 532.82 160.246 532.286 160.968L533.893 162.157ZM535.209 161.138C535.79 160.879 536.472 160.739 537.274 160.739V158.739C536.235 158.739 535.27 158.922 534.396 159.311L535.209 161.138ZM537.274 160.739C538.433 160.739 539.209 160.994 539.716 161.384L540.935 159.798C539.965 159.052 538.706 158.739 537.274 158.739V160.739ZM539.719 161.386C540.296 161.826 540.71 162.407 540.962 163.159L542.859 162.523C542.486 161.412 541.843 160.492 540.932 159.796L539.719 161.386ZM414.841 202H413.841V203H414.841V202ZM414.841 188.909V187.909H413.841V188.909H414.841ZM416.852 188.909H417.852V187.909H416.852V188.909ZM416.852 202V203H417.852V202H416.852ZM414.849 186.327L414.157 187.048L414.165 187.055L414.849 186.327ZM414.849 184.401L414.164 183.672L414.157 183.679L414.849 184.401ZM416.869 184.401L416.177 185.122L416.184 185.129L416.869 184.401ZM416.869 186.327L416.184 185.598L416.177 185.605L416.869 186.327ZM415.841 202V188.909H413.841V202H415.841ZM414.841 189.909H416.852V187.909H414.841V189.909ZM415.852 188.909V202H417.852V188.909H415.852ZM416.852 201H414.841V203H416.852V201ZM415.864 185.727C415.725 185.727 415.632 185.69 415.534 185.598L414.165 187.055C414.635 187.498 415.219 187.727 415.864 187.727V185.727ZM415.542 185.605C415.453 185.52 415.432 185.457 415.432 185.364H413.432C413.432 186.02 413.689 186.599 414.157 187.048L415.542 185.605ZM415.432 185.364C415.432 185.27 415.453 185.207 415.542 185.122L414.157 183.679C413.689 184.128 413.432 184.707 413.432 185.364H415.432ZM415.534 185.129C415.632 185.038 415.725 185 415.864 185V183C415.219 183 414.635 183.23 414.165 183.672L415.534 185.129ZM415.864 185C416.002 185 416.088 185.037 416.177 185.122L417.562 183.679C417.094 183.23 416.509 183 415.864 183V185ZM416.184 185.129C416.276 185.216 416.295 185.277 416.295 185.364H418.295C418.295 184.701 418.03 184.12 417.554 183.672L416.184 185.129ZM416.295 185.364C416.295 185.451 416.276 185.512 416.184 185.598L417.554 187.055C418.03 186.608 418.295 186.027 418.295 185.364H416.295ZM416.177 185.605C416.088 185.69 416.002 185.727 415.864 185.727V187.727C416.509 187.727 417.094 187.497 417.562 187.048L416.177 185.605ZM422.548 202V203H423.548V202H422.548ZM420.536 202H419.536V203H420.536V202ZM420.536 188.909V187.909H419.536V188.909H420.536ZM422.479 188.909H423.479V187.909H422.479V188.909ZM422.479 190.955H421.479V191.955H422.479V190.955ZM422.65 190.955V191.955H423.29L423.558 191.374L422.65 190.955ZM424.048 189.352L424.59 190.192L424.595 190.189L424.048 189.352ZM428.795 189.284L428.315 190.161L428.321 190.165L428.795 189.284ZM430.346 190.92L429.453 191.37L429.454 191.373L430.346 190.92ZM430.9 202V203H431.9V202H430.9ZM428.888 202H427.888V203H428.888V202ZM428.087 191.415L427.352 192.092L427.355 192.096L428.087 191.415ZM424.167 190.963L423.685 190.087L423.68 190.089L424.167 190.963ZM422.982 192.182L422.103 191.705L422.103 191.705L422.982 192.182ZM421.548 194.125V202H423.548V194.125H421.548ZM422.548 201H420.536V203H422.548V201ZM421.536 202V188.909H419.536V202H421.536ZM420.536 189.909H422.479V187.909H420.536V189.909ZM421.479 188.909V190.955H423.479V188.909H421.479ZM422.479 191.955H422.65V189.955H422.479V191.955ZM423.558 191.374C423.784 190.884 424.122 190.495 424.59 190.192L423.505 188.512C422.724 189.017 422.13 189.696 421.742 190.535L423.558 191.374ZM424.595 190.189C425.013 189.916 425.612 189.739 426.468 189.739V187.739C425.347 187.739 424.333 187.971 423.5 188.516L424.595 190.189ZM426.468 189.739C427.215 189.739 427.82 189.891 428.315 190.161L429.275 188.407C428.44 187.95 427.494 187.739 426.468 187.739V189.739ZM428.321 190.165C428.789 190.417 429.167 190.804 429.453 191.37L431.239 190.47C430.786 189.571 430.13 188.867 429.269 188.404L428.321 190.165ZM429.454 191.373C429.731 191.919 429.9 192.671 429.9 193.682H431.9C431.9 192.465 431.699 191.377 431.238 190.468L429.454 191.373ZM429.9 193.682V202H431.9V193.682H429.9ZM430.9 201H428.888V203H430.9V201ZM429.888 202V193.818H427.888V202H429.888ZM429.888 193.818C429.888 192.618 429.574 191.544 428.819 190.733L427.355 192.096C427.669 192.433 427.888 192.962 427.888 193.818H429.888ZM428.823 190.737C428.065 189.915 427.044 189.545 425.888 189.545V191.545C426.596 191.545 427.042 191.756 427.352 192.092L428.823 190.737ZM425.888 189.545C425.097 189.545 424.354 189.718 423.685 190.087L424.649 191.839C424.991 191.651 425.396 191.545 425.888 191.545V189.545ZM423.68 190.089C423.004 190.466 422.478 191.015 422.103 191.705L423.861 192.659C424.066 192.281 424.33 192.017 424.653 191.837L423.68 190.089ZM422.103 191.705C421.716 192.418 421.548 193.238 421.548 194.125H423.548C423.548 193.489 423.669 193.014 423.861 192.659L422.103 191.705ZM440.268 188.909H441.268V187.909H440.268V188.909ZM440.268 190.614V191.614H441.268V190.614H440.268ZM433.484 190.614H432.484V191.614H433.484V190.614ZM433.484 188.909V187.909H432.484V188.909H433.484ZM435.462 185.773V184.773H434.462V185.773H435.462ZM437.473 185.773H438.473V184.773H437.473V185.773ZM437.72 199.528L436.855 200.03L436.861 200.04L436.867 200.051L437.72 199.528ZM438.368 200.091L438.021 201.029L438.033 201.033L438.046 201.038L438.368 200.091ZM439.757 200.193L439.915 201.181L439.934 201.178L439.953 201.174L439.757 200.193ZM440.098 200.125L441.073 199.904L440.858 198.953L439.902 199.144L440.098 200.125ZM440.507 201.932L440.858 202.868L441.675 202.562L441.482 201.711L440.507 201.932ZM439.936 202.085L439.731 201.106L439.72 201.109L439.71 201.111L439.936 202.085ZM437.337 201.804L436.924 202.715L436.928 202.717L437.337 201.804ZM435.99 200.688L435.173 201.263L435.177 201.27L435.99 200.688ZM439.268 188.909V190.614H441.268V188.909H439.268ZM440.268 189.614H433.484V191.614H440.268V189.614ZM434.484 190.614V188.909H432.484V190.614H434.484ZM433.484 189.909H440.268V187.909H433.484V189.909ZM435.462 186.773H437.473V184.773H435.462V186.773ZM436.473 185.773V198.25H438.473V185.773H436.473ZM436.473 198.25C436.473 198.882 436.559 199.519 436.855 200.03L438.585 199.027C438.552 198.969 438.473 198.754 438.473 198.25H436.473ZM436.867 200.051C437.134 200.486 437.514 200.842 438.021 201.029L438.715 199.153C438.699 199.147 438.647 199.127 438.573 199.006L436.867 200.051ZM438.046 201.038C438.421 201.165 438.812 201.227 439.212 201.227V199.227C439.021 199.227 438.849 199.198 438.69 199.144L438.046 201.038ZM439.212 201.227C439.461 201.227 439.701 201.215 439.915 201.181L439.599 199.206C439.529 199.217 439.405 199.227 439.212 199.227V201.227ZM439.953 201.174C440.095 201.145 440.209 201.123 440.294 201.106L439.902 199.144C439.817 199.161 439.703 199.184 439.561 199.213L439.953 201.174ZM439.123 200.346L439.532 202.153L441.482 201.711L441.073 199.904L439.123 200.346ZM440.156 200.995C440.089 201.021 439.956 201.059 439.731 201.106L440.141 203.064C440.405 203.009 440.652 202.945 440.858 202.868L440.156 200.995ZM439.71 201.111C439.566 201.145 439.339 201.17 439.007 201.17V203.17C439.425 203.17 439.817 203.14 440.163 203.059L439.71 201.111ZM439.007 201.17C438.587 201.17 438.169 201.081 437.745 200.891L436.928 202.717C437.595 203.015 438.291 203.17 439.007 203.17V201.17ZM437.749 200.893C437.376 200.724 437.063 200.468 436.803 200.105L435.177 201.27C435.633 201.907 436.218 202.395 436.924 202.715L437.749 200.893ZM436.808 200.112C436.6 199.817 436.462 199.402 436.462 198.795H434.462C434.462 199.712 434.675 200.558 435.173 201.263L436.808 200.112ZM436.462 198.795V185.773H434.462V198.795H436.462ZM445.378 201.438L444.852 202.288L444.858 202.292L445.378 201.438ZM443.273 199.085L442.372 199.52L442.375 199.526L443.273 199.085ZM443.273 192.011L442.371 191.578L442.37 191.58L443.273 192.011ZM445.335 189.608L445.881 190.446L445.882 190.445L445.335 189.608ZM450.457 189.08L450.781 188.133L450.781 188.133L450.457 189.08ZM452.273 190.188L451.589 190.917L451.593 190.921L452.273 190.188ZM453.577 192.199L454.509 191.837L454.509 191.837L453.577 192.199ZM454.062 196.136V197.136H455.062V196.136H454.062ZM443.972 196.136H442.972V197.136H443.972V196.136ZM443.972 194.398V193.398H442.972V194.398H443.972ZM452.017 194.398V195.398H453.017V194.398H452.017ZM451.574 192.42L450.679 192.868L450.683 192.875L451.574 192.42ZM450.33 191.048L449.798 191.895L449.802 191.898L450.33 191.048ZM446.358 191.142L446.918 191.97L446.92 191.969L446.358 191.142ZM445.02 192.676L444.124 192.232L444.124 192.232L445.02 192.676ZM445.062 198.378L444.167 198.822L444.171 198.831L445.062 198.378ZM446.503 199.938L445.999 200.801L446.005 200.805L446.503 199.938ZM450.074 200.244L450.401 201.189L450.409 201.187L450.074 200.244ZM451.19 199.562L451.884 200.283L451.891 200.276L451.19 199.562ZM451.915 198.42L452.185 197.458L451.301 197.209L450.978 198.069L451.915 198.42ZM453.858 198.966L454.813 199.262L455.118 198.281L454.128 198.003L453.858 198.966ZM452.827 200.705L453.542 201.403L453.546 201.399L452.827 200.705ZM451.037 201.864L451.395 202.797L451.402 202.795L451.037 201.864ZM448.642 201.273C447.531 201.273 446.63 201.029 445.898 200.583L444.858 202.292C445.955 202.96 447.23 203.273 448.642 203.273V201.273ZM445.904 200.587C445.163 200.128 444.586 199.49 444.17 198.644L442.375 199.526C442.948 200.692 443.775 201.622 444.852 202.288L445.904 200.587ZM444.173 198.65C443.762 197.798 443.54 196.776 443.54 195.557H441.54C441.54 197.02 441.807 198.349 442.372 199.52L444.173 198.65ZM443.54 195.557C443.54 194.338 443.761 193.308 444.175 192.442L442.37 191.58C441.807 192.76 441.54 194.094 441.54 195.557H443.54ZM444.174 192.445C444.596 191.566 445.167 190.911 445.881 190.446L444.789 188.77C443.742 189.452 442.938 190.4 442.371 191.578L444.174 192.445ZM445.882 190.445C446.588 189.984 447.427 189.739 448.438 189.739V187.739C447.085 187.739 445.856 188.073 444.788 188.771L445.882 190.445ZM448.438 189.739C449.006 189.739 449.57 189.833 450.134 190.026L450.781 188.133C450.015 187.872 449.233 187.739 448.438 187.739V189.739ZM450.134 190.026C450.656 190.204 451.14 190.496 451.589 190.917L452.957 189.458C452.315 188.856 451.588 188.409 450.781 188.133L450.134 190.026ZM451.593 190.921C452.007 191.304 452.364 191.838 452.644 192.56L454.509 191.837C454.141 190.889 453.63 190.082 452.953 189.454L451.593 190.921ZM452.644 192.56C452.91 193.247 453.062 194.144 453.062 195.284H455.062C455.062 193.981 454.891 192.821 454.509 191.837L452.644 192.56ZM453.062 195.284V196.136H455.062V195.284H453.062ZM454.062 195.136H443.972V197.136H454.062V195.136ZM444.972 196.136V194.398H442.972V196.136H444.972ZM443.972 195.398H452.017V193.398H443.972V195.398ZM453.017 194.398C453.017 193.523 452.841 192.704 452.465 191.966L450.683 192.875C450.898 193.296 451.017 193.795 451.017 194.398H453.017ZM452.468 191.973C452.098 191.232 451.557 190.634 450.857 190.199L449.802 191.898C450.181 192.133 450.471 192.45 450.679 192.868L452.468 191.973ZM450.861 190.201C450.145 189.752 449.323 189.545 448.438 189.545V191.545C449.006 191.545 449.446 191.675 449.798 191.895L450.861 190.201ZM448.438 189.545C447.463 189.545 446.568 189.79 445.796 190.315L446.92 191.969C447.318 191.699 447.809 191.545 448.438 191.545V189.545ZM445.798 190.314C445.074 190.803 444.513 191.447 444.124 192.232L445.916 193.12C446.152 192.643 446.483 192.265 446.918 191.97L445.798 190.314ZM444.124 192.232C443.741 193.004 443.551 193.833 443.551 194.705H445.551C445.551 194.133 445.674 193.609 445.916 193.12L444.124 192.232ZM443.551 194.705V195.864H445.551V194.705H443.551ZM443.551 195.864C443.551 196.963 443.74 197.963 444.167 198.822L445.958 197.934C445.703 197.418 445.551 196.741 445.551 195.864H443.551ZM444.171 198.831C444.598 199.67 445.207 200.339 445.999 200.801L447.007 199.074C446.572 198.82 446.22 198.449 445.954 197.925L444.171 198.831ZM446.005 200.805C446.791 201.256 447.681 201.466 448.642 201.466V199.466C447.978 199.466 447.442 199.323 447.001 199.07L446.005 200.805ZM448.642 201.466C449.263 201.466 449.854 201.379 450.401 201.189L449.746 199.299C449.442 199.405 449.078 199.466 448.642 199.466V201.466ZM450.409 201.187C450.967 200.988 451.464 200.688 451.884 200.283L450.496 198.842C450.292 199.039 450.044 199.194 449.739 199.302L450.409 201.187ZM451.891 200.276C452.318 199.856 452.635 199.348 452.851 198.772L450.978 198.069C450.854 198.402 450.687 198.655 450.49 198.849L451.891 200.276ZM451.645 199.383L453.588 199.929L454.128 198.003L452.185 197.458L451.645 199.383ZM452.903 198.67C452.745 199.178 452.483 199.621 452.107 200.01L453.546 201.399C454.137 200.788 454.562 200.072 454.813 199.262L452.903 198.67ZM452.111 200.006C451.737 200.389 451.264 200.7 450.672 200.933L451.402 202.795C452.23 202.47 452.95 202.009 453.542 201.403L452.111 200.006ZM450.678 200.93C450.1 201.152 449.426 201.273 448.642 201.273V203.273C449.631 203.273 450.554 203.12 451.395 202.797L450.678 200.93ZM457.122 202H456.122V203H457.122V202ZM457.122 188.909V187.909H456.122V188.909H457.122ZM459.065 188.909H460.065V187.909H459.065V188.909ZM459.065 190.886H458.065V191.886H459.065V190.886ZM459.202 190.886V191.886H459.899L460.14 191.232L459.202 190.886ZM460.497 189.31L459.955 188.469L459.955 188.469L460.497 189.31ZM463.668 188.739H464.668V187.834L463.767 187.744L463.668 188.739ZM463.668 190.784L463.425 191.754L464.668 192.065V190.784H463.668ZM463.199 190.707L463.034 191.694L463.048 191.696L463.061 191.698L463.199 190.707ZM460.736 191.048L461.203 191.932L461.207 191.93L460.736 191.048ZM459.56 192.139L458.71 191.611L458.709 191.614L459.56 192.139ZM459.134 202V203H460.134V202H459.134ZM458.122 202V188.909H456.122V202H458.122ZM457.122 189.909H459.065V187.909H457.122V189.909ZM458.065 188.909V190.886H460.065V188.909H458.065ZM459.065 191.886H459.202V189.886H459.065V191.886ZM460.14 191.232C460.298 190.804 460.582 190.445 461.039 190.15L459.955 188.469C459.163 188.981 458.583 189.673 458.263 190.541L460.14 191.232ZM461.039 190.15C461.494 189.857 462.008 189.705 462.611 189.705V187.705C461.645 187.705 460.75 187.956 459.955 188.469L461.039 190.15ZM462.611 189.705C462.747 189.705 462.922 189.707 463.139 189.713L463.19 187.713C462.964 187.708 462.77 187.705 462.611 187.705V189.705ZM463.139 189.713C463.354 189.718 463.492 189.726 463.568 189.734L463.767 187.744C463.616 187.728 463.418 187.719 463.19 187.713L463.139 189.713ZM462.668 188.739V190.784H464.668V188.739H462.668ZM463.91 189.814C463.78 189.781 463.566 189.749 463.337 189.717L463.061 191.698C463.179 191.714 463.27 191.728 463.338 191.739C463.414 191.751 463.434 191.757 463.425 191.754L463.91 189.814ZM463.363 189.721C463.065 189.671 462.757 189.648 462.44 189.648V191.648C462.658 191.648 462.855 191.664 463.034 191.694L463.363 189.721ZM462.44 189.648C461.66 189.648 460.927 189.813 460.265 190.166L461.207 191.93C461.545 191.75 461.948 191.648 462.44 191.648V189.648ZM460.268 190.164C459.621 190.507 459.096 190.992 458.71 191.611L460.409 192.667C460.603 192.355 460.862 192.113 461.203 191.932L460.268 190.164ZM458.709 191.614C458.318 192.247 458.134 192.957 458.134 193.716H460.134C460.134 193.293 460.233 192.952 460.411 192.664L458.709 191.614ZM458.134 193.716V202H460.134V193.716H458.134ZM459.134 201H457.122V203H459.134V201ZM467.646 201.838L467.22 202.743L467.226 202.746L467.646 201.838ZM466.035 200.466L465.2 201.017L465.203 201.021L466.035 200.466ZM465.881 196.46L466.726 196.996L466.729 196.991L465.881 196.46ZM468.702 194.756L468.916 195.733L468.923 195.731L468.702 194.756ZM470.518 194.432L470.39 193.44L470.388 193.44L470.518 194.432ZM472.452 194.202L472.555 195.196L472.565 195.195L472.452 194.202ZM473.543 193.92L473.054 193.048L473.045 193.054L473.543 193.92ZM473.202 191.21L472.487 191.909L472.491 191.913L473.202 191.21ZM468.873 191.142L469.483 191.934L469.483 191.934L468.873 191.142ZM467.722 192.489L467.386 193.43L468.245 193.737L468.629 192.91L467.722 192.489ZM465.813 191.807L464.894 191.413L464.475 192.391L465.477 192.749L465.813 191.807ZM467.177 189.949L467.792 190.737L467.793 190.737L467.177 189.949ZM469.052 189.011L469.304 189.979L469.31 189.978L469.052 189.011ZM472.512 188.892L472.328 189.875L472.339 189.877L472.512 188.892ZM474.106 189.497L473.591 190.355L473.596 190.357L474.106 189.497ZM475.393 190.886L474.517 191.369L474.517 191.369L475.393 190.886ZM475.904 202V203H476.904V202H475.904ZM473.893 202H472.893V203H473.893V202ZM473.893 200.227H474.893V199.227H473.893V200.227ZM473.79 200.227V199.227H473.161L472.889 199.795L473.79 200.227ZM473.109 201.139L473.822 201.84L473.822 201.84L473.109 201.139ZM471.839 201.966L471.444 201.047L471.839 201.966ZM472.222 200.031L471.729 199.161L471.725 199.164L472.222 200.031ZM473.467 198.821L472.6 198.323L472.595 198.33L473.467 198.821ZM473.893 195.42H474.893V192.658L473.125 194.78L473.893 195.42ZM473.33 195.702L473.6 196.665L473.612 196.661L473.33 195.702ZM472.342 195.915L472.494 196.903L472.506 196.901L472.342 195.915ZM471.259 196.068L471.373 197.062L471.387 197.06L471.259 196.068ZM470.415 196.17L470.545 197.162L470.546 197.162L470.415 196.17ZM468.95 196.503L469.262 197.453L469.269 197.45L468.95 196.503ZM467.859 197.176L467.124 196.497L467.124 196.498L467.859 197.176ZM468.225 199.972L467.656 200.794L467.666 200.801L468.225 199.972ZM469.904 201.307C469.203 201.307 468.595 201.175 468.065 200.93L467.226 202.746C468.048 203.126 468.946 203.307 469.904 203.307V201.307ZM468.071 200.933C467.553 200.689 467.159 200.35 466.867 199.911L465.203 201.021C465.706 201.775 466.386 202.351 467.22 202.743L468.071 200.933ZM466.869 199.915C466.598 199.504 466.438 198.977 466.438 198.284H464.438C464.438 199.296 464.676 200.223 465.2 201.017L466.869 199.915ZM466.438 198.284C466.438 197.658 466.562 197.254 466.726 196.996L465.037 195.925C464.61 196.599 464.438 197.41 464.438 198.284H466.438ZM466.729 196.991C466.932 196.668 467.198 196.418 467.541 196.232L466.591 194.472C465.946 194.821 465.422 195.31 465.034 195.929L466.729 196.991ZM467.541 196.232C467.947 196.013 468.403 195.845 468.916 195.733L468.488 193.779C467.809 193.928 467.174 194.157 466.591 194.472L467.541 196.232ZM468.923 195.731C469.496 195.601 470.07 195.499 470.647 195.423L470.388 193.44C469.749 193.524 469.114 193.637 468.482 193.78L468.923 195.731ZM470.645 195.424C471.437 195.322 472.073 195.246 472.555 195.196L472.35 193.207C471.844 193.259 471.19 193.337 470.39 193.44L470.645 195.424ZM472.565 195.195C473.099 195.135 473.631 195.023 474.042 194.787L473.045 193.054C473.001 193.079 472.806 193.155 472.34 193.208L472.565 195.195ZM474.033 194.793C474.653 194.445 474.893 193.833 474.893 193.239H472.893C472.893 193.283 472.885 193.256 472.915 193.196C472.931 193.166 472.953 193.134 472.981 193.106C473.008 193.078 473.035 193.059 473.054 193.048L474.033 194.793ZM474.893 193.239V193.17H472.893V193.239H474.893ZM474.893 193.17C474.893 192.145 474.607 191.21 473.914 190.507L472.491 191.913C472.718 192.143 472.893 192.515 472.893 193.17H474.893ZM473.918 190.512C473.208 189.784 472.212 189.511 471.131 189.511V191.511C471.903 191.511 472.288 191.705 472.487 191.909L473.918 190.512ZM471.131 189.511C470.036 189.511 469.04 189.751 468.262 190.35L469.483 191.934C469.797 191.693 470.307 191.511 471.131 191.511V189.511ZM468.262 190.35C467.628 190.839 467.122 191.407 466.815 192.068L468.629 192.91C468.766 192.616 469.027 192.286 469.483 191.934L468.262 190.35ZM468.059 191.547L466.15 190.865L465.477 192.749L467.386 193.43L468.059 191.547ZM466.732 192.201C467.02 191.529 467.381 191.058 467.792 190.737L466.562 189.16C465.836 189.726 465.288 190.493 464.894 191.413L466.732 192.201ZM467.793 190.737C468.264 190.368 468.766 190.119 469.304 189.979L468.8 188.044C467.986 188.256 467.238 188.632 466.561 189.161L467.793 190.737ZM469.31 189.978C469.913 189.817 470.497 189.739 471.063 189.739V187.739C470.311 187.739 469.554 187.842 468.794 188.045L469.31 189.978ZM471.063 189.739C471.406 189.739 471.825 189.781 472.328 189.875L472.696 187.909C472.108 187.799 471.561 187.739 471.063 187.739V189.739ZM472.339 189.877C472.762 189.951 473.178 190.107 473.591 190.355L474.62 188.64C474.011 188.274 473.364 188.026 472.685 187.907L472.339 189.877ZM473.596 190.357C473.934 190.558 474.247 190.878 474.517 191.369L476.269 190.404C475.857 189.656 475.312 189.05 474.616 188.637L473.596 190.357ZM474.517 191.369C474.747 191.787 474.904 192.43 474.904 193.375H476.904C476.904 192.24 476.72 191.225 476.269 190.404L474.517 191.369ZM474.904 193.375V202H476.904V193.375H474.904ZM475.904 201H473.893V203H475.904V201ZM474.893 202V200.227H472.893V202H474.893ZM473.893 199.227H473.79V201.227H473.893V199.227ZM472.889 199.795C472.816 199.946 472.667 200.161 472.395 200.438L473.822 201.84C474.186 201.469 474.492 201.076 474.692 200.66L472.889 199.795ZM472.395 200.438C472.189 200.649 471.883 200.858 471.444 201.047L472.234 202.885C472.851 202.619 473.392 202.278 473.822 201.84L472.395 200.438ZM471.444 201.047C471.073 201.207 470.571 201.307 469.904 201.307V203.307C470.76 203.307 471.547 203.18 472.234 202.885L471.444 201.047ZM470.211 201.5C471.135 201.5 471.988 201.318 472.719 200.899L471.725 199.164C471.366 199.369 470.878 199.5 470.211 199.5V201.5ZM472.716 200.901C473.406 200.51 473.96 199.982 474.338 199.312L472.595 198.33C472.416 198.648 472.141 198.928 471.729 199.161L472.716 200.901ZM474.334 199.319C474.701 198.681 474.893 197.99 474.893 197.261H472.893C472.893 197.624 472.801 197.973 472.6 198.323L474.334 199.319ZM474.893 197.261V195.42H472.893V197.261H474.893ZM473.125 194.78C473.169 194.727 473.209 194.696 473.226 194.684C473.244 194.67 473.251 194.668 473.241 194.673C473.231 194.678 473.211 194.687 473.177 194.7C473.144 194.712 473.101 194.727 473.048 194.742L473.612 196.661C473.792 196.608 473.971 196.544 474.135 196.462C474.289 196.385 474.494 196.261 474.661 196.061L473.125 194.78ZM473.061 194.739C472.819 194.806 472.526 194.87 472.177 194.928L472.506 196.901C472.907 196.834 473.273 196.756 473.6 196.665L473.061 194.739ZM472.19 194.926C471.828 194.982 471.475 195.032 471.131 195.076L471.387 197.06C471.748 197.013 472.117 196.961 472.494 196.903L472.19 194.926ZM471.145 195.075C470.796 195.115 470.509 195.15 470.285 195.179L470.546 197.162C470.754 197.135 471.029 197.101 471.373 197.062L471.145 195.075ZM470.286 195.179C469.705 195.255 469.152 195.379 468.63 195.555L469.269 197.45C469.656 197.32 470.081 197.223 470.545 197.162L470.286 195.179ZM468.637 195.553C468.052 195.746 467.535 196.054 467.124 196.497L468.593 197.855C468.74 197.696 468.95 197.556 469.262 197.453L468.637 195.553ZM467.124 196.498C466.638 197.024 466.45 197.694 466.45 198.386H468.45C468.45 198.056 468.534 197.919 468.593 197.854L467.124 196.498ZM466.45 198.386C466.45 199.371 466.836 200.226 467.656 200.794L468.794 199.149C468.58 199.001 468.45 198.8 468.45 198.386H466.45ZM467.666 200.801C468.394 201.291 469.264 201.5 470.211 201.5V199.5C469.555 199.5 469.102 199.357 468.784 199.142L467.666 200.801ZM481.723 201.403L481.176 202.24L481.176 202.24L481.723 201.403ZM479.695 192.003L478.794 191.568L478.793 191.57L479.695 192.003ZM481.757 189.608L482.303 190.446L482.304 190.445L481.757 189.608ZM489.163 190.682L489.956 190.072L489.956 190.072L489.163 190.682ZM490.041 192.83V193.83H491.19L491.032 192.692L490.041 192.83ZM488.03 192.83L487.061 193.079L487.254 193.83H488.03V192.83ZM487.007 191.244L486.342 191.991L486.35 191.998L487.007 191.244ZM482.831 191.159L483.399 191.982L483.4 191.981L482.831 191.159ZM481.459 192.872L480.546 192.465L480.544 192.468L481.459 192.872ZM481.45 198.097L480.53 198.487L480.532 198.493L481.45 198.097ZM482.814 199.844L482.236 200.66L482.239 200.662L482.814 199.844ZM486.317 200.193L485.924 199.273L485.924 199.273L486.317 200.193ZM487.399 199.409L488.155 200.064L488.155 200.064L487.399 199.409ZM488.03 198.182V197.182H487.258L487.062 197.928L488.03 198.182ZM490.041 198.182L491.031 198.327L491.199 197.182H490.041V198.182ZM489.197 200.27L488.388 199.683L488.387 199.684L489.197 200.27ZM487.433 201.736L487.875 202.633L487.878 202.632L487.433 201.736ZM484.893 201.273C483.829 201.273 482.969 201.024 482.27 200.566L481.176 202.24C482.249 202.942 483.503 203.273 484.893 203.273V201.273ZM482.27 200.566C481.549 200.095 480.986 199.443 480.583 198.584L478.772 199.433C479.323 200.608 480.125 201.553 481.176 202.24L482.27 200.566ZM480.583 198.584C480.177 197.72 479.962 196.707 479.962 195.523H477.962C477.962 196.953 478.223 198.263 478.772 199.433L480.583 198.584ZM479.962 195.523C479.962 194.317 480.183 193.296 480.596 192.436L478.793 191.57C478.229 192.744 477.962 194.07 477.962 195.523H479.962ZM480.595 192.438C481.017 191.566 481.587 190.912 482.303 190.446L481.211 188.77C480.166 189.451 479.361 190.395 478.794 191.568L480.595 192.438ZM482.304 190.445C483.01 189.984 483.849 189.739 484.859 189.739V187.739C483.507 187.739 482.277 188.073 481.21 188.771L482.304 190.445ZM484.859 189.739C485.654 189.739 486.338 189.885 486.929 190.158L487.767 188.342C486.881 187.933 485.905 187.739 484.859 187.739V189.739ZM486.929 190.158C487.528 190.435 488.003 190.812 488.37 191.291L489.956 190.072C489.381 189.324 488.645 188.747 487.767 188.342L486.929 190.158ZM488.37 191.291C488.729 191.758 488.959 192.309 489.051 192.967L491.032 192.692C490.896 191.714 490.541 190.833 489.956 190.072L488.37 191.291ZM490.041 191.83H488.03V193.83H490.041V191.83ZM488.998 192.581C488.788 191.762 488.323 191.064 487.664 190.49L486.35 191.998C486.748 192.345 486.965 192.704 487.061 193.079L488.998 192.581ZM487.672 190.498C486.922 189.829 485.958 189.545 484.893 189.545V191.545C485.602 191.545 486.047 191.728 486.342 191.991L487.672 190.498ZM484.893 189.545C483.925 189.545 483.035 189.801 482.262 190.337L483.4 191.981C483.809 191.699 484.293 191.545 484.893 191.545V189.545ZM482.263 190.336C481.507 190.857 480.939 191.582 480.546 192.465L482.372 193.28C482.637 192.685 482.985 192.268 483.399 191.982L482.263 190.336ZM480.544 192.468C480.152 193.354 479.973 194.358 479.973 195.455H481.973C481.973 194.573 482.117 193.856 482.373 193.276L480.544 192.468ZM479.973 195.455C479.973 196.569 480.148 197.588 480.53 198.487L482.371 197.706C482.116 197.106 481.973 196.363 481.973 195.455H479.973ZM480.532 198.493C480.918 199.387 481.481 200.125 482.236 200.66L483.392 199.028C482.976 198.733 482.63 198.306 482.368 197.7L480.532 198.493ZM482.239 200.662C483.016 201.207 483.914 201.466 484.893 201.466V199.466C484.282 199.466 483.794 199.31 483.388 199.025L482.239 200.662ZM484.893 201.466C485.534 201.466 486.144 201.354 486.709 201.113L485.924 199.273C485.637 199.396 485.299 199.466 484.893 199.466V201.466ZM486.709 201.113C487.271 200.873 487.757 200.523 488.155 200.064L486.643 198.754C486.45 198.977 486.215 199.149 485.924 199.273L486.709 201.113ZM488.155 200.064C488.56 199.597 488.837 199.047 488.997 198.435L487.062 197.928C486.973 198.272 486.829 198.54 486.643 198.754L488.155 200.064ZM488.03 199.182H490.041V197.182H488.03V199.182ZM489.052 198.036C488.961 198.653 488.74 199.197 488.388 199.683L490.007 200.857C490.553 200.104 490.894 199.256 491.031 198.327L489.052 198.036ZM488.387 199.684C488.046 200.156 487.588 200.543 486.989 200.84L487.878 202.632C488.744 202.202 489.462 201.611 490.008 200.855L488.387 199.684ZM486.992 200.839C486.426 201.117 485.735 201.273 484.893 201.273V203.273C485.983 203.273 486.986 203.07 487.875 202.633L486.992 200.839ZM498.675 188.909H499.675V187.909H498.675V188.909ZM498.675 190.614V191.614H499.675V190.614H498.675ZM491.891 190.614H490.891V191.614H491.891V190.614ZM491.891 188.909V187.909H490.891V188.909H491.891ZM493.868 185.773V184.773H492.868V185.773H493.868ZM495.879 185.773H496.879V184.773H495.879V185.773ZM496.126 199.528L495.261 200.03L495.267 200.04L495.274 200.051L496.126 199.528ZM496.774 200.091L496.427 201.029L496.44 201.033L496.452 201.038L496.774 200.091ZM498.163 200.193L498.321 201.181L498.34 201.178L498.359 201.174L498.163 200.193ZM498.504 200.125L499.48 199.904L499.264 198.953L498.308 199.144L498.504 200.125ZM498.913 201.932L499.264 202.868L500.081 202.562L499.889 201.711L498.913 201.932ZM498.342 202.085L498.137 201.106L498.127 201.109L498.116 201.111L498.342 202.085ZM495.743 201.804L495.331 202.715L495.334 202.717L495.743 201.804ZM494.396 200.688L493.579 201.263L493.583 201.27L494.396 200.688ZM497.675 188.909V190.614H499.675V188.909H497.675ZM498.675 189.614H491.891V191.614H498.675V189.614ZM492.891 190.614V188.909H490.891V190.614H492.891ZM491.891 189.909H498.675V187.909H491.891V189.909ZM493.868 186.773H495.879V184.773H493.868V186.773ZM494.879 185.773V198.25H496.879V185.773H494.879ZM494.879 198.25C494.879 198.882 494.965 199.519 495.261 200.03L496.991 199.027C496.958 198.969 496.879 198.754 496.879 198.25H494.879ZM495.274 200.051C495.54 200.486 495.921 200.842 496.427 201.029L497.121 199.153C497.105 199.147 497.053 199.127 496.979 199.006L495.274 200.051ZM496.452 201.038C496.828 201.165 497.218 201.227 497.618 201.227V199.227C497.427 199.227 497.255 199.198 497.096 199.144L496.452 201.038ZM497.618 201.227C497.867 201.227 498.107 201.215 498.321 201.181L498.005 199.206C497.936 199.217 497.812 199.227 497.618 199.227V201.227ZM498.359 201.174C498.502 201.145 498.615 201.123 498.7 201.106L498.308 199.144C498.223 199.161 498.109 199.184 497.967 199.213L498.359 201.174ZM497.529 200.346L497.938 202.153L499.889 201.711L499.48 199.904L497.529 200.346ZM498.562 200.995C498.495 201.021 498.362 201.059 498.137 201.106L498.547 203.064C498.812 203.009 499.059 202.945 499.264 202.868L498.562 200.995ZM498.116 201.111C497.973 201.145 497.746 201.17 497.413 201.17V203.17C497.831 203.17 498.223 203.14 498.569 203.059L498.116 201.111ZM497.413 201.17C496.993 201.17 496.575 201.081 496.152 200.891L495.334 202.717C496.001 203.015 496.697 203.17 497.413 203.17V201.17ZM496.155 200.893C495.782 200.724 495.469 200.468 495.209 200.105L493.583 201.27C494.039 201.907 494.624 202.395 495.331 202.715L496.155 200.893ZM495.214 200.112C495.007 199.817 494.868 199.402 494.868 198.795H492.868C492.868 199.712 493.081 200.558 493.579 201.263L495.214 200.112ZM494.868 198.795V185.773H492.868V198.795H494.868ZM501.7 202H500.7V203H501.7V202ZM501.7 188.909V187.909H500.7V188.909H501.7ZM503.712 188.909H504.712V187.909H503.712V188.909ZM503.712 202V203H504.712V202H503.712ZM501.709 186.327L501.017 187.048L501.024 187.055L501.709 186.327ZM501.709 184.401L501.024 183.672L501.017 183.679L501.709 184.401ZM503.729 184.401L503.036 185.122L503.044 185.129L503.729 184.401ZM503.729 186.327L503.044 185.598L503.036 185.605L503.729 186.327ZM502.7 202V188.909H500.7V202H502.7ZM501.7 189.909H503.712V187.909H501.7V189.909ZM502.712 188.909V202H504.712V188.909H502.712ZM503.712 201H501.7V203H503.712V201ZM502.723 185.727C502.584 185.727 502.491 185.69 502.394 185.598L501.024 187.055C501.495 187.498 502.078 187.727 502.723 187.727V185.727ZM502.401 185.605C502.313 185.52 502.291 185.457 502.291 185.364H500.291C500.291 186.02 500.548 186.599 501.017 187.048L502.401 185.605ZM502.291 185.364C502.291 185.27 502.313 185.207 502.401 185.122L501.017 183.679C500.548 184.128 500.291 184.707 500.291 185.364H502.291ZM502.394 185.129C502.491 185.038 502.584 185 502.723 185V183C502.078 183 501.495 183.23 501.024 183.672L502.394 185.129ZM502.723 185C502.862 185 502.948 185.037 503.036 185.122L504.421 183.679C503.953 183.23 503.368 183 502.723 183V185ZM503.044 185.129C503.136 185.216 503.155 185.277 503.155 185.364H505.155C505.155 184.701 504.89 184.12 504.414 183.672L503.044 185.129ZM503.155 185.364C503.155 185.451 503.136 185.512 503.044 185.598L504.414 187.055C504.89 186.608 505.155 186.027 505.155 185.364H503.155ZM503.036 185.605C502.948 185.69 502.862 185.727 502.723 185.727V187.727C503.368 187.727 503.953 187.497 504.421 187.048L503.036 185.605ZM518.1 188.909L519.038 189.256L519.536 187.909H518.1V188.909ZM513.259 202V203H513.956L514.197 202.347L513.259 202ZM511.214 202L510.276 202.347L510.517 203H511.214V202ZM506.373 188.909V187.909H504.937L505.435 189.256L506.373 188.909ZM508.555 188.909L509.5 188.582L509.267 187.909H508.555V188.909ZM512.168 199.341L511.223 199.668L511.456 200.341H512.168V199.341ZM512.305 199.341V200.341H513.017L513.25 199.668L512.305 199.341ZM515.918 188.909V187.909H515.206L514.973 188.582L515.918 188.909ZM517.162 188.562L512.321 201.653L514.197 202.347L519.038 189.256L517.162 188.562ZM513.259 201H511.214V203H513.259V201ZM512.152 201.653L507.311 188.562L505.435 189.256L510.276 202.347L512.152 201.653ZM506.373 189.909H508.555V187.909H506.373V189.909ZM507.61 189.236L511.223 199.668L513.113 199.014L509.5 188.582L507.61 189.236ZM512.168 200.341H512.305V198.341H512.168V200.341ZM513.25 199.668L516.863 189.236L514.973 188.582L511.36 199.014L513.25 199.668ZM515.918 189.909H518.1V187.909H515.918V189.909ZM522.511 201.438L521.984 202.288L521.991 202.292L522.511 201.438ZM520.406 199.085L519.505 199.52L519.508 199.526L520.406 199.085ZM520.406 192.011L519.504 191.578L519.503 191.58L520.406 192.011ZM522.468 189.608L523.014 190.446L523.015 190.445L522.468 189.608ZM527.59 189.08L527.914 188.133L527.914 188.133L527.59 189.08ZM529.406 190.188L528.722 190.917L528.726 190.921L529.406 190.188ZM530.71 192.199L531.642 191.837L531.642 191.837L530.71 192.199ZM531.195 196.136V197.136H532.195V196.136H531.195ZM521.104 196.136H520.104V197.136H521.104V196.136ZM521.104 194.398V193.398H520.104V194.398H521.104ZM529.15 194.398V195.398H530.15V194.398H529.15ZM528.707 192.42L527.812 192.868L527.816 192.875L528.707 192.42ZM527.462 191.048L526.931 191.895L526.935 191.898L527.462 191.048ZM523.491 191.142L524.051 191.97L524.053 191.969L523.491 191.142ZM522.153 192.676L521.257 192.232L521.257 192.232L522.153 192.676ZM522.195 198.378L521.299 198.822L521.304 198.831L522.195 198.378ZM523.636 199.938L523.132 200.801L523.138 200.805L523.636 199.938ZM527.207 200.244L527.534 201.189L527.541 201.187L527.207 200.244ZM528.323 199.562L529.017 200.283L529.024 200.276L528.323 199.562ZM529.048 198.42L529.318 197.458L528.434 197.209L528.111 198.069L529.048 198.42ZM530.991 198.966L531.946 199.262L532.25 198.281L531.261 198.003L530.991 198.966ZM529.96 200.705L530.675 201.403L530.679 201.399L529.96 200.705ZM528.17 201.864L528.528 202.797L528.535 202.795L528.17 201.864ZM525.775 201.273C524.664 201.273 523.763 201.029 523.031 200.583L521.991 202.292C523.088 202.96 524.363 203.273 525.775 203.273V201.273ZM523.037 200.587C522.295 200.128 521.719 199.49 521.303 198.644L519.508 199.526C520.081 200.692 520.908 201.622 521.984 202.288L523.037 200.587ZM521.306 198.65C520.894 197.798 520.673 196.776 520.673 195.557H518.673C518.673 197.02 518.939 198.349 519.505 199.52L521.306 198.65ZM520.673 195.557C520.673 194.338 520.894 193.308 521.308 192.442L519.503 191.58C518.94 192.76 518.673 194.094 518.673 195.557H520.673ZM521.307 192.445C521.729 191.566 522.3 190.911 523.014 190.446L521.922 188.77C520.875 189.452 520.071 190.4 519.504 191.578L521.307 192.445ZM523.015 190.445C523.72 189.984 524.56 189.739 525.57 189.739V187.739C524.217 187.739 522.988 188.073 521.921 188.771L523.015 190.445ZM525.57 189.739C526.139 189.739 526.703 189.833 527.267 190.026L527.914 188.133C527.148 187.872 526.366 187.739 525.57 187.739V189.739ZM527.267 190.026C527.789 190.204 528.273 190.496 528.722 190.917L530.089 189.458C529.447 188.856 528.721 188.409 527.914 188.133L527.267 190.026ZM528.726 190.921C529.139 191.304 529.497 191.838 529.777 192.56L531.642 191.837C531.274 190.889 530.763 190.082 530.085 189.454L528.726 190.921ZM529.777 192.56C530.043 193.247 530.195 194.144 530.195 195.284H532.195C532.195 193.981 532.023 192.821 531.642 191.837L529.777 192.56ZM530.195 195.284V196.136H532.195V195.284H530.195ZM531.195 195.136H521.104V197.136H531.195V195.136ZM522.104 196.136V194.398H520.104V196.136H522.104ZM521.104 195.398H529.15V193.398H521.104V195.398ZM530.15 194.398C530.15 193.523 529.974 192.704 529.598 191.966L527.816 192.875C528.03 193.296 528.15 193.795 528.15 194.398H530.15ZM529.601 191.973C529.23 191.232 528.69 190.634 527.99 190.199L526.935 191.898C527.314 192.133 527.603 192.45 527.812 192.868L529.601 191.973ZM527.994 190.201C527.277 189.752 526.456 189.545 525.57 189.545V191.545C526.139 191.545 526.579 191.675 526.931 191.895L527.994 190.201ZM525.57 189.545C524.596 189.545 523.701 189.79 522.929 190.315L524.053 191.969C524.451 191.699 524.942 191.545 525.57 191.545V189.545ZM522.93 190.314C522.207 190.803 521.645 191.447 521.257 192.232L523.049 193.12C523.285 192.643 523.616 192.265 524.051 191.97L522.93 190.314ZM521.257 192.232C520.874 193.004 520.684 193.833 520.684 194.705H522.684C522.684 194.133 522.806 193.609 523.049 193.12L521.257 192.232ZM520.684 194.705V195.864H522.684V194.705H520.684ZM520.684 195.864C520.684 196.963 520.873 197.963 521.299 198.822L523.091 197.934C522.836 197.418 522.684 196.741 522.684 195.864H520.684ZM521.304 198.831C521.731 199.67 522.339 200.339 523.132 200.801L524.14 199.074C523.705 198.82 523.353 198.449 523.087 197.925L521.304 198.831ZM523.138 200.805C523.924 201.256 524.814 201.466 525.775 201.466V199.466C525.111 199.466 524.574 199.323 524.134 199.07L523.138 200.805ZM525.775 201.466C526.396 201.466 526.986 201.379 527.534 201.189L526.879 199.299C526.575 199.405 526.21 199.466 525.775 199.466V201.466ZM527.541 201.187C528.1 200.988 528.596 200.688 529.017 200.283L527.629 198.842C527.425 199.039 527.177 199.194 526.872 199.302L527.541 201.187ZM529.024 200.276C529.451 199.856 529.768 199.348 529.984 198.772L528.111 198.069C527.986 198.402 527.82 198.655 527.623 198.849L529.024 200.276ZM528.777 199.383L530.721 199.929L531.261 198.003L529.318 197.458L528.777 199.383ZM530.036 198.67C529.878 199.178 529.615 199.621 529.24 200.01L530.679 201.399C531.27 200.788 531.695 200.072 531.946 199.262L530.036 198.67ZM529.244 200.006C528.87 200.389 528.397 200.7 527.805 200.933L528.535 202.795C529.363 202.47 530.083 202.009 530.675 201.403L529.244 200.006ZM527.811 200.93C527.233 201.152 526.559 201.273 525.775 201.273V203.273C526.764 203.273 527.686 203.12 528.528 202.797L527.811 200.93ZM543.783 206.807L544.12 205.865L544.113 205.863L543.783 206.807ZM542.036 205.835L542.691 205.079L542.69 205.079L542.036 205.835ZM540.937 204.557L540.362 203.738L539.6 204.273L540.079 205.071L540.937 204.557ZM542.539 203.432L543.334 202.826L542.752 202.061L541.964 202.613L542.539 203.432ZM543.229 204.25L543.976 203.585L543.97 203.578L543.229 204.25ZM544.371 205.06L544.802 204.157L544.797 204.155L544.371 205.06ZM548.906 204.642L549.502 205.444L549.502 205.444L548.906 204.642ZM549.937 199.58H550.937V198.58H549.937V199.58ZM549.766 199.58V198.58H549.209L548.916 199.053L549.766 199.58ZM549.136 200.466L548.345 199.854L548.344 199.856L549.136 200.466ZM547.977 201.395L548.448 202.277L548.451 202.275L547.977 201.395ZM543.102 201.045L542.588 201.903L542.59 201.905L543.102 201.045ZM541.116 198.864L540.223 199.315L540.226 199.319L541.116 198.864ZM541.099 191.884L542.002 192.312L542.003 192.31L541.099 191.884ZM543.067 189.565L543.612 190.404L543.616 190.402L543.067 189.565ZM548.011 189.165L547.517 190.034L547.528 190.041L548.011 189.165ZM549.17 190.119L548.368 190.717L548.374 190.724L548.379 190.731L549.17 190.119ZM549.8 190.989L548.962 191.534L549.258 191.989H549.8V190.989ZM550.005 190.989V191.989H551.005V190.989H550.005ZM550.005 188.909V187.909H549.005V188.909H550.005ZM551.948 188.909H552.948V187.909H551.948V188.909ZM551.181 205.119L550.372 204.532L550.366 204.539L551.181 205.119ZM549.136 206.679L548.777 205.745L548.77 205.748L549.136 206.679ZM548.266 199.435L547.714 198.601L547.714 198.601L548.266 199.435ZM549.536 197.841L550.459 198.227L550.459 198.227L549.536 197.841ZM549.545 192.855L550.475 192.489L550.475 192.489L549.545 192.855ZM548.283 191.159L547.691 191.965L547.691 191.965L548.283 191.159ZM544.09 191.193L543.485 190.397L543.481 190.4L544.09 191.193ZM542.82 192.932L541.889 192.568L541.886 192.574L542.82 192.932ZM542.829 197.764L541.902 198.141L541.906 198.15L542.829 197.764ZM544.107 199.401L543.53 200.217L543.539 200.224L544.107 199.401ZM546.289 206.182C545.399 206.182 544.683 206.067 544.12 205.865L543.447 207.748C544.281 208.047 545.236 208.182 546.289 208.182V206.182ZM544.113 205.863C543.51 205.652 543.044 205.385 542.691 205.079L541.382 206.591C541.96 207.092 542.659 207.473 543.453 207.751L544.113 205.863ZM542.69 205.079C542.299 204.74 542.005 204.394 541.794 204.042L540.079 205.071C540.414 205.629 540.853 206.135 541.382 206.592L542.69 205.079ZM541.511 205.375L543.114 204.25L541.964 202.613L540.362 203.738L541.511 205.375ZM541.744 204.038C541.948 204.306 542.198 204.601 542.489 204.922L543.97 203.578C543.704 203.285 543.494 203.035 543.334 202.826L541.744 204.038ZM542.483 204.915C542.872 205.352 543.373 205.695 543.946 205.964L544.797 204.155C544.404 203.97 544.144 203.773 543.976 203.585L542.483 204.915ZM543.941 205.962C544.611 206.282 545.413 206.409 546.289 206.409V204.409C545.585 204.409 545.109 204.303 544.802 204.157L543.941 205.962ZM546.289 206.409C547.51 206.409 548.605 206.112 549.502 205.444L548.309 203.84C547.831 204.195 547.182 204.409 546.289 204.409V206.409ZM549.502 205.444C550.511 204.694 550.937 203.55 550.937 202.239H548.937C548.937 203.109 548.675 203.567 548.309 203.84L549.502 205.444ZM550.937 202.239V199.58H548.937V202.239H550.937ZM549.937 198.58H549.766V200.58H549.937V198.58ZM548.916 199.053C548.794 199.25 548.607 199.515 548.345 199.854L549.926 201.078C550.21 200.712 550.443 200.386 550.617 200.106L548.916 199.053ZM548.344 199.856C548.185 200.062 547.921 200.289 547.502 200.515L548.451 202.275C549.044 201.956 549.553 201.563 549.928 201.076L548.344 199.856ZM547.505 200.513C547.205 200.673 546.712 200.795 545.948 200.795V202.795C546.889 202.795 547.748 202.651 548.448 202.277L547.505 200.513ZM545.948 200.795C545.056 200.795 544.287 200.587 543.613 200.186L542.59 201.905C543.598 202.504 544.726 202.795 545.948 202.795V200.795ZM543.615 200.187C542.957 199.793 542.418 199.213 542.006 198.408L540.226 199.319C540.791 200.423 541.576 201.298 542.588 201.903L543.615 200.187ZM542.008 198.412C541.613 197.631 541.391 196.635 541.391 195.386H539.391C539.391 196.865 539.653 198.187 540.223 199.315L542.008 198.412ZM541.391 195.386C541.391 194.162 541.607 193.146 542.002 192.312L540.195 191.455C539.648 192.609 539.391 193.929 539.391 195.386H541.391ZM542.003 192.31C542.404 191.46 542.943 190.838 543.612 190.404L542.523 188.726C541.51 189.383 540.737 190.307 540.194 191.457L542.003 192.31ZM543.616 190.402C544.278 189.968 545.055 189.739 545.982 189.739V187.739C544.705 187.739 543.539 188.061 542.519 188.729L543.616 190.402ZM545.982 189.739C546.739 189.739 547.223 189.867 547.517 190.034L548.505 188.295C547.799 187.894 546.93 187.739 545.982 187.739V189.739ZM547.528 190.041C547.944 190.27 548.208 190.502 548.368 190.717L549.971 189.521C549.598 189.021 549.089 188.617 548.493 188.289L547.528 190.041ZM548.379 190.731C548.644 191.074 548.836 191.339 548.962 191.534L550.639 190.444C550.47 190.183 550.241 189.869 549.96 189.507L548.379 190.731ZM549.8 191.989H550.005V189.989H549.8V191.989ZM551.005 190.989V188.909H549.005V190.989H551.005ZM550.005 189.909H551.948V187.909H550.005V189.909ZM550.948 188.909V202.375H552.948V188.909H550.948ZM550.948 202.375C550.948 203.351 550.727 204.042 550.372 204.532L551.99 205.707C552.658 204.787 552.948 203.649 552.948 202.375H550.948ZM550.366 204.539C549.981 205.081 549.462 205.482 548.777 205.745L549.494 207.612C550.525 207.216 551.37 206.579 551.996 205.699L550.366 204.539ZM548.77 205.748C548.049 206.032 547.227 206.182 546.289 206.182V208.182C547.442 208.182 548.518 207.997 549.502 207.61L548.77 205.748ZM546.221 200.989C547.183 200.989 548.067 200.767 548.819 200.268L547.714 198.601C547.352 198.841 546.872 198.989 546.221 198.989V200.989ZM548.819 200.268C549.561 199.776 550.103 199.079 550.459 198.227L548.614 197.455C548.39 197.989 548.086 198.355 547.714 198.601L548.819 200.268ZM550.459 198.227C550.812 197.382 550.971 196.414 550.971 195.352H548.971C548.971 196.222 548.84 196.914 548.614 197.455L550.459 198.227ZM550.971 195.352C550.971 194.31 550.814 193.349 550.475 192.489L548.614 193.221C548.844 193.804 548.971 194.508 548.971 195.352H550.971ZM550.475 192.489C550.131 191.614 549.602 190.887 548.875 190.353L547.691 191.965C548.078 192.249 548.391 192.653 548.614 193.221L550.475 192.489ZM548.875 190.353C548.117 189.796 547.212 189.545 546.221 189.545V191.545C546.866 191.545 547.336 191.704 547.691 191.965L548.875 190.353ZM546.221 189.545C545.194 189.545 544.259 189.809 543.485 190.397L544.695 191.989C545.058 191.714 545.543 191.545 546.221 191.545V189.545ZM543.481 190.4C542.76 190.954 542.232 191.689 541.889 192.568L543.752 193.296C543.976 192.721 544.296 192.296 544.699 191.986L543.481 190.4ZM541.886 192.574C541.559 193.43 541.403 194.36 541.403 195.352H543.403C543.403 194.571 543.525 193.888 543.754 193.289L541.886 192.574ZM541.403 195.352C541.403 196.365 541.561 197.301 541.902 198.141L543.755 197.388C543.529 196.83 543.403 196.158 543.403 195.352H541.403ZM541.906 198.15C542.262 199 542.8 199.701 543.53 200.217L544.685 198.584C544.289 198.304 543.976 197.915 543.751 197.379L541.906 198.15ZM543.539 200.224C544.308 200.754 545.222 200.989 546.221 200.989V198.989C545.538 198.989 545.043 198.831 544.675 198.577L543.539 200.224ZM557.224 201.838L556.798 202.743L556.804 202.746L557.224 201.838ZM555.613 200.466L554.778 201.017L554.781 201.021L555.613 200.466ZM555.46 196.46L556.304 196.996L556.307 196.991L555.46 196.46ZM558.281 194.756L558.495 195.733L558.501 195.731L558.281 194.756ZM560.096 194.432L559.968 193.44L559.966 193.44L560.096 194.432ZM562.031 194.202L562.133 195.196L562.143 195.195L562.031 194.202ZM563.121 193.92L562.632 193.048L562.623 193.054L563.121 193.92ZM562.781 191.21L562.065 191.909L562.069 191.913L562.781 191.21ZM558.451 191.142L559.062 191.934L559.062 191.934L558.451 191.142ZM557.3 192.489L556.964 193.43L557.823 193.737L558.207 192.91L557.3 192.489ZM555.391 191.807L554.472 191.413L554.053 192.391L555.055 192.749L555.391 191.807ZM556.755 189.949L557.37 190.737L557.371 190.737L556.755 189.949ZM558.63 189.011L558.882 189.979L558.888 189.978L558.63 189.011ZM562.09 188.892L561.906 189.875L561.918 189.877L562.09 188.892ZM563.684 189.497L563.169 190.355L563.174 190.357L563.684 189.497ZM564.971 190.886L564.095 191.369L564.095 191.369L564.971 190.886ZM565.482 202V203H566.482V202H565.482ZM563.471 202H562.471V203H563.471V202ZM563.471 200.227H564.471V199.227H563.471V200.227ZM563.369 200.227V199.227H562.739L562.467 199.795L563.369 200.227ZM562.687 201.139L563.4 201.84L563.4 201.84L562.687 201.139ZM561.417 201.966L561.022 201.047L561.417 201.966ZM561.8 200.031L561.307 199.161L561.303 199.164L561.8 200.031ZM563.045 198.821L562.178 198.323L562.173 198.33L563.045 198.821ZM563.471 195.42H564.471V192.658L562.703 194.78L563.471 195.42ZM562.908 195.702L563.178 196.665L563.191 196.661L562.908 195.702ZM561.92 195.915L562.072 196.903L562.084 196.901L561.92 195.915ZM560.837 196.068L560.951 197.062L560.965 197.06L560.837 196.068ZM559.994 196.17L560.123 197.162L560.124 197.162L559.994 196.17ZM558.528 196.503L558.84 197.453L558.847 197.45L558.528 196.503ZM557.437 197.176L556.703 196.497L556.702 196.498L557.437 197.176ZM557.803 199.972L557.234 200.794L557.244 200.801L557.803 199.972ZM559.482 201.307C558.781 201.307 558.174 201.175 557.643 200.93L556.804 202.746C557.626 203.126 558.524 203.307 559.482 203.307V201.307ZM557.65 200.933C557.131 200.689 556.737 200.35 556.445 199.911L554.781 201.021C555.284 201.775 555.964 202.351 556.798 202.743L557.65 200.933ZM556.447 199.915C556.176 199.504 556.016 198.977 556.016 198.284H554.016C554.016 199.296 554.254 200.223 554.778 201.017L556.447 199.915ZM556.016 198.284C556.016 197.658 556.14 197.254 556.304 196.996L554.615 195.925C554.188 196.599 554.016 197.41 554.016 198.284H556.016ZM556.307 196.991C556.51 196.668 556.776 196.418 557.119 196.232L556.169 194.472C555.524 194.821 555 195.31 554.612 195.929L556.307 196.991ZM557.119 196.232C557.525 196.013 557.981 195.845 558.495 195.733L558.067 193.779C557.387 193.928 556.752 194.157 556.169 194.472L557.119 196.232ZM558.501 195.731C559.074 195.601 559.648 195.499 560.226 195.423L559.966 193.44C559.327 193.524 558.692 193.637 558.06 193.78L558.501 195.731ZM560.223 195.424C561.015 195.322 561.651 195.246 562.133 195.196L561.928 193.207C561.422 193.259 560.768 193.337 559.968 193.44L560.223 195.424ZM562.143 195.195C562.677 195.135 563.209 195.023 563.62 194.787L562.623 193.054C562.579 193.079 562.384 193.155 561.918 193.208L562.143 195.195ZM563.611 194.793C564.231 194.445 564.471 193.833 564.471 193.239H562.471C562.471 193.283 562.463 193.256 562.494 193.196C562.509 193.166 562.531 193.134 562.559 193.106C562.586 193.078 562.613 193.059 562.632 193.048L563.611 194.793ZM564.471 193.239V193.17H562.471V193.239H564.471ZM564.471 193.17C564.471 192.145 564.186 191.21 563.492 190.507L562.069 191.913C562.296 192.143 562.471 192.515 562.471 193.17H564.471ZM563.496 190.512C562.786 189.784 561.79 189.511 560.71 189.511V191.511C561.482 191.511 561.866 191.705 562.065 191.909L563.496 190.512ZM560.71 189.511C559.614 189.511 558.618 189.751 557.84 190.35L559.062 191.934C559.375 191.693 559.885 191.511 560.71 191.511V189.511ZM557.84 190.35C557.206 190.839 556.7 191.407 556.393 192.068L558.207 192.91C558.344 192.616 558.605 192.286 559.062 191.934L557.84 190.35ZM557.637 191.547L555.728 190.865L555.055 192.749L556.964 193.43L557.637 191.547ZM556.31 192.201C556.598 191.529 556.959 191.058 557.37 190.737L556.14 189.16C555.414 189.726 554.866 190.493 554.472 191.413L556.31 192.201ZM557.371 190.737C557.842 190.368 558.344 190.119 558.882 189.979L558.378 188.044C557.564 188.256 556.816 188.632 556.139 189.161L557.371 190.737ZM558.888 189.978C559.491 189.817 560.075 189.739 560.641 189.739V187.739C559.889 187.739 559.132 187.842 558.372 188.045L558.888 189.978ZM560.641 189.739C560.984 189.739 561.403 189.781 561.906 189.875L562.274 187.909C561.686 187.799 561.14 187.739 560.641 187.739V189.739ZM561.918 189.877C562.34 189.951 562.756 190.107 563.169 190.355L564.198 188.64C563.589 188.274 562.943 188.026 562.263 187.907L561.918 189.877ZM563.174 190.357C563.512 190.558 563.825 190.878 564.095 191.369L565.847 190.404C565.435 189.656 564.89 189.05 564.194 188.637L563.174 190.357ZM564.095 191.369C564.325 191.787 564.482 192.43 564.482 193.375H566.482C566.482 192.24 566.299 191.225 565.847 190.404L564.095 191.369ZM564.482 193.375V202H566.482V193.375H564.482ZM565.482 201H563.471V203H565.482V201ZM564.471 202V200.227H562.471V202H564.471ZM563.471 199.227H563.369V201.227H563.471V199.227ZM562.467 199.795C562.394 199.946 562.246 200.161 561.973 200.438L563.4 201.84C563.764 201.469 564.07 201.076 564.27 200.66L562.467 199.795ZM561.973 200.438C561.767 200.649 561.462 200.858 561.022 201.047L561.812 202.885C562.429 202.619 562.97 202.278 563.4 201.84L561.973 200.438ZM561.022 201.047C560.652 201.207 560.149 201.307 559.482 201.307V203.307C560.338 203.307 561.125 203.18 561.812 202.885L561.022 201.047ZM559.789 201.5C560.713 201.5 561.566 201.318 562.298 200.899L561.303 199.164C560.944 199.369 560.456 199.5 559.789 199.5V201.5ZM562.294 200.901C562.984 200.51 563.538 199.982 563.916 199.312L562.173 198.33C561.994 198.648 561.719 198.928 561.307 199.161L562.294 200.901ZM563.912 199.319C564.279 198.681 564.471 197.99 564.471 197.261H562.471C562.471 197.624 562.379 197.973 562.178 198.323L563.912 199.319ZM564.471 197.261V195.42H562.471V197.261H564.471ZM562.703 194.78C562.747 194.727 562.787 194.696 562.804 194.684C562.822 194.67 562.83 194.668 562.819 194.673C562.809 194.678 562.789 194.687 562.755 194.7C562.722 194.712 562.68 194.727 562.626 194.742L563.191 196.661C563.37 196.608 563.549 196.544 563.714 196.462C563.868 196.385 564.072 196.261 564.239 196.061L562.703 194.78ZM562.639 194.739C562.397 194.806 562.104 194.87 561.755 194.928L562.084 196.901C562.485 196.834 562.851 196.756 563.178 196.665L562.639 194.739ZM561.768 194.926C561.406 194.982 561.053 195.032 560.709 195.076L560.965 197.06C561.326 197.013 561.695 196.961 562.072 196.903L561.768 194.926ZM560.723 195.075C560.374 195.115 560.087 195.15 559.863 195.179L560.124 197.162C560.332 197.135 560.607 197.101 560.951 197.062L560.723 195.075ZM559.864 195.179C559.283 195.255 558.73 195.379 558.208 195.555L558.847 197.45C559.234 197.32 559.659 197.223 560.123 197.162L559.864 195.179ZM558.215 195.553C557.63 195.746 557.113 196.054 556.703 196.497L558.171 197.855C558.318 197.696 558.528 197.556 558.84 197.453L558.215 195.553ZM556.702 196.498C556.216 197.024 556.028 197.694 556.028 198.386H558.028C558.028 198.056 558.112 197.919 558.172 197.854L556.702 196.498ZM556.028 198.386C556.028 199.371 556.414 200.226 557.234 200.794L558.372 199.149C558.159 199.001 558.028 198.8 558.028 198.386H556.028ZM557.244 200.801C557.972 201.291 558.843 201.5 559.789 201.5V199.5C559.133 199.5 558.68 199.357 558.362 199.142L557.244 200.801ZM569.153 202H568.153V203H569.153V202ZM569.153 188.909V187.909H568.153V188.909H569.153ZM571.097 188.909H572.097V187.909H571.097V188.909ZM571.097 190.955H570.097V191.955H571.097V190.955ZM571.267 190.955V191.955H571.95L572.199 191.318L571.267 190.955ZM572.588 189.327L573.124 190.171L573.13 190.167L572.588 189.327ZM576.935 189.327L576.371 190.152L576.38 190.159L576.935 189.327ZM578.29 190.955L577.382 191.375L577.651 191.955H578.29V190.955ZM578.426 190.955V191.955H579.046L579.322 191.399L578.426 190.955ZM579.935 189.344L580.445 190.204L580.45 190.201L579.935 189.344ZM585.219 189.838L584.517 190.551L584.52 190.553L585.219 189.838ZM586.335 202V203H587.335V202H586.335ZM584.324 202H583.324V203H584.324V202ZM583.531 191.168L582.914 191.954L582.914 191.954L583.531 191.168ZM579.526 191.381L580.262 192.057L580.266 192.053L579.526 191.381ZM578.767 202V203H579.767V202H578.767ZM576.722 202H575.722V203H576.722V202ZM575.997 191.236L575.307 191.96L575.312 191.964L575.997 191.236ZM572.665 190.963L572.142 190.11L572.138 190.113L572.665 190.963ZM571.574 192.122L570.703 191.631L570.701 191.635L571.574 192.122ZM571.165 202V203H572.165V202H571.165ZM570.153 202V188.909H568.153V202H570.153ZM569.153 189.909H571.097V187.909H569.153V189.909ZM570.097 188.909V190.955H572.097V188.909H570.097ZM571.097 191.955H571.267V189.955H571.097V191.955ZM572.199 191.318C572.397 190.809 572.704 190.438 573.124 190.171L572.052 188.483C571.256 188.988 570.682 189.703 570.335 190.591L572.199 191.318ZM573.13 190.167C573.549 189.897 574.084 189.739 574.778 189.739V187.739C573.769 187.739 572.843 187.973 572.046 188.486L573.13 190.167ZM574.778 189.739C575.49 189.739 575.999 189.899 576.371 190.152L577.499 188.501C576.722 187.971 575.794 187.739 574.778 187.739V189.739ZM576.38 190.159C576.79 190.432 577.128 190.825 577.382 191.375L579.197 190.534C578.804 189.686 578.238 188.994 577.489 188.495L576.38 190.159ZM578.29 191.955H578.426V189.955H578.29V191.955ZM579.322 191.399C579.569 190.901 579.935 190.506 580.445 190.204L579.424 188.484C578.594 188.976 577.954 189.655 577.53 190.51L579.322 191.399ZM580.45 190.201C580.937 189.908 581.555 189.739 582.347 189.739V187.739C581.264 187.739 580.274 187.973 579.419 188.487L580.45 190.201ZM582.347 189.739C583.289 189.739 583.983 190.025 584.517 190.551L585.92 189.126C584.966 188.186 583.745 187.739 582.347 187.739V189.739ZM584.52 190.553C584.996 191.018 585.335 191.839 585.335 193.239H587.335C587.335 191.558 586.93 190.112 585.918 189.123L584.52 190.553ZM585.335 193.239V202H587.335V193.239H585.335ZM586.335 201H584.324V203H586.335V201ZM585.324 202V193.239H583.324V202H585.324ZM585.324 193.239C585.324 192.106 585.011 191.058 584.149 190.381L582.914 191.954C583.108 192.107 583.324 192.439 583.324 193.239H585.324ZM584.149 190.381C583.432 189.819 582.589 189.545 581.665 189.545V191.545C582.173 191.545 582.574 191.687 582.914 191.954L584.149 190.381ZM581.665 189.545C580.531 189.545 579.522 189.897 578.785 190.708L580.266 192.053C580.541 191.75 580.958 191.545 581.665 191.545V189.545ZM578.789 190.705C578.091 191.465 577.767 192.416 577.767 193.477H579.767C579.767 192.846 579.949 192.399 580.262 192.057L578.789 190.705ZM577.767 193.477V202H579.767V193.477H577.767ZM578.767 201H576.722V203H578.767V201ZM577.722 202V193.034H575.722V202H577.722ZM577.722 193.034C577.722 192.051 577.392 191.175 576.683 190.508L575.312 191.964C575.568 192.206 575.722 192.528 575.722 193.034H577.722ZM576.687 190.512C575.992 189.849 575.11 189.545 574.131 189.545V191.545C574.674 191.545 575.037 191.702 575.307 191.96L576.687 190.512ZM574.131 189.545C573.42 189.545 572.751 189.738 572.142 190.11L573.187 191.816C573.488 191.632 573.796 191.545 574.131 191.545V189.545ZM572.138 190.113C571.535 190.487 571.057 191.002 570.703 191.631L572.445 192.613C572.647 192.254 572.897 191.996 573.192 191.813L572.138 190.113ZM570.701 191.635C570.333 192.293 570.165 193.031 570.165 193.818H572.165C572.165 193.321 572.269 192.928 572.447 192.61L570.701 191.635ZM570.165 193.818V202H572.165V193.818H570.165ZM571.165 201H569.153V203H571.165V201ZM592.237 201.438L591.711 202.288L591.717 202.292L592.237 201.438ZM590.132 199.085L589.232 199.52L589.235 199.526L590.132 199.085ZM590.132 192.011L589.231 191.578L589.23 191.58L590.132 192.011ZM592.195 189.608L592.741 190.446L592.742 190.445L592.195 189.608ZM597.317 189.08L597.64 188.133L597.64 188.133L597.317 189.08ZM599.132 190.188L598.448 190.917L598.452 190.921L599.132 190.188ZM600.436 192.199L601.368 191.837L601.368 191.837L600.436 192.199ZM600.922 196.136V197.136H601.922V196.136H600.922ZM590.831 196.136H589.831V197.136H590.831V196.136ZM590.831 194.398V193.398H589.831V194.398H590.831ZM598.876 194.398V195.398H599.876V194.398H598.876ZM598.433 192.42L597.539 192.868L597.542 192.875L598.433 192.42ZM597.189 191.048L596.657 191.895L596.661 191.898L597.189 191.048ZM593.217 191.142L593.778 191.97L593.779 191.969L593.217 191.142ZM591.879 192.676L590.983 192.232L590.983 192.232L591.879 192.676ZM591.922 198.378L591.026 198.822L591.03 198.831L591.922 198.378ZM593.362 199.938L592.858 200.801L592.864 200.805L593.362 199.938ZM596.933 200.244L597.261 201.189L597.268 201.187L596.933 200.244ZM598.05 199.562L598.744 200.283L598.75 200.276L598.05 199.562ZM598.774 198.42L599.044 197.458L598.16 197.209L597.838 198.069L598.774 198.42ZM600.717 198.966L601.672 199.262L601.977 198.281L600.988 198.003L600.717 198.966ZM599.686 200.705L600.401 201.403L600.405 201.399L599.686 200.705ZM597.896 201.864L598.255 202.797L598.261 202.795L597.896 201.864ZM595.501 201.273C594.39 201.273 593.489 201.029 592.757 200.583L591.717 202.292C592.815 202.96 594.09 203.273 595.501 203.273V201.273ZM592.763 200.587C592.022 200.128 591.445 199.49 591.03 198.644L589.235 199.526C589.808 200.692 590.634 201.622 591.711 202.288L592.763 200.587ZM591.033 198.65C590.621 197.798 590.399 196.776 590.399 195.557H588.399C588.399 197.02 588.666 198.349 589.232 199.52L591.033 198.65ZM590.399 195.557C590.399 194.338 590.621 193.308 591.034 192.442L589.23 191.58C588.666 192.76 588.399 194.094 588.399 195.557H590.399ZM591.033 192.445C591.456 191.566 592.026 190.911 592.741 190.446L591.649 188.77C590.602 189.452 589.797 190.4 589.231 191.578L591.033 192.445ZM592.742 190.445C593.447 189.984 594.286 189.739 595.297 189.739V187.739C593.944 187.739 592.715 188.073 591.647 188.771L592.742 190.445ZM595.297 189.739C595.865 189.739 596.429 189.833 596.993 190.026L597.64 188.133C596.875 187.872 596.092 187.739 595.297 187.739V189.739ZM596.993 190.026C597.515 190.204 597.999 190.496 598.448 190.917L599.816 189.458C599.174 188.856 598.448 188.409 597.64 188.133L596.993 190.026ZM598.452 190.921C598.866 191.304 599.224 191.838 599.504 192.56L601.368 191.837C601.001 190.889 600.489 190.082 599.812 189.454L598.452 190.921ZM599.504 192.56C599.77 193.247 599.922 194.144 599.922 195.284H601.922C601.922 193.981 601.75 192.821 601.368 191.837L599.504 192.56ZM599.922 195.284V196.136H601.922V195.284H599.922ZM600.922 195.136H590.831V197.136H600.922V195.136ZM591.831 196.136V194.398H589.831V196.136H591.831ZM590.831 195.398H598.876V193.398H590.831V195.398ZM599.876 194.398C599.876 193.523 599.7 192.704 599.324 191.966L597.542 192.875C597.757 193.296 597.876 193.795 597.876 194.398H599.876ZM599.328 191.973C598.957 191.232 598.417 190.634 597.717 190.199L596.661 191.898C597.041 192.133 597.33 192.45 597.539 192.868L599.328 191.973ZM597.721 190.201C597.004 189.752 596.183 189.545 595.297 189.545V191.545C595.866 191.545 596.306 191.675 596.657 191.895L597.721 190.201ZM595.297 189.545C594.323 189.545 593.428 189.79 592.655 190.315L593.779 191.969C594.178 191.699 594.669 191.545 595.297 191.545V189.545ZM592.657 190.314C591.933 190.803 591.372 191.447 590.983 192.232L592.775 193.12C593.011 192.643 593.342 192.265 593.778 191.97L592.657 190.314ZM590.983 192.232C590.601 193.004 590.411 193.833 590.411 194.705H592.411C592.411 194.133 592.533 193.609 592.775 193.12L590.983 192.232ZM590.411 194.705V195.864H592.411V194.705H590.411ZM590.411 195.864C590.411 196.963 590.6 197.963 591.026 198.822L592.818 197.934C592.562 197.418 592.411 196.741 592.411 195.864H590.411ZM591.03 198.831C591.457 199.67 592.066 200.339 592.858 200.801L593.866 199.074C593.431 198.82 593.08 198.449 592.813 197.925L591.03 198.831ZM592.864 200.805C593.651 201.256 594.54 201.466 595.501 201.466V199.466C594.837 199.466 594.301 199.323 593.86 199.07L592.864 200.805ZM595.501 201.466C596.123 201.466 596.713 201.379 597.261 201.189L596.606 199.299C596.301 199.405 595.937 199.466 595.501 199.466V201.466ZM597.268 201.187C597.826 200.988 598.323 200.688 598.744 200.283L597.356 198.842C597.152 199.039 596.904 199.194 596.598 199.302L597.268 201.187ZM598.75 200.276C599.178 199.856 599.494 199.348 599.71 198.772L597.838 198.069C597.713 198.402 597.547 198.655 597.349 198.849L598.75 200.276ZM598.504 199.383L600.447 199.929L600.988 198.003L599.044 197.458L598.504 199.383ZM599.762 198.67C599.604 199.178 599.342 199.621 598.967 200.01L600.405 201.399C600.996 200.788 601.421 200.072 601.672 199.262L599.762 198.67ZM598.971 200.006C598.597 200.389 598.123 200.7 597.531 200.933L598.261 202.795C599.09 202.47 599.81 202.009 600.401 201.403L598.971 200.006ZM597.538 200.93C596.959 201.152 596.285 201.273 595.501 201.273V203.273C596.49 203.273 597.413 203.12 598.255 202.797L597.538 200.93Z" fill="white" mask="url(#path-1-outside-1_1_2)"/> +<rect x="29" y="26" width="262" height="262" fill="url(#pattern0_1_2)"/> +<path d="M31.983 300.114C31.4905 300.114 31.0585 299.996 30.6868 299.762C30.3175 299.528 30.0286 299.2 29.8203 298.778C29.6143 298.357 29.5114 297.865 29.5114 297.301C29.5114 296.733 29.6143 296.237 29.8203 295.813C30.0286 295.389 30.3175 295.06 30.6868 294.826C31.0585 294.592 31.4905 294.474 31.983 294.474C32.4754 294.474 32.9063 294.592 33.2756 294.826C33.6473 295.06 33.9361 295.389 34.142 295.813C34.3504 296.237 34.4545 296.733 34.4545 297.301C34.4545 297.865 34.3504 298.357 34.142 298.778C33.9361 299.2 33.6473 299.528 33.2756 299.762C32.9063 299.996 32.4754 300.114 31.983 300.114ZM31.983 299.361C32.357 299.361 32.6648 299.265 32.9062 299.073C33.1477 298.881 33.3265 298.629 33.4425 298.317C33.5585 298.004 33.6165 297.666 33.6165 297.301C33.6165 296.937 33.5585 296.597 33.4425 296.282C33.3265 295.967 33.1477 295.713 32.9062 295.518C32.6648 295.324 32.357 295.227 31.983 295.227C31.6089 295.227 31.3011 295.324 31.0597 295.518C30.8182 295.713 30.6394 295.967 30.5234 296.282C30.4074 296.597 30.3494 296.937 30.3494 297.301C30.3494 297.666 30.4074 298.004 30.5234 298.317C30.6394 298.629 30.8182 298.881 31.0597 299.073C31.3011 299.265 31.6089 299.361 31.983 299.361ZM35.7338 302.045V294.545H36.5435V295.412H36.6429C36.7045 295.317 36.7897 295.196 36.8986 295.05C37.0099 294.901 37.1685 294.768 37.3745 294.652C37.5828 294.534 37.8645 294.474 38.2196 294.474C38.6789 294.474 39.0837 294.589 39.4341 294.819C39.7845 295.049 40.0579 295.374 40.2544 295.795C40.4509 296.217 40.5492 296.714 40.5492 297.287C40.5492 297.865 40.4509 298.365 40.2544 298.789C40.0579 299.21 39.7857 299.537 39.4377 299.769C39.0897 299.999 38.6884 300.114 38.2338 300.114C37.8835 300.114 37.6029 300.056 37.3922 299.94C37.1815 299.821 37.0194 299.687 36.9057 299.538C36.7921 299.387 36.7045 299.261 36.6429 299.162H36.5719V302.045H35.7338ZM36.5577 297.273C36.5577 297.685 36.6181 298.048 36.7388 298.363C36.8596 298.675 37.0359 298.92 37.2679 299.098C37.4999 299.273 37.784 299.361 38.1202 299.361C38.4706 299.361 38.763 299.268 38.9973 299.084C39.2341 298.897 39.4116 298.646 39.53 298.331C39.6507 298.014 39.7111 297.661 39.7111 297.273C39.7111 296.889 39.6519 296.544 39.5336 296.236C39.4176 295.926 39.2412 295.681 39.0044 295.501C38.7701 295.318 38.4753 295.227 38.1202 295.227C37.7793 295.227 37.4928 295.314 37.2608 295.487C37.0288 295.657 36.8536 295.896 36.7353 296.204C36.6169 296.509 36.5577 296.866 36.5577 297.273ZM44.1145 300.114C43.589 300.114 43.1356 299.998 42.7544 299.766C42.3757 299.531 42.0833 299.205 41.8773 298.786C41.6737 298.364 41.5719 297.874 41.5719 297.315C41.5719 296.757 41.6737 296.264 41.8773 295.838C42.0833 295.41 42.3697 295.076 42.7367 294.837C43.106 294.595 43.5369 294.474 44.0293 294.474C44.3134 294.474 44.5939 294.522 44.8709 294.616C45.1479 294.711 45.4 294.865 45.6273 295.078C45.8546 295.289 46.0357 295.568 46.1706 295.916C46.3056 296.264 46.373 296.693 46.373 297.202V297.557H42.1685V296.832H45.5208C45.5208 296.525 45.4592 296.25 45.3361 296.009C45.2154 295.767 45.0426 295.576 44.8176 295.437C44.5951 295.297 44.3323 295.227 44.0293 295.227C43.6955 295.227 43.4067 295.31 43.1628 295.476C42.9213 295.639 42.7355 295.852 42.6053 296.115C42.4751 296.378 42.41 296.66 42.41 296.96V297.443C42.41 297.855 42.481 298.204 42.623 298.491C42.7675 298.775 42.9675 298.991 43.2232 299.141C43.4789 299.287 43.776 299.361 44.1145 299.361C44.3347 299.361 44.5336 299.33 44.7111 299.268C44.891 299.205 45.0461 299.11 45.1763 298.984C45.3065 298.857 45.4071 298.698 45.4782 298.509L46.2878 298.736C46.2026 299.01 46.0594 299.252 45.8581 299.46C45.6569 299.666 45.4083 299.827 45.1124 299.943C44.8165 300.057 44.4838 300.114 44.1145 300.114ZM48.486 296.719V300H47.6479V294.545H48.4576V295.398H48.5286C48.6564 295.121 48.8506 294.898 49.111 294.73C49.3714 294.56 49.7076 294.474 50.1195 294.474C50.4888 294.474 50.812 294.55 51.089 294.702C51.3659 294.851 51.5814 295.078 51.7353 295.384C51.8891 295.687 51.9661 296.07 51.9661 296.534V300H51.128V296.591C51.128 296.162 51.0167 295.829 50.7942 295.589C50.5717 295.348 50.2663 295.227 49.878 295.227C49.6105 295.227 49.3714 295.285 49.1607 295.401C48.9524 295.517 48.7878 295.687 48.6671 295.909C48.5463 296.132 48.486 296.402 48.486 296.719ZM54.3356 292.727V300H53.4975V292.727H54.3356ZM57.4757 300.128C57.13 300.128 56.8163 300.063 56.5346 299.933C56.2529 299.8 56.0292 299.609 55.8635 299.361C55.6977 299.11 55.6149 298.807 55.6149 298.452C55.6149 298.139 55.6764 297.886 55.7995 297.692C55.9226 297.495 56.0872 297.341 56.2931 297.23C56.4991 297.119 56.7264 297.036 56.975 296.982C57.2259 296.925 57.478 296.88 57.7314 296.847C58.0628 296.804 58.3315 296.772 58.5375 296.751C58.7458 296.727 58.8973 296.688 58.992 296.634C59.0891 296.579 59.1376 296.484 59.1376 296.349V296.321C59.1376 295.971 59.0417 295.698 58.85 295.504C58.6606 295.31 58.3729 295.213 57.987 295.213C57.5869 295.213 57.2733 295.301 57.046 295.476C56.8187 295.651 56.6589 295.838 56.5666 296.037L55.7711 295.753C55.9132 295.421 56.1026 295.163 56.3393 294.979C56.5784 294.792 56.8388 294.661 57.1206 294.588C57.4047 294.512 57.684 294.474 57.9586 294.474C58.1338 294.474 58.335 294.496 58.5623 294.538C58.792 294.579 59.0133 294.663 59.2264 294.79C59.4418 294.918 59.6206 295.111 59.7626 295.369C59.9047 295.627 59.9757 295.973 59.9757 296.406V300H59.1376V299.261H59.095C59.0382 299.38 58.9435 299.506 58.8109 299.641C58.6783 299.776 58.502 299.891 58.2818 299.986C58.0616 300.08 57.7929 300.128 57.4757 300.128ZM57.6035 299.375C57.935 299.375 58.2143 299.31 58.4416 299.18C58.6712 299.049 58.844 298.881 58.96 298.675C59.0784 298.469 59.1376 298.253 59.1376 298.026V297.259C59.1021 297.301 59.024 297.34 58.9032 297.376C58.7849 297.409 58.6475 297.438 58.4913 297.464C58.3374 297.488 58.1871 297.509 58.0403 297.528C57.8959 297.545 57.7787 297.559 57.6887 297.571C57.4709 297.599 57.2673 297.646 57.0779 297.71C56.8909 297.771 56.7394 297.865 56.6234 297.99C56.5098 298.113 56.4529 298.281 56.4529 298.494C56.4529 298.786 56.5607 299.006 56.7761 299.155C56.9939 299.302 57.2697 299.375 57.6035 299.375ZM62.1161 300.057C61.9409 300.057 61.7906 299.994 61.6651 299.869C61.5397 299.743 61.4769 299.593 61.4769 299.418C61.4769 299.242 61.5397 299.092 61.6651 298.967C61.7906 298.841 61.9409 298.778 62.1161 298.778C62.2913 298.778 62.4416 298.841 62.5671 298.967C62.6926 299.092 62.7553 299.242 62.7553 299.418C62.7553 299.534 62.7257 299.64 62.6665 299.737C62.6097 299.834 62.5328 299.912 62.4357 299.972C62.341 300.028 62.2345 300.057 62.1161 300.057ZM66.5462 300.114C66.0206 300.114 65.5672 299.998 65.1861 299.766C64.8073 299.531 64.5149 299.205 64.3089 298.786C64.1054 298.364 64.0036 297.874 64.0036 297.315C64.0036 296.757 64.1054 296.264 64.3089 295.838C64.5149 295.41 64.8014 295.076 65.1683 294.837C65.5376 294.595 65.9685 294.474 66.4609 294.474C66.745 294.474 67.0256 294.522 67.3026 294.616C67.5795 294.711 67.8317 294.865 68.0589 295.078C68.2862 295.289 68.4673 295.568 68.6023 295.916C68.7372 296.264 68.8047 296.693 68.8047 297.202V297.557H64.6001V296.832H67.9524C67.9524 296.525 67.8909 296.25 67.7678 296.009C67.647 295.767 67.4742 295.576 67.2493 295.437C67.0268 295.297 66.764 295.227 66.4609 295.227C66.1271 295.227 65.8383 295.31 65.5945 295.476C65.353 295.639 65.1671 295.852 65.0369 296.115C64.9067 296.378 64.8416 296.66 64.8416 296.96V297.443C64.8416 297.855 64.9126 298.204 65.0547 298.491C65.1991 298.775 65.3991 298.991 65.6548 299.141C65.9105 299.287 66.2076 299.361 66.5462 299.361C66.7663 299.361 66.9652 299.33 67.1428 299.268C67.3227 299.205 67.4777 299.11 67.608 298.984C67.7382 298.857 67.8388 298.698 67.9098 298.509L68.7195 298.736C68.6342 299.01 68.491 299.252 68.2898 299.46C68.0885 299.666 67.84 299.827 67.544 299.943C67.2481 300.057 66.9155 300.114 66.5462 300.114ZM71.3153 300L69.6534 294.545H70.5341L71.7131 298.722H71.7699L72.9347 294.545H73.8295L74.9801 298.707H75.0369L76.2159 294.545H77.0966L75.4347 300H74.6108L73.4176 295.81H73.3324L72.1392 300H71.3153ZM78.2045 300V294.545H79.0426V300H78.2045ZM78.6307 293.636C78.4673 293.636 78.3265 293.581 78.2081 293.469C78.0921 293.358 78.0341 293.224 78.0341 293.068C78.0341 292.912 78.0921 292.778 78.2081 292.667C78.3265 292.556 78.4673 292.5 78.6307 292.5C78.794 292.5 78.9337 292.556 79.0497 292.667C79.1681 292.778 79.2273 292.912 79.2273 293.068C79.2273 293.224 79.1681 293.358 79.0497 293.469C78.9337 293.581 78.794 293.636 78.6307 293.636ZM81.1884 300.057C81.0132 300.057 80.8629 299.994 80.7374 299.869C80.6119 299.743 80.5492 299.593 80.5492 299.418C80.5492 299.242 80.6119 299.092 80.7374 298.967C80.8629 298.841 81.0132 298.778 81.1884 298.778C81.3636 298.778 81.5139 298.841 81.6394 298.967C81.7649 299.092 81.8276 299.242 81.8276 299.418C81.8276 299.534 81.798 299.64 81.7388 299.737C81.682 299.834 81.6051 299.912 81.508 299.972C81.4133 300.028 81.3068 300.057 81.1884 300.057ZM85.7037 294.545V295.256H82.877V294.545H85.7037ZM83.7008 293.239H84.5389V298.438C84.5389 298.674 84.5732 298.852 84.6419 298.97C84.7129 299.086 84.8029 299.164 84.9118 299.205C85.023 299.242 85.1402 299.261 85.2633 299.261C85.3556 299.261 85.4314 299.257 85.4906 299.247C85.5498 299.235 85.5971 299.226 85.6326 299.219L85.8031 299.972C85.7463 299.993 85.667 300.014 85.5652 300.036C85.4634 300.059 85.3343 300.071 85.1781 300.071C84.9413 300.071 84.7093 300.02 84.4821 299.918C84.2572 299.817 84.0701 299.661 83.921 299.453C83.7742 299.245 83.7008 298.982 83.7008 298.665V293.239ZM90.4018 297.77V294.545H91.2399V300H90.4018V299.077H90.345C90.2172 299.354 90.0183 299.589 89.7484 299.783C89.4785 299.975 89.1376 300.071 88.7257 300.071C88.3848 300.071 88.0817 299.996 87.8166 299.847C87.5514 299.696 87.3431 299.469 87.1916 299.165C87.0401 298.86 86.9643 298.475 86.9643 298.011V294.545H87.8024V297.955C87.8024 298.352 87.9136 298.67 88.1362 298.906C88.3611 299.143 88.6475 299.261 88.9956 299.261C89.2039 299.261 89.4158 299.208 89.6312 299.102C89.849 298.995 90.0313 298.832 90.1781 298.612C90.3272 298.391 90.4018 298.111 90.4018 297.77ZM94.8345 300.114C94.38 300.114 93.9787 299.999 93.6307 299.769C93.2827 299.537 93.0104 299.21 92.8139 298.789C92.6174 298.365 92.5192 297.865 92.5192 297.287C92.5192 296.714 92.6174 296.217 92.8139 295.795C93.0104 295.374 93.2839 295.049 93.6342 294.819C93.9846 294.589 94.3894 294.474 94.8487 294.474C95.2038 294.474 95.4844 294.534 95.6903 294.652C95.8987 294.768 96.0573 294.901 96.1662 295.05C96.2775 295.196 96.3639 295.317 96.4254 295.412H96.4964V292.727H97.3345V300H96.5249V299.162H96.4254C96.3639 299.261 96.2763 299.387 96.1626 299.538C96.049 299.687 95.8868 299.821 95.6761 299.94C95.4654 300.056 95.1849 300.114 94.8345 300.114ZM94.9482 299.361C95.2843 299.361 95.5684 299.273 95.8004 299.098C96.0324 298.92 96.2088 298.675 96.3295 298.363C96.4503 298.048 96.5107 297.685 96.5107 297.273C96.5107 296.866 96.4515 296.509 96.3331 296.204C96.2147 295.896 96.0395 295.657 95.8075 295.487C95.5755 295.314 95.2891 295.227 94.9482 295.227C94.593 295.227 94.2971 295.318 94.0604 295.501C93.826 295.681 93.6496 295.926 93.5312 296.236C93.4152 296.544 93.3572 296.889 93.3572 297.273C93.3572 297.661 93.4164 298.014 93.5348 298.331C93.6555 298.646 93.8331 298.897 94.0675 299.084C94.3042 299.268 94.5978 299.361 94.9482 299.361ZM101.273 300.114C100.747 300.114 100.294 299.998 99.9126 299.766C99.5339 299.531 99.2415 299.205 99.0355 298.786C98.8319 298.364 98.7301 297.874 98.7301 297.315C98.7301 296.757 98.8319 296.264 99.0355 295.838C99.2415 295.41 99.5279 295.076 99.8949 294.837C100.264 294.595 100.695 294.474 101.188 294.474C101.472 294.474 101.752 294.522 102.029 294.616C102.306 294.711 102.558 294.865 102.786 295.078C103.013 295.289 103.194 295.568 103.329 295.916C103.464 296.264 103.531 296.693 103.531 297.202V297.557H99.3267V296.832H102.679C102.679 296.525 102.617 296.25 102.494 296.009C102.374 295.767 102.201 295.576 101.976 295.437C101.753 295.297 101.491 295.227 101.188 295.227C100.854 295.227 100.565 295.31 100.321 295.476C100.08 295.639 99.8937 295.852 99.7635 296.115C99.6333 296.378 99.5682 296.66 99.5682 296.96V297.443C99.5682 297.855 99.6392 298.204 99.7812 298.491C99.9257 298.775 100.126 298.991 100.381 299.141C100.637 299.287 100.934 299.361 101.273 299.361C101.493 299.361 101.692 299.33 101.869 299.268C102.049 299.205 102.204 299.11 102.335 298.984C102.465 298.857 102.565 298.698 102.636 298.509L103.446 298.736C103.361 299.01 103.218 299.252 103.016 299.46C102.815 299.666 102.567 299.827 102.271 299.943C101.975 300.057 101.642 300.114 101.273 300.114ZM105.644 292.727V300H104.806V292.727H105.644ZM109.608 294.545V295.256H106.668V294.545H109.608ZM107.548 300V293.793C107.548 293.48 107.622 293.22 107.769 293.011C107.915 292.803 108.106 292.647 108.34 292.543C108.575 292.438 108.822 292.386 109.083 292.386C109.289 292.386 109.457 292.403 109.587 292.436C109.717 292.469 109.814 292.5 109.878 292.528L109.637 293.253C109.594 293.239 109.535 293.221 109.459 293.2C109.386 293.178 109.289 293.168 109.168 293.168C108.891 293.168 108.691 293.237 108.568 293.377C108.447 293.517 108.387 293.722 108.387 293.991V300H107.548ZM113.155 294.545V295.256H110.328V294.545H113.155ZM111.152 293.239H111.99V298.438C111.99 298.674 112.024 298.852 112.093 298.97C112.164 299.086 112.254 299.164 112.363 299.205C112.474 299.242 112.591 299.261 112.714 299.261C112.807 299.261 112.883 299.257 112.942 299.247C113.001 299.235 113.048 299.226 113.084 299.219L113.254 299.972C113.197 299.993 113.118 300.014 113.016 300.036C112.915 300.059 112.786 300.071 112.629 300.071C112.393 300.071 112.161 300.02 111.933 299.918C111.708 299.817 111.521 299.661 111.372 299.453C111.225 299.245 111.152 298.982 111.152 298.665V293.239ZM115.026 300.057C114.851 300.057 114.701 299.994 114.575 299.869C114.45 299.743 114.387 299.593 114.387 299.418C114.387 299.242 114.45 299.092 114.575 298.967C114.701 298.841 114.851 298.778 115.026 298.778C115.201 298.778 115.352 298.841 115.477 298.967C115.603 299.092 115.665 299.242 115.665 299.418C115.665 299.534 115.636 299.64 115.577 299.737C115.52 299.834 115.443 299.912 115.346 299.972C115.251 300.028 115.145 300.057 115.026 300.057ZM118.007 296.719V300H117.169V294.545H117.979V295.398H118.05C118.178 295.121 118.372 294.898 118.632 294.73C118.893 294.56 119.229 294.474 119.641 294.474C120.01 294.474 120.333 294.55 120.61 294.702C120.887 294.851 121.103 295.078 121.257 295.384C121.411 295.687 121.488 296.07 121.488 296.534V300H120.65V296.591C120.65 296.162 120.538 295.829 120.316 295.589C120.093 295.348 119.788 295.227 119.4 295.227C119.132 295.227 118.893 295.285 118.682 295.401C118.474 295.517 118.309 295.687 118.189 295.909C118.068 296.132 118.007 296.402 118.007 296.719ZM123.857 292.727V300H123.019V292.727H123.857ZM127.963 292.386L125.619 301.094H124.852L127.196 292.386H127.963ZM130.562 300.128C130.216 300.128 129.902 300.063 129.621 299.933C129.339 299.8 129.115 299.609 128.949 299.361C128.784 299.11 128.701 298.807 128.701 298.452C128.701 298.139 128.762 297.886 128.885 297.692C129.009 297.495 129.173 297.341 129.379 297.23C129.585 297.119 129.812 297.036 130.061 296.982C130.312 296.925 130.564 296.88 130.817 296.847C131.149 296.804 131.417 296.772 131.623 296.751C131.832 296.727 131.983 296.688 132.078 296.634C132.175 296.579 132.224 296.484 132.224 296.349V296.321C132.224 295.971 132.128 295.698 131.936 295.504C131.747 295.31 131.459 295.213 131.073 295.213C130.673 295.213 130.359 295.301 130.132 295.476C129.905 295.651 129.745 295.838 129.653 296.037L128.857 295.753C128.999 295.421 129.189 295.163 129.425 294.979C129.664 294.792 129.925 294.661 130.206 294.588C130.491 294.512 130.77 294.474 131.045 294.474C131.22 294.474 131.421 294.496 131.648 294.538C131.878 294.579 132.099 294.663 132.312 294.79C132.528 294.918 132.706 295.111 132.849 295.369C132.991 295.627 133.062 295.973 133.062 296.406V300H132.224V299.261H132.181C132.124 299.38 132.029 299.506 131.897 299.641C131.764 299.776 131.588 299.891 131.368 299.986C131.148 300.08 130.879 300.128 130.562 300.128ZM130.689 299.375C131.021 299.375 131.3 299.31 131.528 299.18C131.757 299.049 131.93 298.881 132.046 298.675C132.164 298.469 132.224 298.253 132.224 298.026V297.259C132.188 297.301 132.11 297.34 131.989 297.376C131.871 297.409 131.733 297.438 131.577 297.464C131.423 297.488 131.273 297.509 131.126 297.528C130.982 297.545 130.865 297.559 130.775 297.571C130.557 297.599 130.353 297.646 130.164 297.71C129.977 297.771 129.825 297.865 129.709 297.99C129.596 298.113 129.539 298.281 129.539 298.494C129.539 298.786 129.647 299.006 129.862 299.155C130.08 299.302 130.356 299.375 130.689 299.375ZM134.591 302.045V294.545H135.401V295.412H135.5C135.562 295.317 135.647 295.196 135.756 295.05C135.867 294.901 136.026 294.768 136.232 294.652C136.44 294.534 136.722 294.474 137.077 294.474C137.536 294.474 137.941 294.589 138.292 294.819C138.642 295.049 138.915 295.374 139.112 295.795C139.308 296.217 139.407 296.714 139.407 297.287C139.407 297.865 139.308 298.365 139.112 298.789C138.915 299.21 138.643 299.537 138.295 299.769C137.947 299.999 137.546 300.114 137.091 300.114C136.741 300.114 136.46 300.056 136.25 299.94C136.039 299.821 135.877 299.687 135.763 299.538C135.65 299.387 135.562 299.261 135.5 299.162H135.429V302.045H134.591ZM135.415 297.273C135.415 297.685 135.475 298.048 135.596 298.363C135.717 298.675 135.893 298.92 136.125 299.098C136.357 299.273 136.641 299.361 136.978 299.361C137.328 299.361 137.62 299.268 137.855 299.084C138.092 298.897 138.269 298.646 138.387 298.331C138.508 298.014 138.569 297.661 138.569 297.273C138.569 296.889 138.509 296.544 138.391 296.236C138.275 295.926 138.099 295.681 137.862 295.501C137.627 295.318 137.333 295.227 136.978 295.227C136.637 295.227 136.35 295.314 136.118 295.487C135.886 295.657 135.711 295.896 135.593 296.204C135.474 296.509 135.415 296.866 135.415 297.273ZM140.685 302.045V294.545H141.495V295.412H141.594C141.656 295.317 141.741 295.196 141.85 295.05C141.961 294.901 142.12 294.768 142.326 294.652C142.534 294.534 142.816 294.474 143.171 294.474C143.63 294.474 144.035 294.589 144.385 294.819C144.736 295.049 145.009 295.374 145.206 295.795C145.402 296.217 145.5 296.714 145.5 297.287C145.5 297.865 145.402 298.365 145.206 298.789C145.009 299.21 144.737 299.537 144.389 299.769C144.041 299.999 143.64 300.114 143.185 300.114C142.835 300.114 142.554 300.056 142.343 299.94C142.133 299.821 141.971 299.687 141.857 299.538C141.743 299.387 141.656 299.261 141.594 299.162H141.523V302.045H140.685ZM141.509 297.273C141.509 297.685 141.569 298.048 141.69 298.363C141.811 298.675 141.987 298.92 142.219 299.098C142.451 299.273 142.735 299.361 143.071 299.361C143.422 299.361 143.714 299.268 143.949 299.084C144.185 298.897 144.363 298.646 144.481 298.331C144.602 298.014 144.662 297.661 144.662 297.273C144.662 296.889 144.603 296.544 144.485 296.236C144.369 295.926 144.192 295.681 143.956 295.501C143.721 295.318 143.426 295.227 143.071 295.227C142.73 295.227 142.444 295.314 142.212 295.487C141.98 295.657 141.805 295.896 141.686 296.204C141.568 296.509 141.509 296.866 141.509 297.273ZM147.617 292.727V300H146.779V292.727H147.617ZM151.439 300.114C150.913 300.114 150.46 299.998 150.079 299.766C149.7 299.531 149.407 299.205 149.202 298.786C148.998 298.364 148.896 297.874 148.896 297.315C148.896 296.757 148.998 296.264 149.202 295.838C149.407 295.41 149.694 295.076 150.061 294.837C150.43 294.595 150.861 294.474 151.354 294.474C151.638 294.474 151.918 294.522 152.195 294.616C152.472 294.711 152.724 294.865 152.952 295.078C153.179 295.289 153.36 295.568 153.495 295.916C153.63 296.264 153.697 296.693 153.697 297.202V297.557H149.493V296.832H152.845C152.845 296.525 152.783 296.25 152.66 296.009C152.54 295.767 152.367 295.576 152.142 295.437C151.919 295.297 151.657 295.227 151.354 295.227C151.02 295.227 150.731 295.31 150.487 295.476C150.246 295.639 150.06 295.852 149.93 296.115C149.799 296.378 149.734 296.66 149.734 296.96V297.443C149.734 297.855 149.805 298.204 149.947 298.491C150.092 298.775 150.292 298.991 150.547 299.141C150.803 299.287 151.1 299.361 151.439 299.361C151.659 299.361 151.858 299.33 152.035 299.268C152.215 299.205 152.37 299.11 152.501 298.984C152.631 298.857 152.731 298.698 152.802 298.509L153.612 298.736C153.527 299.01 153.384 299.252 153.182 299.46C152.981 299.666 152.733 299.827 152.437 299.943C152.141 300.057 151.808 300.114 151.439 300.114ZM157.344 294.545V295.256H154.518V294.545H157.344ZM155.341 293.239H156.18V298.438C156.18 298.674 156.214 298.852 156.282 298.97C156.354 299.086 156.443 299.164 156.552 299.205C156.664 299.242 156.781 299.261 156.904 299.261C156.996 299.261 157.072 299.257 157.131 299.247C157.19 299.235 157.238 299.226 157.273 299.219L157.444 299.972C157.387 299.993 157.308 300.014 157.206 300.036C157.104 300.059 156.975 300.071 156.819 300.071C156.582 300.071 156.35 300.02 156.123 299.918C155.898 299.817 155.711 299.661 155.562 299.453C155.415 299.245 155.341 298.982 155.341 298.665V293.239ZM161.176 292.386L158.832 301.094H158.065L160.409 292.386H161.176ZM166.033 295.767L165.28 295.98C165.233 295.855 165.163 295.733 165.071 295.614C164.981 295.494 164.858 295.394 164.701 295.316C164.545 295.238 164.345 295.199 164.101 295.199C163.767 295.199 163.489 295.276 163.267 295.43C163.047 295.581 162.936 295.774 162.936 296.009C162.936 296.217 163.012 296.381 163.164 296.502C163.315 296.623 163.552 296.723 163.874 296.804L164.684 297.003C165.171 297.121 165.535 297.302 165.774 297.546C166.013 297.788 166.132 298.099 166.132 298.48C166.132 298.793 166.042 299.072 165.863 299.318C165.685 299.564 165.436 299.759 165.117 299.901C164.797 300.043 164.426 300.114 164.002 300.114C163.445 300.114 162.985 299.993 162.62 299.751C162.256 299.51 162.025 299.157 161.928 298.693L162.723 298.494C162.799 298.788 162.942 299.008 163.153 299.155C163.366 299.302 163.644 299.375 163.988 299.375C164.378 299.375 164.688 299.292 164.918 299.126C165.15 298.958 165.266 298.757 165.266 298.523C165.266 298.333 165.2 298.175 165.067 298.047C164.935 297.917 164.731 297.82 164.456 297.756L163.547 297.543C163.048 297.424 162.681 297.241 162.446 296.992C162.214 296.741 162.098 296.428 162.098 296.051C162.098 295.743 162.185 295.471 162.358 295.234C162.533 294.998 162.771 294.812 163.071 294.677C163.374 294.542 163.718 294.474 164.101 294.474C164.641 294.474 165.065 294.593 165.373 294.83C165.683 295.066 165.903 295.379 166.033 295.767ZM170.831 297.77V294.545H171.67V300H170.831V299.077H170.775C170.647 299.354 170.448 299.589 170.178 299.783C169.908 299.975 169.567 300.071 169.155 300.071C168.814 300.071 168.511 299.996 168.246 299.847C167.981 299.696 167.773 299.469 167.621 299.165C167.47 298.86 167.394 298.475 167.394 298.011V294.545H168.232V297.955C168.232 298.352 168.343 298.67 168.566 298.906C168.791 299.143 169.077 299.261 169.425 299.261C169.634 299.261 169.845 299.208 170.061 299.102C170.279 298.995 170.461 298.832 170.608 298.612C170.757 298.391 170.831 298.111 170.831 297.77ZM173.318 300V292.727H174.156V295.412H174.227C174.289 295.317 174.374 295.196 174.483 295.05C174.594 294.901 174.753 294.768 174.959 294.652C175.167 294.534 175.449 294.474 175.804 294.474C176.263 294.474 176.668 294.589 177.018 294.819C177.369 295.049 177.642 295.374 177.839 295.795C178.035 296.217 178.134 296.714 178.134 297.287C178.134 297.865 178.035 298.365 177.839 298.789C177.642 299.21 177.37 299.537 177.022 299.769C176.674 299.999 176.273 300.114 175.818 300.114C175.468 300.114 175.187 300.056 174.977 299.94C174.766 299.821 174.604 299.687 174.49 299.538C174.376 299.387 174.289 299.261 174.227 299.162H174.128V300H173.318ZM174.142 297.273C174.142 297.685 174.202 298.048 174.323 298.363C174.444 298.675 174.62 298.92 174.852 299.098C175.084 299.273 175.368 299.361 175.705 299.361C176.055 299.361 176.347 299.268 176.582 299.084C176.818 298.897 176.996 298.646 177.114 298.331C177.235 298.014 177.295 297.661 177.295 297.273C177.295 296.889 177.236 296.544 177.118 296.236C177.002 295.926 176.826 295.681 176.589 295.501C176.354 295.318 176.06 295.227 175.705 295.227C175.364 295.227 175.077 295.314 174.845 295.487C174.613 295.657 174.438 295.896 174.32 296.204C174.201 296.509 174.142 296.866 174.142 297.273ZM183.279 295.767L182.526 295.98C182.479 295.855 182.409 295.733 182.317 295.614C182.227 295.494 182.104 295.394 181.947 295.316C181.791 295.238 181.591 295.199 181.347 295.199C181.013 295.199 180.735 295.276 180.513 295.43C180.293 295.581 180.183 295.774 180.183 296.009C180.183 296.217 180.258 296.381 180.41 296.502C180.561 296.623 180.798 296.723 181.12 296.804L181.93 297.003C182.417 297.121 182.781 297.302 183.02 297.546C183.259 297.788 183.379 298.099 183.379 298.48C183.379 298.793 183.289 299.072 183.109 299.318C182.931 299.564 182.683 299.759 182.363 299.901C182.043 300.043 181.672 300.114 181.248 300.114C180.692 300.114 180.231 299.993 179.866 299.751C179.502 299.51 179.271 299.157 179.174 298.693L179.969 298.494C180.045 298.788 180.188 299.008 180.399 299.155C180.612 299.302 180.89 299.375 181.234 299.375C181.624 299.375 181.934 299.292 182.164 299.126C182.396 298.958 182.512 298.757 182.512 298.523C182.512 298.333 182.446 298.175 182.313 298.047C182.181 297.917 181.977 297.82 181.702 297.756L180.793 297.543C180.294 297.424 179.927 297.241 179.692 296.992C179.46 296.741 179.344 296.428 179.344 296.051C179.344 295.743 179.431 295.471 179.604 295.234C179.779 294.998 180.017 294.812 180.317 294.677C180.621 294.542 180.964 294.474 181.347 294.474C181.887 294.474 182.311 294.593 182.619 294.83C182.929 295.066 183.149 295.379 183.279 295.767ZM184.64 302.045V294.545H185.45V295.412H185.549C185.611 295.317 185.696 295.196 185.805 295.05C185.916 294.901 186.075 294.768 186.281 294.652C186.489 294.534 186.771 294.474 187.126 294.474C187.585 294.474 187.99 294.589 188.34 294.819C188.691 295.049 188.964 295.374 189.161 295.795C189.357 296.217 189.455 296.714 189.455 297.287C189.455 297.865 189.357 298.365 189.161 298.789C188.964 299.21 188.692 299.537 188.344 299.769C187.996 299.999 187.595 300.114 187.14 300.114C186.79 300.114 186.509 300.056 186.298 299.94C186.088 299.821 185.926 299.687 185.812 299.538C185.698 299.387 185.611 299.261 185.549 299.162H185.478V302.045H184.64ZM185.464 297.273C185.464 297.685 185.524 298.048 185.645 298.363C185.766 298.675 185.942 298.92 186.174 299.098C186.406 299.273 186.69 299.361 187.026 299.361C187.377 299.361 187.669 299.268 187.904 299.084C188.14 298.897 188.318 298.646 188.436 298.331C188.557 298.014 188.617 297.661 188.617 297.273C188.617 296.889 188.558 296.544 188.44 296.236C188.324 295.926 188.147 295.681 187.911 295.501C187.676 295.318 187.382 295.227 187.026 295.227C186.686 295.227 186.399 295.314 186.167 295.487C185.935 295.657 185.76 295.896 185.642 296.204C185.523 296.509 185.464 296.866 185.464 297.273ZM192.339 300.128C191.993 300.128 191.68 300.063 191.398 299.933C191.116 299.8 190.892 299.609 190.727 299.361C190.561 299.11 190.478 298.807 190.478 298.452C190.478 298.139 190.54 297.886 190.663 297.692C190.786 297.495 190.95 297.341 191.156 297.23C191.362 297.119 191.59 297.036 191.838 296.982C192.089 296.925 192.341 296.88 192.595 296.847C192.926 296.804 193.195 296.772 193.401 296.751C193.609 296.727 193.761 296.688 193.855 296.634C193.952 296.579 194.001 296.484 194.001 296.349V296.321C194.001 295.971 193.905 295.698 193.713 295.504C193.524 295.31 193.236 295.213 192.85 295.213C192.45 295.213 192.137 295.301 191.909 295.476C191.682 295.651 191.522 295.838 191.43 296.037L190.634 295.753C190.776 295.421 190.966 295.163 191.203 294.979C191.442 294.792 191.702 294.661 191.984 294.588C192.268 294.512 192.547 294.474 192.822 294.474C192.997 294.474 193.198 294.496 193.426 294.538C193.655 294.579 193.877 294.663 194.09 294.79C194.305 294.918 194.484 295.111 194.626 295.369C194.768 295.627 194.839 295.973 194.839 296.406V300H194.001V299.261H193.958C193.901 299.38 193.807 299.506 193.674 299.641C193.542 299.776 193.365 299.891 193.145 299.986C192.925 300.08 192.656 300.128 192.339 300.128ZM192.467 299.375C192.798 299.375 193.078 299.31 193.305 299.18C193.535 299.049 193.707 298.881 193.823 298.675C193.942 298.469 194.001 298.253 194.001 298.026V297.259C193.965 297.301 193.887 297.34 193.767 297.376C193.648 297.409 193.511 297.438 193.355 297.464C193.201 297.488 193.05 297.509 192.904 297.528C192.759 297.545 192.642 297.559 192.552 297.571C192.334 297.599 192.131 297.646 191.941 297.71C191.754 297.771 191.603 297.865 191.487 297.99C191.373 298.113 191.316 298.281 191.316 298.494C191.316 298.786 191.424 299.006 191.639 299.155C191.857 299.302 192.133 299.375 192.467 299.375ZM198.585 300.114C198.073 300.114 197.633 299.993 197.263 299.751C196.894 299.51 196.61 299.177 196.411 298.754C196.212 298.33 196.113 297.846 196.113 297.301C196.113 296.747 196.215 296.258 196.418 295.835C196.624 295.408 196.911 295.076 197.278 294.837C197.647 294.595 198.078 294.474 198.57 294.474C198.954 294.474 199.299 294.545 199.607 294.688C199.915 294.83 200.167 295.028 200.364 295.284C200.56 295.54 200.682 295.838 200.729 296.179H199.891C199.827 295.93 199.685 295.71 199.465 295.518C199.247 295.324 198.954 295.227 198.585 295.227C198.258 295.227 197.971 295.312 197.725 295.483C197.481 295.651 197.291 295.889 197.153 296.197C197.018 296.502 196.951 296.861 196.951 297.273C196.951 297.694 197.017 298.061 197.15 298.374C197.285 298.686 197.474 298.929 197.718 299.102C197.964 299.274 198.253 299.361 198.585 299.361C198.802 299.361 199 299.323 199.178 299.247C199.355 299.171 199.505 299.062 199.629 298.92C199.752 298.778 199.839 298.608 199.891 298.409H200.729C200.682 298.731 200.565 299.021 200.378 299.279C200.193 299.535 199.948 299.738 199.643 299.89C199.34 300.039 198.987 300.114 198.585 300.114ZM204.241 300.114C203.716 300.114 203.263 299.998 202.881 299.766C202.503 299.531 202.21 299.205 202.004 298.786C201.801 298.364 201.699 297.874 201.699 297.315C201.699 296.757 201.801 296.264 202.004 295.838C202.21 295.41 202.497 295.076 202.864 294.837C203.233 294.595 203.664 294.474 204.156 294.474C204.44 294.474 204.721 294.522 204.998 294.616C205.275 294.711 205.527 294.865 205.754 295.078C205.982 295.289 206.163 295.568 206.298 295.916C206.433 296.264 206.5 296.693 206.5 297.202V297.557H202.295V296.832H205.648C205.648 296.525 205.586 296.25 205.463 296.009C205.342 295.767 205.17 295.576 204.945 295.437C204.722 295.297 204.459 295.227 204.156 295.227C203.822 295.227 203.534 295.31 203.29 295.476C203.048 295.639 202.862 295.852 202.732 296.115C202.602 296.378 202.537 296.66 202.537 296.96V297.443C202.537 297.855 202.608 298.204 202.75 298.491C202.894 298.775 203.094 298.991 203.35 299.141C203.606 299.287 203.903 299.361 204.241 299.361C204.462 299.361 204.661 299.33 204.838 299.268C205.018 299.205 205.173 299.11 205.303 298.984C205.433 298.857 205.534 298.698 205.605 298.509L206.415 298.736C206.33 299.01 206.186 299.252 205.985 299.46C205.784 299.666 205.535 299.827 205.239 299.943C204.943 300.057 204.611 300.114 204.241 300.114ZM211.638 295.767L210.886 295.98C210.838 295.855 210.768 295.733 210.676 295.614C210.586 295.494 210.463 295.394 210.307 295.316C210.151 295.238 209.951 295.199 209.707 295.199C209.373 295.199 209.095 295.276 208.872 295.43C208.652 295.581 208.542 295.774 208.542 296.009C208.542 296.217 208.618 296.381 208.769 296.502C208.921 296.623 209.157 296.723 209.479 296.804L210.289 297.003C210.777 297.121 211.14 297.302 211.379 297.546C211.618 297.788 211.738 298.099 211.738 298.48C211.738 298.793 211.648 299.072 211.468 299.318C211.29 299.564 211.042 299.759 210.722 299.901C210.403 300.043 210.031 300.114 209.607 300.114C209.051 300.114 208.59 299.993 208.226 299.751C207.861 299.51 207.63 299.157 207.533 298.693L208.329 298.494C208.405 298.788 208.548 299.008 208.759 299.155C208.972 299.302 209.25 299.375 209.593 299.375C209.984 299.375 210.294 299.292 210.523 299.126C210.755 298.958 210.871 298.757 210.871 298.523C210.871 298.333 210.805 298.175 210.673 298.047C210.54 297.917 210.336 297.82 210.062 297.756L209.153 297.543C208.653 297.424 208.286 297.241 208.052 296.992C207.82 296.741 207.704 296.428 207.704 296.051C207.704 295.743 207.79 295.471 207.963 295.234C208.138 294.998 208.376 294.812 208.677 294.677C208.98 294.542 209.323 294.474 209.707 294.474C210.246 294.474 210.67 294.593 210.978 294.83C211.288 295.066 211.508 295.379 211.638 295.767ZM216.764 300V300.781H212.218V300H216.764ZM217.863 300V294.545H218.701V300H217.863ZM218.289 293.636C218.126 293.636 217.985 293.581 217.866 293.469C217.75 293.358 217.692 293.224 217.692 293.068C217.692 292.912 217.75 292.778 217.866 292.667C217.985 292.556 218.126 292.5 218.289 292.5C218.452 292.5 218.592 292.556 218.708 292.667C218.826 292.778 218.885 292.912 218.885 293.068C218.885 293.224 218.826 293.358 218.708 293.469C218.592 293.581 218.452 293.636 218.289 293.636ZM221.074 296.719V300H220.236V294.545H221.045V295.398H221.116C221.244 295.121 221.438 294.898 221.699 294.73C221.959 294.56 222.295 294.474 222.707 294.474C223.077 294.474 223.4 294.55 223.677 294.702C223.954 294.851 224.169 295.078 224.323 295.384C224.477 295.687 224.554 296.07 224.554 296.534V300H223.716V296.591C223.716 296.162 223.605 295.829 223.382 295.589C223.16 295.348 222.854 295.227 222.466 295.227C222.198 295.227 221.959 295.285 221.749 295.401C221.54 295.517 221.376 295.687 221.255 295.909C221.134 296.132 221.074 296.402 221.074 296.719ZM229.85 300V300.781H225.304V300H229.85ZM231.066 300V294.545H231.876V295.369H231.932C232.032 295.099 232.212 294.88 232.472 294.712C232.733 294.544 233.026 294.46 233.353 294.46C233.414 294.46 233.491 294.461 233.584 294.464C233.676 294.466 233.746 294.47 233.793 294.474V295.327C233.765 295.32 233.7 295.309 233.598 295.295C233.498 295.278 233.393 295.27 233.282 295.27C233.017 295.27 232.78 295.326 232.572 295.437C232.366 295.546 232.202 295.697 232.081 295.891C231.963 296.083 231.904 296.302 231.904 296.548V300H231.066ZM235.625 296.719V300H234.787V294.545H235.596V295.398H235.667C235.795 295.121 235.989 294.898 236.25 294.73C236.51 294.56 236.846 294.474 237.258 294.474C237.627 294.474 237.951 294.55 238.228 294.702C238.505 294.851 238.72 295.078 238.874 295.384C239.028 295.687 239.105 296.07 239.105 296.534V300H238.267V296.591C238.267 296.162 238.155 295.829 237.933 295.589C237.71 295.348 237.405 295.227 237.017 295.227C236.749 295.227 236.51 295.285 236.299 295.401C236.091 295.517 235.926 295.687 235.806 295.909C235.685 296.132 235.625 296.402 235.625 296.719ZM243.207 292.386L240.863 301.094H240.096L242.44 292.386H243.207ZM246.573 294.545V295.256H243.746V294.545H246.573ZM244.57 293.239H245.408V298.438C245.408 298.674 245.442 298.852 245.511 298.97C245.582 299.086 245.672 299.164 245.781 299.205C245.892 299.242 246.009 299.261 246.132 299.261C246.225 299.261 246.301 299.257 246.36 299.247C246.419 299.235 246.466 299.226 246.502 299.219L246.672 299.972C246.615 299.993 246.536 300.014 246.434 300.036C246.333 300.059 246.203 300.071 246.047 300.071C245.81 300.071 245.578 300.02 245.351 299.918C245.126 299.817 244.939 299.661 244.79 299.453C244.643 299.245 244.57 298.982 244.57 298.665V293.239ZM248.789 296.719V300H247.951V292.727H248.789V295.398H248.86C248.988 295.116 249.179 294.892 249.435 294.727C249.693 294.558 250.036 294.474 250.465 294.474C250.837 294.474 251.162 294.549 251.441 294.698C251.721 294.845 251.937 295.071 252.091 295.376C252.248 295.679 252.326 296.065 252.326 296.534V300H251.488V296.591C251.488 296.158 251.375 295.823 251.15 295.586C250.928 295.347 250.619 295.227 250.223 295.227C249.949 295.227 249.703 295.285 249.485 295.401C249.269 295.517 249.099 295.687 248.973 295.909C248.85 296.132 248.789 296.402 248.789 296.719ZM256.146 300.114C255.62 300.114 255.167 299.998 254.786 299.766C254.407 299.531 254.115 299.205 253.909 298.786C253.705 298.364 253.603 297.874 253.603 297.315C253.603 296.757 253.705 296.264 253.909 295.838C254.115 295.41 254.401 295.076 254.768 294.837C255.137 294.595 255.568 294.474 256.061 294.474C256.345 294.474 256.625 294.522 256.902 294.616C257.179 294.711 257.431 294.865 257.659 295.078C257.886 295.289 258.067 295.568 258.202 295.916C258.337 296.264 258.404 296.693 258.404 297.202V297.557H254.2V296.832H257.552C257.552 296.525 257.49 296.25 257.367 296.009C257.247 295.767 257.074 295.576 256.849 295.437C256.626 295.297 256.364 295.227 256.061 295.227C255.727 295.227 255.438 295.31 255.194 295.476C254.953 295.639 254.767 295.852 254.637 296.115C254.506 296.378 254.441 296.66 254.441 296.96V297.443C254.441 297.855 254.512 298.204 254.654 298.491C254.799 298.775 254.999 298.991 255.254 299.141C255.51 299.287 255.807 299.361 256.146 299.361C256.366 299.361 256.565 299.33 256.742 299.268C256.922 299.205 257.077 299.11 257.208 298.984C257.338 298.857 257.438 298.698 257.509 298.509L258.319 298.736C258.234 299.01 258.091 299.252 257.889 299.46C257.688 299.666 257.44 299.827 257.144 299.943C256.848 300.057 256.515 300.114 256.146 300.114ZM263.443 300V300.781H258.898V300H263.443ZM266.402 302.159C265.998 302.159 265.65 302.107 265.358 302.003C265.067 301.901 264.824 301.766 264.63 301.598C264.439 301.432 264.286 301.255 264.172 301.065L264.84 300.597C264.916 300.696 265.011 300.81 265.127 300.938C265.243 301.068 265.402 301.18 265.603 301.275C265.807 301.372 266.073 301.42 266.402 301.42C266.843 301.42 267.206 301.314 267.493 301.101C267.779 300.888 267.922 300.554 267.922 300.099V298.991H267.851C267.79 299.091 267.702 299.214 267.588 299.361C267.477 299.505 267.316 299.634 267.105 299.748C266.897 299.859 266.615 299.915 266.26 299.915C265.82 299.915 265.425 299.811 265.074 299.602C264.726 299.394 264.45 299.091 264.247 298.693C264.046 298.295 263.945 297.812 263.945 297.244C263.945 296.686 264.043 296.199 264.24 295.785C264.436 295.368 264.71 295.046 265.06 294.819C265.41 294.589 265.815 294.474 266.275 294.474C266.63 294.474 266.911 294.534 267.12 294.652C267.33 294.768 267.491 294.901 267.603 295.05C267.716 295.196 267.804 295.317 267.865 295.412H267.951V294.545H268.76V300.156C268.76 300.625 268.654 301.006 268.441 301.3C268.23 301.596 267.946 301.812 267.588 301.95C267.233 302.089 266.838 302.159 266.402 302.159ZM266.374 299.162C266.71 299.162 266.994 299.085 267.226 298.931C267.458 298.777 267.635 298.556 267.755 298.267C267.876 297.978 267.936 297.633 267.936 297.23C267.936 296.837 267.877 296.49 267.759 296.19C267.641 295.889 267.465 295.653 267.233 295.483C267.001 295.312 266.715 295.227 266.374 295.227C266.019 295.227 265.723 295.317 265.486 295.497C265.252 295.677 265.075 295.919 264.957 296.222C264.841 296.525 264.783 296.861 264.783 297.23C264.783 297.609 264.842 297.944 264.961 298.235C265.081 298.524 265.259 298.751 265.493 298.917C265.73 299.08 266.024 299.162 266.374 299.162ZM271.9 300.128C271.554 300.128 271.24 300.063 270.958 299.933C270.677 299.8 270.453 299.609 270.287 299.361C270.122 299.11 270.039 298.807 270.039 298.452C270.039 298.139 270.1 297.886 270.223 297.692C270.346 297.495 270.511 297.341 270.717 297.23C270.923 297.119 271.15 297.036 271.399 296.982C271.65 296.925 271.902 296.88 272.155 296.847C272.487 296.804 272.755 296.772 272.961 296.751C273.17 296.727 273.321 296.688 273.416 296.634C273.513 296.579 273.561 296.484 273.561 296.349V296.321C273.561 295.971 273.466 295.698 273.274 295.504C273.084 295.31 272.797 295.213 272.411 295.213C272.011 295.213 271.697 295.301 271.47 295.476C271.243 295.651 271.083 295.838 270.99 296.037L270.195 295.753C270.337 295.421 270.526 295.163 270.763 294.979C271.002 294.792 271.263 294.661 271.544 294.588C271.828 294.512 272.108 294.474 272.382 294.474C272.558 294.474 272.759 294.496 272.986 294.538C273.216 294.579 273.437 294.663 273.65 294.79C273.866 294.918 274.044 295.111 274.186 295.369C274.328 295.627 274.4 295.973 274.4 296.406V300H273.561V299.261H273.519C273.462 299.38 273.367 299.506 273.235 299.641C273.102 299.776 272.926 299.891 272.706 299.986C272.485 300.08 272.217 300.128 271.9 300.128ZM272.027 299.375C272.359 299.375 272.638 299.31 272.865 299.18C273.095 299.049 273.268 298.881 273.384 298.675C273.502 298.469 273.561 298.253 273.561 298.026V297.259C273.526 297.301 273.448 297.34 273.327 297.376C273.209 297.409 273.071 297.438 272.915 297.464C272.761 297.488 272.611 297.509 272.464 297.528C272.32 297.545 272.203 297.559 272.113 297.571C271.895 297.599 271.691 297.646 271.502 297.71C271.315 297.771 271.163 297.865 271.047 297.99C270.934 298.113 270.877 298.281 270.877 298.494C270.877 298.786 270.984 299.006 271.2 299.155C271.418 299.302 271.694 299.375 272.027 299.375ZM275.929 300V294.545H276.739V295.398H276.81C276.923 295.107 277.107 294.88 277.36 294.719C277.614 294.556 277.918 294.474 278.273 294.474C278.633 294.474 278.932 294.556 279.171 294.719C279.413 294.88 279.601 295.107 279.736 295.398H279.793C279.932 295.116 280.142 294.892 280.421 294.727C280.701 294.558 281.036 294.474 281.426 294.474C281.914 294.474 282.313 294.627 282.623 294.933C282.933 295.236 283.088 295.708 283.088 296.349V300H282.25V296.349C282.25 295.947 282.14 295.659 281.92 295.487C281.7 295.314 281.441 295.227 281.142 295.227C280.759 295.227 280.462 295.343 280.251 295.575C280.04 295.805 279.935 296.096 279.935 296.449V300H279.083V296.264C279.083 295.954 278.982 295.704 278.781 295.515C278.579 295.323 278.32 295.227 278.003 295.227C277.785 295.227 277.582 295.285 277.392 295.401C277.205 295.517 277.054 295.678 276.938 295.884C276.824 296.088 276.767 296.323 276.767 296.591V300H275.929ZM286.907 300.114C286.382 300.114 285.929 299.998 285.547 299.766C285.169 299.531 284.876 299.205 284.67 298.786C284.467 298.364 284.365 297.874 284.365 297.315C284.365 296.757 284.467 296.264 284.67 295.838C284.876 295.41 285.163 295.076 285.53 294.837C285.899 294.595 286.33 294.474 286.822 294.474C287.106 294.474 287.387 294.522 287.664 294.616C287.941 294.711 288.193 294.865 288.42 295.078C288.648 295.289 288.829 295.568 288.964 295.916C289.099 296.264 289.166 296.693 289.166 297.202V297.557H284.961V296.832H288.314C288.314 296.525 288.252 296.25 288.129 296.009C288.008 295.767 287.836 295.576 287.611 295.437C287.388 295.297 287.125 295.227 286.822 295.227C286.488 295.227 286.2 295.31 285.956 295.476C285.714 295.639 285.528 295.852 285.398 296.115C285.268 296.378 285.203 296.66 285.203 296.96V297.443C285.203 297.855 285.274 298.204 285.416 298.491C285.56 298.775 285.76 298.991 286.016 299.141C286.272 299.287 286.569 299.361 286.907 299.361C287.128 299.361 287.327 299.33 287.504 299.268C287.684 299.205 287.839 299.11 287.969 298.984C288.099 298.857 288.2 298.698 288.271 298.509L289.081 298.736C288.996 299.01 288.852 299.252 288.651 299.46C288.45 299.666 288.201 299.827 287.905 299.943C287.609 300.057 287.277 300.114 286.907 300.114Z" fill="black"/> +<defs> +<pattern id="pattern0_1_2" patternContentUnits="objectBoundingBox" width="1" height="1"> +<use xlink:href="#image0_1_2" transform="scale(0.001)"/> +</pattern> +<image id="image0_1_2" width="1000" height="1000" xlink:href=""/> +</defs> +</svg> diff --git a/Chapter4/Subspaces_of_Rn.md b/Chapter4/Subspaces_of_Rn.md index 6c028ac..bbfa626 100644 --- a/Chapter4/Subspaces_of_Rn.md +++ b/Chapter4/Subspaces_of_Rn.md @@ -122,8 +122,9 @@ $$ ::::{figure} Images/Fig-Subspaces-Lines.svg :name: Fig:Subspaces:Lines +:class: dark-light -A line is a subspace of $\R^2$ if and only if it goes through (0,0) +A line is a subspace of $\R^2$ if and only if it goes through $(0,0)$. :::: :::::: @@ -144,6 +145,7 @@ A disk $D$ specified by the inequality $x^2 + y^2 \leq a^2$, where $a$ is some p ::::{figure} Images/Fig-Subspaces-Disk.svg :name: Fig:Subspaces:SubspacesDisk +:class: dark-light A disk is not a subspace of $\R^2$. :::: @@ -166,9 +168,21 @@ Also give a set with only the properties i and iii. </li> </ol> +```{applet} +:url: subspaces_in_rn/the_game +:fig: Images/Fig-TheGame.svg +:name: Fig:Subspaces:SubspacesGame +:class: dark-light + +A game to test your knowledge of subspaces. On the left, $\vect{u} + \vect{v}$ is computed; try to find a result where the sum is not in the subspace. On the right, a scalar multiple $c \cdot \vect{u}$ is computed; try to find a result that is not in the subspace. Confetti will appear if a solution is found that falls outside the set. Different sets can be selected with the dropdown menu. +``` + +<!-- You may get some inspriration from the applet below. --> + :::::: -::::::{dropdown} Solution to {numref}`Exc:Subspaces:NonSubspacesR2` (_click to show_) +::::::{admonition} Solution to {numref}`Exc:Subspaces:NonSubspacesR2` (_click to show_) +:class: solution, dropdown We first give an example of a subset of $\R^2$ that only has properties i. and ii. @@ -209,7 +223,8 @@ c_1\vect{u}+ c_2 \vect{v} \in S. :::::: -::::::{prf:proof} +::::::{admonition} Proof of {prf:ref}`Prop:Subspaces:SpanClosed` +:class: myproof To show that a subspace satisfies property {eq}`Eq:Subspaces:SpanClosed`, suppose that $S$ is a subspace, $\vect{u}$ and $\vect{v}$ are vectors in $S$ and @@ -285,7 +300,8 @@ Recall {prf:ref}`Dfn:LinearCombinations:Span`: the span of zero vectors in $\R^n :::::: -::::::{prf:proof} +::::::{admonition} Proof of {prf:ref}`Prop:Subspaces:SpanIsSubspace` +:class: myproof If the number of vectors $r$ is equal to $0$, the span is equal to $\{\vect{0}\}$, the trivial subspace. @@ -355,7 +371,8 @@ Once more we recall the convention that the span of zero vectors (i.e., when $r :::::: -::::::{prf:proof} +::::::{admonition} Proof of {prf:ref}`Prop:Subspaces:AllSubspacesR3` +:class: myproof of {prf:ref}`Prop:Subspaces:AllSubspacesR3`. @@ -450,6 +467,7 @@ $$ The next proposition shows that the designation 'space' in the above definition is well justified. ::::::{prf:proposition} +:label: Prop:Subspaces:AllSubspacesRn Let $A$ be an $m\times n$ matrix. @@ -471,7 +489,8 @@ The null space of $A$ is a subspace of $\R^n$. :::::: -::::::{prf:proof} +::::::{admonition} Proof of {prf:ref}`Prop:Subspaces:AllSubspacesRn` +:class: myproof Let $A$ be an $m\times n$ matrix.<ol type = "i"> @@ -597,7 +616,8 @@ Can you find a similar formula relating the null space of $AB$ to the null space :::::: -::::::{dropdown} Solution to {numref}`Exc:Subspaces:ColABinColA` (_click to show_) +::::::{admonition} Solution to {numref}`Exc:Subspaces:ColABinColA` (_click to show_) +:class: solution, dropdown Suppose that $A$ is an $m\times n$ and $B$ an $n \times p$ matrix. Thus $AB$ is an $m\times p$ matrix. @@ -649,7 +669,8 @@ $$ :::::: -::::::{dropdown} Solution to {numref}`Exc:Subspaces:WhatIfAAeq0` (_click to show_) +::::::{admonition} Solution to {numref}`Exc:Subspaces:WhatIfAAeq0` (_click to show_) +:class: solution, dropdown First we show that @@ -676,6 +697,7 @@ So $A\vect{y} = A^2\vect{x} = \vect{0}$, and we may conclude that indeed $A^2 = ## Grasple Exercises ::::::{grasple} +:iframeclass: dark-light :url: https://embed.grasple.com/exercises/66b4134c-20e3-4a38-8f14-a32aa472aece?id=70616 :label: grasple_exercise_4_1_1 :dropdown: @@ -684,6 +706,7 @@ So $A\vect{y} = A^2\vect{x} = \vect{0}$, and we may conclude that indeed $A^2 = :::::: ::::::{grasple} +:iframeclass: dark-light :url: https://embed.grasple.com/exercises/aa71ac1a-d82d-4c6d-a6af-7af0c25422b1?id=70617 :label: grasple_exercise_4_1_2 :dropdown: @@ -692,6 +715,7 @@ So $A\vect{y} = A^2\vect{x} = \vect{0}$, and we may conclude that indeed $A^2 = :::::: ::::::{grasple} +:iframeclass: dark-light :url: https://embed.grasple.com/exercises/2a08d069-ac34-4f9f-8479-85896ade75da?id=70621 :label: grasple_exercise_4_1_3 :dropdown: @@ -700,6 +724,7 @@ So $A\vect{y} = A^2\vect{x} = \vect{0}$, and we may conclude that indeed $A^2 = :::::: ::::::{grasple} +:iframeclass: dark-light :url: https://embed.grasple.com/exercises/9470136c-b9ce-4664-937c-fad9da7963cb?id=70622 :label: grasple_exercise_4_1_4 :dropdown: @@ -708,6 +733,7 @@ So $A\vect{y} = A^2\vect{x} = \vect{0}$, and we may conclude that indeed $A^2 = :::::: ::::::{grasple} +:iframeclass: dark-light :url: https://embed.grasple.com/exercises/8756aa45-07b2-40f1-8fbe-aae7c140ae19?id=70625 :label: grasple_exercise_4_1_5 :dropdown: @@ -716,6 +742,7 @@ So $A\vect{y} = A^2\vect{x} = \vect{0}$, and we may conclude that indeed $A^2 = :::::: ::::::{grasple} +:iframeclass: dark-light :url: https://embed.grasple.com/exercises/c32e1656-5d38-4708-a55d-22ced9a9b254?id=70623 :label: grasple_exercise_4_1_6 :dropdown: @@ -724,6 +751,7 @@ So $A\vect{y} = A^2\vect{x} = \vect{0}$, and we may conclude that indeed $A^2 = :::::: ::::::{grasple} +:iframeclass: dark-light :url: https://embed.grasple.com/exercises/ab566408-ef8d-4b99-9f96-ceb29dcc234b?id=70624 :label: grasple_exercise_4_1_7 :dropdown: @@ -732,6 +760,7 @@ So $A\vect{y} = A^2\vect{x} = \vect{0}$, and we may conclude that indeed $A^2 = :::::: ::::::{grasple} +:iframeclass: dark-light :url: https://embed.grasple.com/exercises/2a3d5aaf-c0f1-4596-a3e7-3876c786544a?id=70615 :label: grasple_exercise_4_1_8 :dropdown: @@ -740,6 +769,7 @@ So $A\vect{y} = A^2\vect{x} = \vect{0}$, and we may conclude that indeed $A^2 = :::::: ::::::{grasple} +:iframeclass: dark-light :url: https://embed.grasple.com/exercises/f880df03-c9b6-4c69-bc94-ea0c6d273b24?id=70627 :label: grasple_exercise_4_1_9 :dropdown: @@ -748,6 +778,7 @@ So $A\vect{y} = A^2\vect{x} = \vect{0}$, and we may conclude that indeed $A^2 = :::::: ::::::{grasple} +:iframeclass: dark-light :url: https://embed.grasple.com/exercises/8bf246d1-8aad-448f-842a-8cc20c21b99a?id=70629 :label: grasple_exercise_4_1_10 :dropdown: @@ -756,6 +787,7 @@ So $A\vect{y} = A^2\vect{x} = \vect{0}$, and we may conclude that indeed $A^2 = :::::: ::::::{grasple} +:iframeclass: dark-light :url: https://embed.grasple.com/exercises/3eb1c09d-b39f-4eb8-8968-804469666617?id=83365 :label: grasple_exercise_4_1_11 :dropdown: @@ -764,6 +796,7 @@ So $A\vect{y} = A^2\vect{x} = \vect{0}$, and we may conclude that indeed $A^2 = :::::: ::::::{grasple} +:iframeclass: dark-light :url: https://embed.grasple.com/exercises/958bc91a-84e2-48e8-8cdf-b26514c41df0?id=83371 :label: grasple_exercise_4_1_12 :dropdown: @@ -772,6 +805,7 @@ So $A\vect{y} = A^2\vect{x} = \vect{0}$, and we may conclude that indeed $A^2 = :::::: ::::::{grasple} +:iframeclass: dark-light :url: https://embed.grasple.com/exercises/3b5196d2-1219-494e-a445-9dcadd8f19a0?id=88181 :label: grasple_exercise_4_1_13 :dropdown: @@ -780,6 +814,7 @@ So $A\vect{y} = A^2\vect{x} = \vect{0}$, and we may conclude that indeed $A^2 = :::::: ::::::{grasple} +:iframeclass: dark-light :url: https://embed.grasple.com/exercises/66eb42d3-ed92-45aa-8576-d6c4b86c8502?id=88184 :label: grasple_exercise_4_1_14 :dropdown: diff --git a/Chapter5/DetGeometric.md b/Chapter5/DetGeometric.md deleted file mode 100644 index a877f16..0000000 --- a/Chapter5/DetGeometric.md +++ /dev/null @@ -1,527 +0,0 @@ -(Sec:DetGeometric)= - -# Determinants as areas or volumes - -## Introduction - -The word "determinant" already appeared in the section about invertibility: a $2\times2$ matrix -$A = \left[\begin{array}{cc} a & b \\ c & d\end{array} \right]$ is invertible if and only if - -:::{math} -:label: Eq:DetGeometric:DetNonzero - -ad-bc \neq 0. - -::: - -The expression $ad-bc$ we called the determinant of the matrix $A$. Formula {eq}`Eq:DetGeometric:DetNonzero` is also equivalent to the statement that the columns of the matrix $A$ are linearly independent. - -Likewise, by row reducing a general $3 \times 3$ matrix - -$$ -A = \left[\begin{array}{ccc} a_{11} & a_{12} & a_{13} \\ -a_{21} & a_{22} & a_{23}\\ -a_{31} & a_{32} & a_{33}\end{array} \right] -$$ - -we might end up with an expression containing all the entries $a_{ij}$ that tells us whether $A$ is invertible or not. -In this section we will use a geometric approach to derive such an expression, and will again call this the determinant of the matrix $A$. Its formula, when looked at from the right perspective, shows an opportunity to generalize the concept to higher dimensions. -We will follow that route in the second section ``. . . . . " - -We will start by introducing determinants as a way to compute areas (in the plane) and volumes (in the space $\R^3$). - -## Area, orientation, determinant - -We start with two vectors $\vect{u}$ and $\vect{v}$ (as always, starting from the origin) in $\R^2$. They 'span' a parallelogram $OACB$, -where $A$ and $B$ are the end points of $\vect{u}$ and $\vect{v}$, and $C$ corresponds to the vector $\vect{u}+\vect{v}$. See {numref}`Figure %s <Fig:DetGeometric:PargramOACB>` - -::::{figure} Images/Fig-DetGeometric-PargramOACB.svg -:name: Fig:DetGeometric:PargramOACB - -The parallelogram OACB -:::: - -::::::{prf:proposition} -:label: Prop:DetGeometric:Area - -The area of the parallelogram $OACB$, spanned by the vectors $ \vect{u} =\left[\begin{array}{c} a \\ b \end{array}\right]$ and -$\vect{v}=\left[\begin{array}{c} c \\ d \end{array}\right]$ -is given by $|ad-bc|$, i.e., the absolute value of $ad-bc$. - -:::::: - -::::::{prf:proof} - -The quickest way to prove this is to translate it to the cross product. We introduce the vectors - -$$ -\tilde{\vect{u}} = \left[\begin{array}{c} a \\ b \\ 0 \end{array}\right] - \quad \text{and} \quad -\tilde{\vect{v}} = \left[\begin{array}{c} c \\ d \\ 0 \end{array}\right] -$$ - -::::{figure} Images/Fig-DetGeometric-OrientedArea1.svg -:name: Fig:DetGeometric:OrientedArea1 - -Oriented area -:::: - -See {numref}`Figure %s <Fig:DetGeometric:OrientedArea1>` -We then have - -$$ -\tilde{\vect{u}} \times \tilde{\vect{v}} = \left[\begin{array}{c} 0 \\ 0 \\ ad-bc \end{array}\right] -. -$$ - -The length of this cross product, which is given by $|ad-bc|$, gives the area of the parallelogram. - -:::::: - -Now what about the sign here? - -::::::{prf:proposition} - -$ad - bc = \norm{\vect{u}}\norm{\vect{v}}\sin(\varphi)$, where $\varphi$ is the angle from $\vect{u}$ counterclockwise to $\vect{v}$. -We will call this the **directed angle** from $\vect{u}$ to $\vect{v}$. - -:::::: - -::::::{prf:proof} - -Again we can resort to properties of the cross product, but in fact it is not necessary to go up one dimension. -By a small twist we can turn the determinant into an inner product: - -$$ -ad-bc = \left[\begin{array}{c} -b \\ a \end{array}\right] - \ip \left[\begin{array}{c} c \\ d \end{array}\right] - = -\vect{u}^{\perp} \ip \vect{v}, -$$ - -where $\vect{u}^{\perp}$ is the vector that is perpendicular to $\vect{u}$, points 'to the left' of $\vect{u}$, and has the same length as $\vect{u}$. See {numref}`Figure %s <Fig:DetGeometric:AreaPargram>`. - -::::{figure} Images/Fig-DetGeometric-AreaPargram.svg -:name: Fig:DetGeometric:AreaPargram - -Area equals base length time height -:::: - -So - -$$ -ad-bc = \vect{u}^{\perp} \ip \vect{v} = \norm{\vect{u}^{\perp}} \norm{\vect{v}}\cos(\vartheta), -$$ - -where $\vartheta$ is the angle between $\vect{u}^{\perp}$ and $\vect{v}$. -Here $\norm{\vect{v}}\cos(\vartheta)$ is $(\pm)$ the length of the projection of $\vect{v}$ onto the line perpendicular to $\vect{u}$, which can be interpreted as the height of the parallelogram. So then - -$$ -\norm{\vect{u}^{\perp}} \norm{\vect{v}}\cos(\vartheta) = \norm{\vect{u}} \norm{\vect{v}}\cos(\vartheta) = \pm \text{(base length)} \times \text{height} = \pm \text{area of } OACB. -$$ - -After some rewriting - -$$ -\begin{array}{ccl} -ad - bc &=& -\norm{\vect{u}^{\perp}}\norm{\vect{v}}\cos(\vartheta) \\ -&=& \norm{\vect{u}}\norm{\vect{v}}\cos(\tfrac12\pi-\varphi)\\ -&=& \norm{\vect{u}}\norm{\vect{v}}\sin(\varphi), -\end{array} -$$ - -where $\varphi$ is the angle from $\vect{u}$ to the left (= counterclockwise) to $\vect{v}$. - -We see that $ad-bc$ is equal to the area of the parallelogram if the angle from $\vect{u}$ to $\vect{v}$ is less then $\pi$, and minus this area if the angle is between $\pi$ and $2\pi$. - -:::::: - -::::::{prf:definition} -:label: Dfn:DetGeometric:Orientation - -The **determinant** of the ordered set $(\vect{u},\vect{v})$ of two vectors $\vect{u} =\left[\begin{array}{c} a \\ b \end{array}\right] -$ and $\vect{v}=\left[\begin{array}{c} c \\ d \end{array}\right] -$ in $\R^2$ is defined as - -$$ -\det{(\vect{u},\,\vect{v})} = ad - bc. -$$ - -Alternatively, the determinant can be seen as an operator working on $2 \times 2$ matrices, coming with its own notation: - -$$ -\det{[ \,\vect{u} \,\, \vect{v}\, ]} = \det{\left[\begin{array}{cc} a & c \\ b & d \end{array}\right]} = -\left|\begin{array}{cc} a & c \\ b & d \end{array}\right|= ad-bc. -$$ - -:::::: - -Apart from the area, the determinant also says something about the relative position of the two vectors $\vect{u}$ and $\vect{v}$. -In fact, we can use the determinant to define the orientation of two vectors in the plane (and later of $n$ vectors in $\R^n$). - -::::::{prf:definition} -:label: Dfn:DetGeometric:Orientation2 - -The ordered set $(\vect{u},\vect{v})$ of two linearly independent vectors $\vect{u}$ and $\vect{v}$ is said to be **positively oriented** -if $\det{(\vect{u},\vect{v})} > 0$, and **negatively oriented** -if $\det{(\vect{u},\vect{v})} < 0$. - -:::::: - -::::::{prf:proposition} -:label: Prop:DetGeometric:Properties2by2Det - -Two by two determinants obey the following rules: - -<ol type = "i"> -<li> - -$\det{(\vect{v},\vect{u})} = - \det{(\vect{u},\vect{v})}$. - -</li> -<li> - -$\det{(\vect{u},\vect{v}+\vect{w})} = \det{(\vect{u},\vect{v})} + \det{(\vect{u},\vect{w})}$. - -</li> -<li> - -$\det{(\vect{u},k\vect{v})} = k \det{(\vect{u},\vect{v})}$, $k \in \R$. - -</li> -<li> - -$\det{(\vect{e_1},\vect{e_2})} = 1$. - -</li> -</ol> - -These properties can also be expressed using matrices. - -Two by two determinants obey the following rules: - -<ol type = "i"> -<li> - -$ \begin{vmatrix} c & a \\ d & b \end{vmatrix} = - \begin{vmatrix} a & c \\ b & d \end{vmatrix}$. - -</li> -<BR> -<li> - -$\begin{vmatrix} a_{1} & b_{1}+ c_1\\ a_{2} & b_{2}+ c_2 \end{vmatrix} = \begin{vmatrix} a_{1} & b_{1}\\ a_{2} & b_{2}\end{vmatrix}+ \begin{vmatrix} a_{1} & c_1\\ a_{2} & c_2 \end{vmatrix}$. - -</li> -<BR> -<li> - -$\begin{vmatrix} a_{1} & k b_{1}\\ a_{2} & k b_{2}\end{vmatrix} = k \begin{vmatrix} a_{1} & b_{1}\\ a_{2} & b_{2}\end{vmatrix}$. - -</li> -<BR> -<li> - -$\begin{vmatrix} 1 & 0 \\ 0 & 1\end{vmatrix} = 1$. - -</li> -</ol> - -:::::: - -These properties are easily verified by applying the definition - -$$ -\left|\begin{array}{cc} a & c \\ b & d \end{array}\right| = ad-bc. -$$ - -::::::{exercise} -:label: Exc:DetGeometric:Properties2by2Det - -Verify the four properties of {prf:ref}`Prop:DetGeometric:Properties2by2Det` - -:::::: - -These preperties can also be looked at from the geometric interpretation 'signed area'. -If you are interested, you may have a look at the proof. - -::::::{prf:proof} - -Three of the four properties are rather obvious: - -<ol type = "i"> -<li> - -Interchanging $\vect{u}$ and $\vect{v}$ changes the orientation. The signed area changes sign. - -</li> -<li> - -$\det{(\vect{e_1},\vect{e_2})} $ is the area of the unit square. - -</li> -<li> - -$\det{(\vect{u},k\vect{v})} = k\times\det{(\vect{u},\vect{v})}$, $k \in \R$. - -Giving one of the vectors a factor $k$ changes the area with a factor $|k|$. If $k > 0$, the orientation of the two vector does not change, so the determinant gets a factor $|k|$ which in this case is equal to $k$. If however $k < 0$, then the orientation does change, so the determinant gets a factor $-|k|$, which in this case is again equal to $k$. - -</li> -</ol> - -The remaining property, - -<ol type = "i"> -<li> - -$\det{(\vect{u},\vect{v}+\vect{w})} = \det{(\vect{u},\vect{v})} + \det{(\vect{u},\vect{w})}$, - -</li> -</ol> - -is the most interesting one. The two pictures of {numref}`Figure %s <Fig:DetGeometric:Linearity>` tell the story. - -::::{figure} Images/Fig-DetGeometric-SumRule.svg -:name: Fig:DetGeometric:Linearity - -The sum rule in a picture. Note, **this is a 2D picture**. -:::: - -In the picture on the left, both $(\vect{u},\vect{v})$ and $(\vect{u},\vect{w})$ are positively oriented. -So there - -$$ -\begin{array}{lcl} -\det{(\vect{u},\vect{v})} + \det{(\vect{u},\vect{w})} &=& -\text{area}(OABC) + \text{area}(CBDE) \\ -&=& \text{area}(OADE) = \det{(\vect{u},\vect{v}+\vect{w})}, -\end{array} -$$ - -since the two triangles $OCE$ and $ABD$ are congruent, so have equal areas. - -In the picture on the right, the orientation of $(\vect{u},\vect{v})$ is positive, the orientation of $(\vect{u},\vect{w})$ is negative, and the orientation of $(\vect{u},\vect{v}+\vect{w})$ is positive again. -So there - -$$ -\begin{array}{lcl} -\det{(\vect{u},\vect{v})} + \det{(\vect{u},\vect{w})} &=& -\text{area}(OAFC) - \text{area}(OBDA) \\ -&=& \text{area}(OAFC) - \text{area}(CGEF) \\ -&=& \text{area}(OAEG) = \det{(\vect{u},\vect{v}+\vect{w})}, -\end{array} -$$ - -since now the areas of $OAFC$ and $CGEB$ add up to the area of $OABC$, owing to the -congruence of the triangles $OGC$ and $AEF$. - -There are more pairwise orientations to consider, but the idea is hopefully clear to you. - -:::::: - -::::::{exercise} - -Give a geometric argument for the following property of the determinant. - -Let $\vect{u}$ and $\vect{v}$ be two vectors in the plane, and $k$ a real number. Then - -$$ - \det{(\vect{u},\vect{v}+k \vect{u})} = \det{(\vect{u},\vect{v})}. -$$ - -:::::: - -## $\, 3 \times 3$ determinants: volume and orientation - -Suppose $\vect{a}, \vect{b}, \vect{c}$ are three vectors in $\R^3$. For the moment, suppose they are linearly independent. So -$\vect{a}, \vect{b}$ are not multiples of each other, and $\vect{c}$ is not in the plane spanned by $\vect{a}, \vect{b}$. -Then the three vectors can be interpreted as three edges of a parallelepiped. See {numref}`Figure %s <Fig:DetGeometric:Paraped>`. - -::::{figure} Images/Fig-DetGeometric-Paraped.svg -:name: Fig:DetGeometric:Paraped - -Volume equals base area time height -:::: - -::::::{prf:proof} - -Just as the area of a parallelogram can be computed as 'base length times height', the volume of a parallelepiped can be computed as 'base area times height'. -As base region we can take the parallelogram spanned by $\vect{a}$ and $\vect{b}$, and then the base area becomes - -$$ -A = \norm{\vect{a} \times \vect{b}}. -$$ - -The height is found by projecting $\vect{c}$ onto the line through the origin that is perpendicular to the plane spanned by $\vect{a}$ and $\vect{b}$. A direction vector of this line is precisely given by $\vect{a} \times \vect{b}$. -So - -$$ -h = \vect{c}\ip\vect{n} -$$ - -where $\vect{n}$ is the unit vector perpendicular to the 'base plane' that points to the same side as the vector $\vect{c}$. This unit vector is given by - -$$ -\vect{n} = \pm \frac{\vect{a} \times \vect{b}}{\norm{\vect{a} \times \vect{b}}} -$$ - -And then the formula 'height times base area' gives - -$$ -V = \vect{c}\ip\vect{n} = \pm \vect{c}\ip\frac{\vect{a} \times \vect{b}}{\norm{\vect{a} \times \vect{b}}} -\cdot \norm{\vect{a} \times \vect{b}} = (\pm) \vect{c}\ip(\vect{a} \times \vect{b}). -$$ - -The statement about the sign follows immediately from the third defining property of the cross product. - -:::::: - -Note that the expression $\vect{c}\ip(\vect{a} \times \vect{b})$ must be invariant under cyclic permutations of the three vectors. - -::::::{prf:proposition} -:label: Prop:DetGeometric:CyclicPerm - -$$ -\vect{c}\ip(\vect{a} \times \vect{b}) = \vect{a}\ip(\vect{b} \times \vect{c})= \vect{b}\ip(\vect{c} \times \vect{a}) -$$ - -and swapping two vectors gives a minus sign: - -$$ -\vect{c}\ip(\vect{a} \times \vect{b})= - \vect{c}\ip(\vect{b} \times \vect{a}). -$$ - -:::::: - -::::::{prf:proof} - -The parallelepiped spanned by the three vectors does not change under any permutation, and the orientation remains the same under a cyclic permutation. - -:::::: - -The last proposition sets the way to take the determinant one dimension higher. - -::::::{prf:definition} - -The **determinant** of the ordered set of three vectors $\vect{a}, \vect{b}$ and $ \vect{c}$ in $\R^3$ is defined by the expression - -$$ -\det{(\vect{a}, \vect{b},\vect{c})} = \vect{a}\ip(\vect{b} \times \vect{c}). -$$ - -Note that the determinant is a real number. - -Alternatively, we can define the determinant as a function working on $3 \times 3$ matrices. And that is the sole interpretation we will use from now on. - -If we put - -$$ -A = [ \vect{a}\quad \vect{b}\quad\vect{c} ] = \left[\begin{array}{ccc} a_1 & b_1 & c_1 \\ a_2 & b_2 & c_2\\ a_3 & b_3 & c_3 \end{array} \right] , -$$ - -then - -$$ -\det{A} = \left|\begin{array}{ccc} a_1 & b_1 & c_1 \\ a_2 & b_2 & c_2\\ a_3 & b_3 & c_3 \end{array} \right|= \vect{a}\ip(\vect{b} \times \vect{c}). -$$ - -:::::: - -::::::{prf:proposition} -:label: Prop:DetGeometric:ColExpand - -$$ -\left|\begin{array}{ccc} a_1 & b_1 & c_1 \\ a_2 & b_2 & c_2\\ a_3 & b_3 & c_3 \end{array} \right|= -a_1\left|\begin{array}{cc} b_2 & c_2\\ b_3 & c_3 \end{array} \right|- -a_2 \left|\begin{array}{cc} b_1 & c_1 \\ b_3 & c_3 \end{array} \right|+ -a_3 \left|\begin{array}{cc} b_1 & c_1 \\ b_2 & c_2\end{array} \right|. -$$ - -This can be further evaluated as - -$$ -\left|\begin{array}{ccc} a_1 & b_1 & c_1 \\ a_2 & b_2 & c_2\\ a_3 & b_3 & c_3 \end{array} \right|= a_1b_2c_3 - a_1b_3c_2 - a_2b_1c_3 +a_2b_3c_1 + a_3b_1c_2 - a_3b_2c_1. -$$ - -:::::: - -The expression involving the three $2 \times 2$ determinants will be the stepping stone to define the determinant of a general $n \times n$ matrix. - -::::::{prf:proof} - -The identities are verified by evaluating the triple product: - -$$ -\left[\begin{array}{c} a_1 \\ a_2\\ a_3 \end{array} \right] - \ip -\left( \left[\begin{array}{c} b_1 \\ b_2\\ b_3 \end{array} \right] - \times \left[\begin{array}{c} c_1 \\ c_2\\ c_3 \end{array} \right] -\right) - = -\left[\begin{array}{c} a_1 \\ a_2\\ a_3 \end{array} \right] - \ip -\left[\begin{array}{c} b_2c_3-b_3c_2 \\ b_3c_1-b_1c_3\\ b_1c_2-b_2c_1 \end{array} \right] - = -$$ - -$$ -\begin{array}{cl} -=& a_1(b_2c_3 - b_3c_2) - a_2(b_1c_3 -b_3c_1) + a_3(b_1c_2 - b_2c_1)\\ -=& a_1b_2c_3 - a_1b_3c_2 - a_2b_1c_3 + a_2b_3c_1) + a_3b_1c_2 - a_3b_2c_1). -\end{array} -$$ - -:::::: - -The next proposition summarizes the relevant properties of $3 \times 3$ determinants. - -::::::{prf:proposition} -:label: Prop:DetGeometric:Summary - -For the determinant - -$$ -D = \det{A} = \det{\left[\vect{a}\quad \vect{b}\quad\vect{c} \right] -} = \left|\begin{array}{ccc} a_1 & b_1 & c_1 \\ a_2 & b_2 & c_2\\ a_3 & b_3 & c_3 \end{array} \right| -$$ - -the following properties hold - -<ol type = "i"> -<li> - -$|D|$, i.e. the absolute value of the determinant, is equal to the volume of the parallelepiped with the edges $\vect{a},\vect{b}$ and $\vect{c}$. - -</li> -<li> - -:::{latextable} -\begin{tabular}[t]{lcl} $D=0 $ & $\iff $& the matrix $A$ is singular \\ -& $\iff $& the vectors $\{\vect{a}, \vect{b},\vect{c}\}$ are linearly dependent. -\end{tabular} -::: - -Equivalently: - -:::{latextable} -\begin{tabular}[t]{lcl} $D\neq 0 $ & $\iff $& the matrix $A$ is invertible \\ -& $\iff $& the vectors $\{\vect{a}, \vect{b},\vect{c}\}$ are linearly independent. -\end{tabular} -::: - -</li> -<li> - -$D > 0 \quad \iff \quad $ the ordered set $(\vect{a},\vect{b},\vect{c})$ is positively oriented. - -That is, oriented in the same way as the basis $(\vect{e}_1,\vect{e}_2,\vect{e}_3)$. - -</li> -<li> - -$\det{I} = \left|\begin{array}{ccc} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{array} \right| = 1$. - -</li> -</ol> - -:::::: diff --git a/Chapter5/DeterminantsExtras.md b/Chapter5/DeterminantsExtras.md index db5148a..6623a41 100644 --- a/Chapter5/DeterminantsExtras.md +++ b/Chapter5/DeterminantsExtras.md @@ -71,8 +71,9 @@ Note that if the vectors $\vect{v}_1, \ldots, \vect{v}_n$ in {prf:ref}`Dfn:DetEx ::::::{figure} Images/Fig-DetExtras-ParPed.svg :name: Fig:DetExtras:Parped +:class: dark-light -The parallelepiped generated by two vectors +The parallelepiped generated by two vectors. :::::: ::::::{prf:definition} Orientation in $\R^n$ @@ -106,7 +107,8 @@ $$ :::::: -::::::{prf:proof} +::::::{admonition} Proof of {prf:ref}`Prop:DetExras:DetAsScaleFactorR2` +:class: myproof If the matrix $A$ is not invertible, the range of $T$, which is given by $\text{span}\{\vect{a}_1, \vect{a}_2\}$, is contained in a line. Each region $R$ is then mapped onto a subset $S$ that is contained in this line, so @@ -119,8 +121,9 @@ Next suppose that $A$ is invertible. Then the unit grid is mapped onto a grid wi ::::{figure} Images/Fig-DetExtras-StandardGrid.svg :name: Fig:DetExtras:Grid +:class: dark-light -The image of the standard grid +The image of the standard grid. :::: @@ -161,8 +164,9 @@ See {numref}`Figure %s <Fig:DetExtras:ImageOfSquare>` ::::{figure} Images/Fig-DetExtras-ImageOfSquare.svg :name: Fig:DetExtras:ImageOfSquare +:class: dark-light -The image of a square with 'corner' $\vect{p}$ and side length $r$ +The image of a square with 'corner' $\vect{p}$ and side length $r$. :::: For a general (reasonable) region $R$ we sketch the idea and omit the technical details. @@ -173,6 +177,7 @@ The limit of the areas of these approximations when the grids get finer and fine ::::{figure} Images/Fig-DetExtras-Subdivision.svg :name: Fig:DetExtras:Subdivision +:class: dark-light Approximating a region by smaller and smaller squares. @@ -213,7 +218,8 @@ where $S$ is the image of $R$ under $T$. :::::: -::::::{prf:proof} +::::::{admonition} Proof of {prf:ref}`Prop:DetExtras:ScaleFactorRn` +:class: myproof <BR> @@ -260,7 +266,8 @@ $\det{A} > 0$ and **reverses** the orientation if $\det{A} < 0$. If the determinant is 0, then the set $\{T(\vect{v}_1), \ldots,T(\vect{v}_n) \}$ will be linearly dependent, and for such a set the orientation is not defined. -::::{prf:proof} +::::{admonition} Proof of {prf:ref}`Prop:DetExtras:ScaleFactorR2` +:class: myproof This too follows immediately from the product rule of determinants. @@ -296,13 +303,16 @@ $$ {numref}`Figure %s <Fig:DetExtras:Orientation>` visualizes what is going on. -:::{figure} Images/Fig-DetExtras-Orientation.svg +```{applet} +:url: detextras/orientation +:fig: Images/Fig-DetExtras-Orientation.svg :name: Fig:DetExtras:Orientation +:class: dark-light Images under transformations with negative and positive determinant. -::: +``` -The images of a unit vector that rotates counterclockwise under transformation $A$ move around clockwise, i.e., in the *opposite* orientation/direction. Under transformation $B$ the images will go around the origin counterclockwise, i.e., in the *same* direction as the original vectors. +The images of a unit vector that rotates counterclockwise under transformation $A$ move around clockwise, i.e., in the _opposite_ orientation/direction. Under transformation $B$ the images will go around the origin counterclockwise, i.e., in the _same_ direction as the original vectors. :::: @@ -322,10 +332,10 @@ Let $A$ be an $n\times n$ matrix, and $\vect{v}$ a vector in $\R^n$. Then $A^{(i ::::::{prf:example} For the matrix $A = \begin{bmatrix} 1 & 3 & 1 \\ 1 & 4 & 2 \\ 3 & 1 & 5 \end{bmatrix}$ -and the vector $\vect{v} = \begin{bmatrix} \color{blue}6 \\ \color{blue}7 \\ \color{blue}8 \end{bmatrix}$ we have that +and the vector $\vect{v} = \begin{bmatrix} \class{blue}6 \\ \class{blue}7 \\ \class{blue}8 \end{bmatrix}$ we have that $$ - A^{(2)}(\vect{v}) = \begin{bmatrix} 1 & \color{blue}6 & 1 \\ 1 & \color{blue}7 & 2 \\ 3 & \color{blue}8 & 5 \end{bmatrix}. + A^{(2)}(\vect{v}) = \begin{bmatrix} 1 & \class{blue}6 & 1 \\ 1 & \class{blue}7 & 2 \\ 3 & \class{blue}8 & 5 \end{bmatrix}. $$ :::::: @@ -404,10 +414,10 @@ $$ :::::: -The following proof of Cramer's rule rests rather nicely on properties of the determinant function. But feel free to skip it. - -::::::{dropdown} Proof of {prf:ref}`Thm:DetExtras:Cramer` +The following proof of Cramer's rule rests rather nicely on properties of the determinant function. But feel free to skip it. +::::::{admonition} Proof of {prf:ref}`Thm:DetExtras:Cramer` +:class: myproof, dropdown Suppose $\vect{x} = \vect{c} = \left[\begin{array}{c} c_1 \\ \vdots\\ c_n\end{array} \right] $ is the unique solution of the linear system $A\vect{x} = \vect{b}$, with the invertible matrix $A = [ \vect{a}_1 \, \, \vect{a}_2 \, \ldots \,\vect{a}_n ]$. @@ -441,7 +451,7 @@ By the linearity property (in all of the columns) of the determinant ({prf:ref}` :::{math} :label: Eq:DetExtras:ProofCramer -c_1\det{(A)} + c_2\det{(A^{(1)}(\vect{a}_2))} + \ldots + c_n\det{(A^{(1)}(\vect{a}_n))} - \det{(A^{(1)}(\vect{b}))} = 0. +c_1\det{(A)} + c_2\det{(A^{(1)}(\vect{a}\_2))} + \ldots + c_n\det{(A^{(1)}(\vect{a}\_n))} - \det{(A^{(1)}(\vect{b}))} = 0. ::: @@ -547,8 +557,8 @@ C_{1n} &C_{2n} &C_{3n} & \ldots &C_{nn} \\ :::::: -::::::{prf:proof} -<BR> +::::::{admonition} Proof of {prf:ref}`Prop:DetExtras:Inverse` +:class: myproof The $j$th column $\vect{b}_j$ of $B = A^{-1}$ is the solution of the linear system $A\vect{x} = \vect{e}_j$. @@ -617,7 +627,8 @@ For clarity we used dots to indicate products. Note that the first two products The proof we think, is short and instructive. -::::::{dropdown} Proof of {prf:ref}`Prop:DetExtras:AdjointProperty` +::::::{admonition} Proof of {prf:ref}`Prop:DetExtras:AdjointProperty` +:class: myproof, dropdown For an invertible matrix the statement follows immediately from {prf:ref}`Prop:DetExtras:Inverse`. @@ -726,15 +737,14 @@ Conversely, we can write the cross product in terms containing determinants. :label: Eq:DetExtras:DetCrossProd \begin{array}{rcl} -\left[\begin{array}{c} a_1 \\ a_2 \\ a_3 \end{array}\right] \times -\left[\begin{array}{c}b_1 \\ b_2 \\ b_3 \end{array}\right] -&=& \left[\begin{array}{c}a_2b_3-a_3b_2 \\ a_3b_1 - a_1b_3 \\ a_2b_1-a_2b_1 \end{array}\right] \\ +\left[\begin{array}{c} a_1 \\ a_2 \\ a_3 \end{array}\right] \times +\left[\begin{array}{c}b_1 \\ b_2 \\ b_3 \end{array}\right] +&=& \left[\begin{array}{c}a_2b_3-a_3b_2 \\ a_3b_1 - a_1b_3 \\ a_2b_1-a_2b_1 \end{array}\right] \\ &=& -\left|\begin{array}{cc} a_2 & b_2 \\a_3 & b_3 \end{array}\right|\vect{e}_1 -- \left|\begin{array}{cc} a_1 & b_1 \\ a_3 & b_3 \end{array}\right|\vect{e}_2 -+ \left|\begin{array}{cc} a_1 & b_1 \\a_2 & b_2 \end{array}\right|\vect{e}_3. -\end{array} - +\left|\begin{array}{cc} a_2 & b_2 \\a_3 & b_3 \end{array}\right|\vect{e}_1 +- \left|\begin{array}{cc} a_1 & b_1 \\ a_3 & b_3 \end{array}\right|\vect{e}_2 ++ \left|\begin{array}{cc} a_1 & b_1 \\a_2 & b_2 \end{array}\right|\vect{e}_3. + \end{array} ::: @@ -894,13 +904,12 @@ $$ so property iv. is satisfied too. :::::: - We end the chapter with a proof of {prf:ref}`Prop:DetExtras:Properties-ndimCrossProd`. <BR> -So, if you are interested, push the button on the right. - -::::::{dropdown} Proof of {prf:ref}`Prop:DetExtras:Properties-ndimCrossProd` +So, if you are interested, push the button on the right. +::::::{admonition} Proof of {prf:ref}`Prop:DetExtras:Properties-ndimCrossProd` +:class: myproof, dropdown The properties follow from the observation that for each vector $\vect{v}$ in $\R^n$ @@ -1078,19 +1087,18 @@ $$ :::::: - ## Grasple Exercises ::::::{grasple} +:iframeclass: dark-light :url: https://embed.grasple.com/exercises/ddb8daf3-3773-44c9-8df0-fe3084a6e7c4?id=93170 :label: grasple_exercise_5_4_1 :dropdown: :description: To compute the area of a triangle with sides $\vect{u}$ and $\vect{v}$ in the plane. :::::: - - ::::::{grasple} +:iframeclass: dark-light :url: https://embed.grasple.com/exercises/8d7a0672-6283-4bb1-9b43-b41a03067e40?id=93171 :label: grasple_exercise_5_4_2 :dropdown: @@ -1098,8 +1106,8 @@ $$ :::::: - ::::::{grasple} +:iframeclass: dark-light :url: https://embed.grasple.com/exercises/62770bc4-da31-4212-a713-bb2843b0e580?id=93172 :label: grasple_exercise_5_4_3 :dropdown: @@ -1108,6 +1116,7 @@ $$ :::::: ::::::{grasple} +:iframeclass: dark-light :url: https://embed.grasple.com/exercises/f787e084-9a77-40b4-b755-97890b98cfb6?id=93176 :label: grasple_exercise_5_4_4 :dropdown: @@ -1115,9 +1124,8 @@ $$ :::::: - - ::::::{grasple} +:iframeclass: dark-light :url: https://embed.grasple.com/exercises/3add427a-88a3-4da0-8f0a-2bf8bb8781dd?id=93179 :label: grasple_exercise_5_4_5 :dropdown: @@ -1125,9 +1133,8 @@ $$ :::::: - - ::::::{grasple} +:iframeclass: dark-light :url: https://embed.grasple.com/exercises/8d4a98f7-50ac-4705-8b34-680b7b8395d9?id=93181 :label: grasple_exercise_5_4_6 :dropdown: @@ -1135,12 +1142,11 @@ $$ :::::: - ::::::{grasple} +:iframeclass: dark-light :url: https://embed.grasple.com/exercises/bc3df113-95b3-470a-a730-3ad8faab08f5?id=93183 :label: grasple_exercise_5_4_7 :dropdown: -:description: To compute the normal vector $N(\vect{a}_1,\vect{a}_2,\vect{a}_3)$ as in {numref}`Subsection %s <Subsec-DetExtras-DetAndCrossProd>` +:description: To compute the normal vector $N(\vect{a}_1,\vect{a}_2,\vect{a}_3)$ as in {numref}`Subsection %s <Subsec-DetExtras-DetAndCrossProd>` :::::: - diff --git a/Chapter5/DeterminantsGeometric.md b/Chapter5/DeterminantsGeometric.md index 236c2ad..e3c8c9b 100644 --- a/Chapter5/DeterminantsGeometric.md +++ b/Chapter5/DeterminantsGeometric.md @@ -38,8 +38,9 @@ where $A$ and $B$ are the end points of $\vect{u}$ and $\vect{v}$, and $C$ corre ::::{figure} Images/Fig-DetGeometric-PargramOACB.svg :name: Fig:DetGeometric:PargramOACB +:class: dark-light -The parallelogram OACB +The parallelogram $OACB$. :::: ::::::{prf:proposition} @@ -51,7 +52,8 @@ is given by $|ad-bc|$, i.e., the absolute value of $ad-bc$. :::::: -::::::{prf:proof} +::::::{admonition} Proof of {prf:ref}`Prop:DetGeometric:Area` +:class: myproof The quickest way to prove this is to translate it to the cross product ({numref}`Sec:CrossProduct`). To make use of the cross product we introduce the vectors @@ -67,8 +69,9 @@ Thus we embed the plane into $\R^3$ as the $x_1$-$x_2$-plane. See {numref}`Figur :url: det_geometric/orientedarea1 :fig: Images/Fig-DetGeometric-OrientedArea1.svg :name: Fig:DetGeometric:OrientedArea1 +:class: dark-light -Oriented area +Oriented area. ``` So we embed the plane $\R^2$ as the $x$-$y$-plane in $\R^3$. @@ -86,13 +89,15 @@ The length of this cross product is equal to $|ad-bc|$. This gives the area of t Now what about the sign here? ::::::{prf:proposition} +:label: Prop:DetGeometric:DirectedAngle $ad - bc = \norm{\vect{u}}\norm{\vect{v}}\sin(\varphi)$, where $\varphi$ is the angle from $\vect{u}$ counterclockwise to $\vect{v}$. We will call this the **directed angle** from $\vect{u}$ to $\vect{v}$. :::::: -::::::{prf:proof} +::::::{admonition} Proof of {prf:ref}`Prop:DetGeometric:DirectedAngle` +:class: myproof Again we can resort to properties of the cross product, but in fact it is not necessary to go up one dimension. By a small twist we can turn the determinant into an inner product: @@ -108,8 +113,9 @@ where $\vect{u}^{\perp}$ is the vector that is perpendicular to $\vect{u}$, poin ::::{figure} Images/Fig-DetGeometric-AreaPargram.svg :name: Fig:DetGeometric:AreaPargram +:class: dark-light -The parallelogram $OACB$ and the orthogonal vector $\vect{u}^{\perp}$ +The parallelogram $OACB$ and the orthogonal vector $\vect{u}^{\perp}$. :::: So @@ -252,7 +258,8 @@ Verify the four properties of {prf:ref}`Prop:DetGeometric:Properties2by2Det` The properties have a clear geometric interpretation using the notion of signed area. The following alternative proof uses this geometric viewpoint. -::::::{prf:proof} +::::::{admonition} Proof of {prf:ref}`Prop:DetGeometric:Properties2by2Det` +:class: myproof Three of the four properties are quickly settled. @@ -293,16 +300,12 @@ $\det{(\vect{u},\vect{v}+\vect{w})} = \det{(\vect{u},\vect{v})} + \det{(\vect{u} is the most interesting one. The two pictures of {numref}`Figure %s <Fig:DetGeometric:Linearity1>` and {numref}`Figure %s <Fig:DetGeometric:Linearity2>` tell the story. -::::{figure} -:name: - -:::: - ```{applet} :url: det_geometric/linearity_one :fig: Images/Fig-DetGeometric-SumRule.svg :name: Fig:DetGeometric:Linearity1 :position: 2,2 +:class: dark-light The sum rule in a picture with $(\vect{u},\vect{w})$ positively oriented. Note, this is a **2D picture**. ``` @@ -325,6 +328,7 @@ Since the two triangles $OCE$ and $ABD$ are congruent and they have equal areas. :fig: Images/Fig-DetGeometric-SumRule.svg :name: Fig:DetGeometric:Linearity2 :position: 2,2 +:class: dark-light The sum rule in a picture with $(\vect{u},\vect{w})$ negatively oriented. Note, this is a **2D picture**. ``` @@ -355,8 +359,9 @@ Then the three vectors can be interpreted as three edges of a parallelepiped. :url: det_geometric/paraped :fig: Images/Fig-DetGeometric-Paraped.svg :name: Fig:DetGeometric:Paraped +:class: dark-light -Volume equals base area times height +Volume equals base area times height. ``` ::::::{prf:proposition} @@ -373,7 +378,8 @@ $$ :::: -::::::{prf:proof} +::::::{admonition} Proof of {prf:ref}`Prop:DetGeometric:VolumeParped` +:class: myproof Just as the area of a parallelogram can be computed as 'base length times height', the volume of a parallelepiped can be computed as 'base area times height'. See {numref}`Figure %s <Fig:DetGeometric:Paraped>`. As base region we can take the parallelogram spanned by $\vect{a}$ and $\vect{b}$, and then the base area becomes @@ -421,7 +427,8 @@ $$ :::::: -::::::{prf:proof} +::::::{admonition} Proof of {prf:ref}`Prop:DetGeometric:CyclicPerm` +:class: myproof The parallelepiped spanned by the three vectors does not change under any permutation, and the orientation remains the same under a cyclic permutation. @@ -480,7 +487,8 @@ $$ :::::: -::::::{prf:proof} +::::::{admonition} Proof of {prf:ref}`Prop:DetGeometric:ColExpand` +:class: myproof The identities are verified by evaluating the triple product: @@ -554,6 +562,7 @@ $\det{I} = \left|\begin{array}{ccc} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{ar ## Grasple Exercises ::::::{grasple} +:iframeclass: dark-light :url: https://embed.grasple.com/exercises/3126529d-db82-43e2-862d-7f013f39f619?id=93128 :label: grasple_exercise_5_1_1 :dropdown: @@ -562,6 +571,7 @@ $\det{I} = \left|\begin{array}{ccc} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{ar :::::: ::::::{grasple} +:iframeclass: dark-light :url: https://embed.grasple.com/exercises/13e76393-8f38-48aa-9685-2132208a0cc8?id=93131 :label: grasple_exercise_5_1_2 :dropdown: @@ -570,6 +580,7 @@ $\det{I} = \left|\begin{array}{ccc} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{ar :::::: ::::::{grasple} +:iframeclass: dark-light :url: https://embed.grasple.com/exercises/fc111f55-9f43-4730-a1f9-e3b5f03069bd?id=93133 :label: grasple_exercise_5_1_3 :dropdown: @@ -578,6 +589,7 @@ $\det{I} = \left|\begin{array}{ccc} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{ar :::::: ::::::{grasple} +:iframeclass: dark-light :url: https://embed.grasple.com/exercises/2d846d56-3729-468e-80d8-74ec6d348719?id=93134 :label: grasple_exercise_5_1_4 :dropdown: @@ -586,6 +598,7 @@ $\det{I} = \left|\begin{array}{ccc} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{ar :::::: ::::::{grasple} +:iframeclass: dark-light :url: https://embed.grasple.com/exercises/1053b23-02ab-4ffb-bcda-70f808a9910a?id=74408 :label: grasple_exercise_5_1_5 :dropdown: @@ -594,6 +607,7 @@ $\det{I} = \left|\begin{array}{ccc} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{ar :::::: ::::::{grasple} +:iframeclass: dark-light :url: https://embed.grasple.com/exercises/edc50bb7-425e-4a76-927e-f20504128f5f?id=65686 :label: grasple_exercise_5_1_6 :dropdown: @@ -602,6 +616,7 @@ $\det{I} = \left|\begin{array}{ccc} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{ar :::::: ::::::{grasple} +:iframeclass: dark-light :url: https://embed.grasple.com/exercises/47e1fd08-2d8a-4c0d-816a-37e314707191?id=87501 :label: grasple_exercise_5_1_7 :dropdown: @@ -610,6 +625,7 @@ $\det{I} = \left|\begin{array}{ccc} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{ar :::::: ::::::{grasple} +:iframeclass: dark-light :url: https://embed.grasple.com/exercises/22a384c2-3434-4650-a52a-e954c470e08d?id=92929 :label: grasple_exercise_5_1_8 :dropdown: diff --git a/Chapter5/DeterminantsViaCofactors.md b/Chapter5/DeterminantsViaCofactors.md index 31570f5..1d812e4 100644 --- a/Chapter5/DeterminantsViaCofactors.md +++ b/Chapter5/DeterminantsViaCofactors.md @@ -192,11 +192,11 @@ $ along its third row. $$ \left|\begin{array}{rrr} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ -\color{blue}a_{31} & \color{blue}a_{32} & \color{blue}a_{33} +\class{blue}{a_{31}} & \class{blue}{a_{32}} & \class{blue}{a_{33}} \end{array}\right|= -{\color{blue}a_{31}}\left|\begin{array}{cc}a_{12} & a_{13}\\ a_{22} & a_{23}\end{array}\right|- -{\color{blue}a_{32}}\left|\begin{array}{cc}a_{11} & a_{13}\\ a_{21} & a_{23}\end{array}\right|+ -{\color{blue}a_{33}}\left|\begin{array}{cc}a_{11} & a_{12}\\ a_{21} & a_{22}\end{array}\right| +\class{blue}{a_{31}}\left|\begin{array}{cc}a_{12} & a_{13}\\ a_{22} & a_{23}\end{array}\right|- +\class{blue}{a_{32}}\left|\begin{array}{cc}a_{11} & a_{13}\\ a_{21} & a_{23}\end{array}\right|+ +\class{blue}{a_{33}}\left|\begin{array}{cc}a_{11} & a_{12}\\ a_{21} & a_{22}\end{array}\right| $$ $$ @@ -212,11 +212,11 @@ $$ Cofactor expansion along the second column yields $$ -\left|\begin{array}{rrr} a_{11} & \color{blue}a_{12} & a_{13} \\ -a_{21} & \color{blue}a_{22} & a_{23} \\ -a_{31} & \color{blue}a_{32} & a_{33} +\left|\begin{array}{rrr} a_{11} & \class{blue}{a_{12}} & a_{13} \\ +a_{21} & \class{blue}{a_{22}} & a_{23} \\ +a_{31} & \class{blue}{a_{32}} & a_{33} \end{array}\right|= --{\color{blue}a_{12}}\left|\begin{array}{cc}a_{21} & a_{23}\\ a_{31} & a_{33}\end{array}\right|+{\color{blue}a_{22}}\left|\begin{array}{cc}a_{11} & a_{13}\\ a_{31} & a_{33}\end{array}\right|-{\color{blue}a_{32}}\left|\begin{array}{cc}a_{11} & a_{13}\\ a_{21} & a_{23}\end{array}\right| +-\class{blue}{a_{12}}\left|\begin{array}{cc}a_{21} & a_{23}\\ a_{31} & a_{33}\end{array}\right|+\class{blue}{a_{22}}\left|\begin{array}{cc}a_{11} & a_{13}\\ a_{31} & a_{33}\end{array}\right|-\class{blue}{a_{32}}\left|\begin{array}{cc}a_{11} & a_{13}\\ a_{21} & a_{23}\end{array}\right| $$ $$ @@ -388,7 +388,8 @@ For a triangular matrix the determinant is equal to the product of the entries o :::::: -::::::{prf:proof} +::::::{admonition} Proof of {prf:ref}`Prop:DetCofactors:TriangularMatrices` +:class: myproof We can use the same strategy as in {prf:ref}`Ex:DetCofactors:Triangular`. That is, for an upper triangular matrix expand along the columns from left to right, for a lower triangular matrix @@ -407,7 +408,8 @@ A triangular matrix is invertible if and only if it has a non-zero determinant. :::::: -::::::{prf:proof} +::::::{admonition} Proof of {prf:ref}`Prop:DetCofactors:InvertibleTriangular` +:class: myproof Let us first consider the case of an $n \times n$ upper triangular matrix $U$, with entries $u_{ij}$. Such a matrix is an echelon matrix. It is invertible if and only if it has $n$ linearly independent columns, which is the case if all diagonal elements $u_{ii}$ are nonzero. And this last is equivalent to @@ -482,6 +484,7 @@ In a similar way, the property $\text{det}\big(A^T\big) = \text{det}(A)$ for $4 ## Grasple Exercises ::::::{grasple} +:iframeclass: dark-light :url: https://embed.grasple.com/exercises/34eb983b-c7e7-40f3-a983-6bfb970f6836?id=93135 :label: grasple_exercise_5_2_1 :dropdown: @@ -491,6 +494,7 @@ In a similar way, the property $\text{det}\big(A^T\big) = \text{det}(A)$ for $4 ::::::{grasple} +:iframeclass: dark-light :url: https://embed.grasple.com/exercises/b86bd320-47cd-45cb-ab88-81b20a48c427?id=93136 :label: grasple_exercise_5_2_2 :dropdown: @@ -500,6 +504,7 @@ In a similar way, the property $\text{det}\big(A^T\big) = \text{det}(A)$ for $4 ::::::{grasple} +:iframeclass: dark-light :url: https://embed.grasple.com/exercises/2f993d71-6a19-435d-a449-cc0dbb8237d5?id=93137 :label: grasple_exercise_5_2_3 :dropdown: @@ -508,6 +513,7 @@ In a similar way, the property $\text{det}\big(A^T\big) = \text{det}(A)$ for $4 :::::: ::::::{grasple} +:iframeclass: dark-light :url: https://embed.grasple.com/exercises/40de4737-1823-425b-b997-a07c53cb2f96?id=93138 :label: grasple_exercise_5_2_4 :dropdown: @@ -517,6 +523,7 @@ In a similar way, the property $\text{det}\big(A^T\big) = \text{det}(A)$ for $4 ::::::{grasple} +:iframeclass: dark-light :url: https://embed.grasple.com/exercises/57cd522b-6096-416a-a739-fea5cbbc77c9?id=93139 :label: grasple_exercise_5_2_5 :dropdown: @@ -525,6 +532,7 @@ In a similar way, the property $\text{det}\big(A^T\big) = \text{det}(A)$ for $4 :::::: ::::::{grasple} +:iframeclass: dark-light :url: https://embed.grasple.com/exercises/25c54a22-eb00-4cbf-ac0c-21b4974a48ff?id=92927 :label: grasple_exercise_5_2_6 :dropdown: @@ -533,6 +541,7 @@ In a similar way, the property $\text{det}\big(A^T\big) = \text{det}(A)$ for $4 :::::: ::::::{grasple} +:iframeclass: dark-light :url: https://embed.grasple.com/exercises/48fedcac-0039-4eaa-9f71-20fa86ed4536?id=93142 :label: grasple_exercise_5_2_7 :dropdown: diff --git a/Chapter5/DeterminantsViaRowReduction.md b/Chapter5/DeterminantsViaRowReduction.md index 00dc2df..0962a6d 100644 --- a/Chapter5/DeterminantsViaRowReduction.md +++ b/Chapter5/DeterminantsViaRowReduction.md @@ -249,7 +249,8 @@ If a matrix $A$ has two equal rows (or columns), then $\det{A} = 0$. :::::: -::::::{prf:proof} +::::::{admonition} Proof of {prf:ref}`Cor:DetRowReduction:EqualRows` +:class: myproof Suppose the $i$th and the $j$th row of $A$ are equal, and let $\det{A} = d$. Let $B$ be the matrix $A$ with the $i$th and $j$th row interchanged. @@ -291,9 +292,8 @@ $$ The proof is -- we think -- quite instructive. (However, feel free to skip it.) - -::::::{dropdown} Proof of {prf:ref}`Thm:DetRowReduction:Invertibility` - +::::::{admonition} Proof of {prf:ref}`Thm:DetRowReduction:Invertibility` +:class: myproof, dropdown In the previous section we have already seen that the statement is true for triangular matrices. @@ -349,7 +349,8 @@ $$ The idea of the proof is to break it down to products of the form $\det{(EA)} = \det{E}\cdot\det{A}$, where $E$ is an elementary matrix (Equation{eq}`Eq:DetRowReduction:ElementaryMatrices`). For more details you open the proof below. -::::::{dropdown} Proof of {prf:ref}`Thm:DetRowReduction:ProductRule`. +::::::{admonition} Proof of {prf:ref}`Thm:DetRowReduction:ProductRule` +:class: myproof, dropdown We already know that the identity holds if $A$ is an elementary matrix. It will also hold if $A$ is not invertible, as in that case $AB$ is also not invertible, @@ -394,7 +395,8 @@ If the matrix $A$ is invertible, then $\text{det}\big(A^{-1}\big)= \dfrac{1}{\de :::::: -::::::{prf:proof} +::::::{admonition} Proof of {prf:ref}`Cor:DetRowReduction:DetOfInverse` +:class: myproof We can combine the three properties @@ -474,7 +476,8 @@ $$ :::::: -::::::{dropdown} Solution to {numref}`Exc:DetRowReduction:PropNonProp` (_click to show_) +::::::{admonition} Solution to {numref}`Exc:DetRowReduction:PropNonProp` +:class: solution, dropdown We treat the statements one by @@ -598,9 +601,8 @@ Then Click on the symbol to the right below for the proof of {prf:ref}`Prop:DetRowReduction:RowOps` and {prf:ref}`Prop:DetRowReduction:SumofCols`. -::::::{dropdown} Proof of {prf:ref}`Prop:DetRowReduction:RowOps` and {prf:ref}`Prop:DetRowReduction:SumofCols`. - -%::::::{prf:proof} +::::::{admonition} Proof of {prf:ref}`Prop:DetRowReduction:RowOps` and {prf:ref}`Prop:DetRowReduction:SumofCols` +:class: myproof, dropdown For typographical reasons we will prove the three rules stated as column operations. For an $n \times n$ matrix @@ -743,38 +745,38 @@ For instance, to interchange column $2$ and column $5$ in a $5 \times 5$ matrix $$ \begin{array}{rl} - \left|\begin{array}{ccccc} a_{11} & {\color{blue}a_{12}} & a_{13} & a_{14} & {\color{red}a_{15}} \\ - a_{21} & {\color{blue}a_{22}} & a_{23} & a_{24} & {\color{red}a_{25}} \\ - \vdots & {\color{blue}\vdots} & \vdots & \vdots & {\color{red}\vdots} \\ - \vdots & {\color{blue}\vdots} & \vdots & \vdots & {\color{red}\vdots} \\ - a_{51} & {\color{blue}a_{52}} & a_{53} & a_{54} & {\color{red}a_{55}} + \left|\begin{array}{ccccc} a_{11} & \class{blue}{a_{12}} & a_{13} & a_{14} & \class{red}{a_{15}} \\ + a_{21} & \class{blue}{a_{22}} & a_{23} & a_{24} & \class{red}{a_{25}} \\ + \vdots & \class{blue}{\vdots} & \vdots & \vdots & \class{red}{\vdots} \\ + \vdots & \class{blue}{\vdots} & \vdots & \vdots & \class{red}{\vdots} \\ + a_{51} & \class{blue}{a_{52}} & a_{53} & a_{54} & \class{red}{a_{55}} \end{array}\right| = & - - \left|\begin{array}{ccccc} a_{11} & a_{13} & {\color{blue}a_{12}} & a_{14} & {\color{red}a_{15}} \\ - a_{21} & a_{23} & {\color{blue}a_{22}} & a_{24} & {\color{red}a_{25}} \\ - \vdots & \vdots & {\color{blue}\vdots} & \vdots & {\color{red}\vdots} \\ - \vdots & \vdots & {\color{blue}\vdots} & \vdots & {\color{red}\vdots} \\ - a_{51} & a_{53} & {\color{blue}a_{52}} & a_{54} & {\color{red}a_{55}} + - \left|\begin{array}{ccccc} a_{11} & a_{13} & \class{blue}{a_{12}} & a_{14} & \class{red}{a_{15}} \\ + a_{21} & a_{23} & \class{blue}{a_{22}} & a_{24} & \class{red}{a_{25}} \\ + \vdots & \vdots & \class{blue}{\vdots} & \vdots & \class{red}{\vdots} \\ + \vdots & \vdots & \class{blue}{\vdots} & \vdots & \class{red}{\vdots} \\ + a_{51} & a_{53} & \class{blue}{a_{52}} & a_{54} & \class{red}{a_{55}} \end{array}\right| = \\[2ex] - + \left|\begin{array}{ccccc} a_{11} & a_{13} & a_{14} & {\color{blue}a_{12}} & {\color{red}a_{15}} \\ - a_{21} & a_{23} & a_{24} & {\color{blue}a_{22}} & {\color{red}a_{25}} \\ - \vdots & \vdots & \vdots & {\color{blue}\vdots} & {\color{red}\vdots} \\ - \vdots & \vdots & \vdots & {\color{blue}\vdots} & {\color{red}\vdots} \\ - a_{51} & a_{53} & a_{54} & {\color{blue}a_{52}} & {\color{red}a_{55}} \end{array}\right| = & - - \left|\begin{array}{ccccc} a_{11}& a_{13} & a_{14} & {\color{red}a_{15}} & {\color{blue}a_{12}} \\ - a_{21} & a_{23} & a_{24} & {\color{red}a_{25}} & {\color{blue}a_{22}} \\ - \vdots & \vdots & \vdots & {\color{red}\vdots} & {\color{blue}\vdots} \\ - \vdots & \vdots & \vdots & {\color{red}\vdots} & {\color{blue}\vdots} \\ - a_{51} & a_{53} & a_{54} & {\color{red}a_{55}} & {\color{blue}a_{52}} \end{array}\right| = \\[2ex] - + \left|\begin{array}{ccccc} a_{11} & a_{13} & {\color{red}a_{15}} & a_{14} & {\color{blue}a_{12}} \\ - a_{21} & a_{23} & {\color{red}a_{25}} & a_{24} & {\color{blue}a_{22}} \\ - \vdots & \vdots & {\color{red}\vdots} & \vdots & {\color{blue}\vdots} \\ - \vdots & \vdots & {\color{red}\vdots} & \vdots & {\color{blue}\vdots} \\ - a_{51} & a_{53} & {\color{red}a_{55}} & a_{54} & {\color{blue}a_{52}} \end{array}\right| =& - -\left|\begin{array}{ccccc} a_{11} & {\color{red}a_{15}}& a_{13} & a_{14} & {\color{blue}a_{12}} \\ - a_{21} & {\color{red}a_{25}}& a_{23} & a_{24} & {\color{blue}a_{22}} \\ - \vdots & {\color{red}\vdots}& \vdots & \vdots & {\color{blue}\vdots} \\ - \vdots & {\color{red}\vdots}& \vdots & \vdots & {\color{blue}\vdots} \\ - a_{51} & {\color{red}a_{55}}& a_{53} & a_{54} & {\color{blue}a_{52}} \end{array}\right| + + \left|\begin{array}{ccccc} a_{11} & a_{13} & a_{14} & \class{blue}{a_{12}} & \class{red}{a_{15}} \\ + a_{21} & a_{23} & a_{24} & \class{blue}{a_{22}} & \class{red}{a_{25}} \\ + \vdots & \vdots & \vdots & \class{blue}{\vdots} & \class{red}{\vdots} \\ + \vdots & \vdots & \vdots & \class{blue}{\vdots} & \class{red}{\vdots} \\ + a_{51} & a_{53} & a_{54} & \class{blue}{a_{52}} & \class{red}{a_{55}} \end{array}\right| = & + - \left|\begin{array}{ccccc} a_{11}& a_{13} & a_{14} & \class{red}{a_{15}} & \class{blue}{a_{12}} \\ + a_{21} & a_{23} & a_{24} & \class{red}{a_{25}} & \class{blue}{a_{22}} \\ + \vdots & \vdots & \vdots & \class{red}{\vdots} & \class{blue}{\vdots} \\ + \vdots & \vdots & \vdots & \class{red}{\vdots} & \class{blue}{\vdots} \\ + a_{51} & a_{53} & a_{54} & \class{red}{a_{55}} & \class{blue}{a_{52}} \end{array}\right| = \\[2ex] + + \left|\begin{array}{ccccc} a_{11} & a_{13} & \class{red}{a_{15}} & a_{14} & \class{blue}{a_{12}} \\ + a_{21} & a_{23} & \class{red}{a_{25}} & a_{24} & \class{blue}{a_{22}} \\ + \vdots & \vdots & \class{red}{\vdots} & \vdots & \class{blue}{\vdots} \\ + \vdots & \vdots & \class{red}{\vdots} & \vdots & \class{blue}{\vdots} \\ + a_{51} & a_{53} & \class{red}{a_{55}} & a_{54} & \class{blue}{a_{52}} \end{array}\right| =& + -\left|\begin{array}{ccccc} a_{11} & \class{red}{a_{15}}& a_{13} & a_{14} & \class{blue}{a_{12}} \\ + a_{21} & \class{red}{a_{25}}& a_{23} & a_{24} & \class{blue}{a_{22}} \\ + \vdots & \class{red}{\vdots}& \vdots & \vdots & \class{blue}{\vdots} \\ + \vdots & \class{red}{\vdots}& \vdots & \vdots & \class{blue}{\vdots} \\ + a_{51} & \class{red}{a_{55}}& a_{53} & a_{54} & \class{blue}{a_{52}} \end{array}\right| \end{array} $$ @@ -814,6 +816,7 @@ This settles all matters. ## Grasple Exercises ::::::{grasple} +:iframeclass: dark-light :url: https://embed.grasple.com/exercises/b34a791a-3f42-4d10-9952-f6f5699a68fb?id=104164 :label: grasple_exercise_5_3_1 :dropdown: @@ -823,6 +826,7 @@ This settles all matters. ::::::{grasple} +:iframeclass: dark-light :url: https://embed.grasple.com/exercises/1d3924d9-ea34-4a89-8b7c-33e385d144ba?id=104312 :label: grasple_exercise_5_3_2 :dropdown: @@ -831,6 +835,7 @@ This settles all matters. :::::: ::::::{grasple} +:iframeclass: dark-light :url: https://embed.grasple.com/exercises/1fcb337d-f906-423a-acd5-8d8c69d4d04b?id=93158 :label: grasple_exercise_5_3_3 :dropdown: @@ -839,6 +844,7 @@ This settles all matters. :::::: ::::::{grasple} +:iframeclass: dark-light :url: https://embed.grasple.com/exercises/cabb663b-7b86-4215-81aa-0a3da91a5688?id=103719 :label: grasple_exercise_5_3_4 :dropdown: @@ -848,6 +854,7 @@ This settles all matters. ::::::{grasple} +:iframeclass: dark-light :url: https://embed.grasple.com/exercises/1354915d-4cf4-4559-8ac2-68573807199d?id=103702 :label: grasple_exercise_5_3_5 :dropdown: @@ -858,6 +865,7 @@ This settles all matters. ::::::{grasple} +:iframeclass: dark-light :url: https://embed.grasple.com/exercises/1354915d-4cf4-4559-8ac2-68573807199d?id=103702 :label: grasple_exercise_5_3_6 :dropdown: @@ -866,6 +874,7 @@ This settles all matters. :::::: ::::::{grasple} +:iframeclass: dark-light :url: https://embed.grasple.com/exercises/882506bb-6a5e-479f-b095-bb5b95be2467?id=104166 :label: grasple_exercise_5_3_7 :dropdown: @@ -876,6 +885,7 @@ This settles all matters. ::::::{grasple} +:iframeclass: dark-light :url: https://embed.grasple.com/exercises/993b010f-3351-4b98-b9b7-1d04c1c959be?id=93143 :label: grasple_exercise_5_3_8 :dropdown: @@ -885,6 +895,7 @@ This settles all matters. ::::::{grasple} +:iframeclass: dark-light :url: https://embed.grasple.com/exercises/2d51357d-e56d-4de5-a882-493a795fd222?id=93144 :label: grasple_exercise_5_3_9 :dropdown: @@ -896,6 +907,7 @@ This settles all matters. ::::::{grasple} +:iframeclass: dark-light :url: https://embed.grasple.com/exercises/9974012a-1ac9-439f-919f-2647be1ba4ba?id=92965 :label: grasple_exercise_5_3_10 :dropdown: @@ -905,6 +917,7 @@ This settles all matters. ::::::{grasple} +:iframeclass: dark-light :url: https://embed.grasple.com/exercises/4a01fc67-0acc-44aa-9ba2-18c1accae720?id=93145 :label: grasple_exercise_5_3_11 :dropdown: @@ -912,6 +925,7 @@ This settles all matters. :::::: ::::::{grasple} +:iframeclass: dark-light :url: https://embed.grasple.com/exercises/f2e09cfe-9d88-4f7b-a295-bad7feda89e5?id=93150 :label: grasple_exercise_5_3_12 :dropdown: @@ -923,6 +937,7 @@ This settles all matters. ::::::{grasple} +:iframeclass: dark-light :url: https://embed.grasple.com/exercises/35bff21c-6434-4e4a-b154-965de08479c0?id=93146 :label: grasple_exercise_5_3_13 :dropdown: @@ -932,6 +947,7 @@ This settles all matters. ::::::{grasple} +:iframeclass: dark-light :url: https://embed.grasple.com/exercises/7c4c18ba-96ba-432a-97b0-0a269a0a9f55?id=93147 :label: grasple_exercise_5_3_14 :dropdown: @@ -940,6 +956,7 @@ This settles all matters. :::::: ::::::{grasple} +:iframeclass: dark-light :url: https://embed.grasple.com/exercises/5deab9d8-20f3-4b59-b54e-3b61c981c8c7?id=93148 :label: grasple_exercise_5_3_15 :dropdown: @@ -949,6 +966,7 @@ This settles all matters. ::::::{grasple} +:iframeclass: dark-light :url: https://embed.grasple.com/exercises/c3f025b5-2ca4-48cb-a1f9-4e144c8bc258?id=93149 :label: grasple_exercise_5_3_16 :dropdown: @@ -958,6 +976,7 @@ This settles all matters. ::::::{grasple} +:iframeclass: dark-light :url: https://embed.grasple.com/exercises/a5713d1f-696b-42e5-ab74-553eec26b00b?id=93151 :label: grasple_exercise_5_3_17 :dropdown: @@ -968,6 +987,7 @@ This settles all matters. ::::::{grasple} +:iframeclass: dark-light :url: https://embed.grasple.com/exercises/9ab31fa4-6686-4865-8d43-602dc1fe670e?id=93152 :label: grasple_exercise_5_3_18 :dropdown: @@ -978,6 +998,7 @@ This settles all matters. ::::::{grasple} +:iframeclass: dark-light :url: https://embed.grasple.com/exercises/9ae9228f-ab17-4853-9995-e38e16d87c22?id=93153 :label: grasple_exercise_5_3_19 :dropdown: @@ -986,6 +1007,7 @@ This settles all matters. :::::: ::::::{grasple} +:iframeclass: dark-light :url: https://embed.grasple.com/exercises/8db6831f-2671-443a-af64-799d1d0d9179?id=93154 :label: grasple_exercise_5_3_20 :dropdown: @@ -997,6 +1019,7 @@ This settles all matters. ::::::{grasple} +:iframeclass: dark-light :url: https://embed.grasple.com/exercises/116e83e9-1db7-47ce-a2f3-ad398aee0201?id=93155 :label: grasple_exercise_5_3_21 :dropdown: @@ -1005,6 +1028,7 @@ This settles all matters. :::::: ::::::{grasple} +:iframeclass: dark-light :url: https://embed.grasple.com/exercises/821d81b1-2cec-4fa4-b4a7-b1f9c32d6e06?id=93156 :label: grasple_exercise_5_3_22 :dropdown: @@ -1015,6 +1039,7 @@ This settles all matters. ::::::{grasple} +:iframeclass: dark-light :url: https://embed.grasple.com/exercises/5b89a008-2e3d-48a5-a764-0b1b6a3ec4dc?id=93157 :label: grasple_exercise_5_3_23 :dropdown: @@ -1024,6 +1049,7 @@ This settles all matters. ::::::{grasple} +:iframeclass: dark-light :url: https://embed.grasple.com/exercises/e0bfbb0c-002f-485f-9b2f-5249938b6e40?id=93162 :label: grasple_exercise_5_3_24 :dropdown: @@ -1035,6 +1061,7 @@ This settles all matters. ::::::{grasple} +:iframeclass: dark-light :url: https://embed.grasple.com/exercises/41f5ca17-ab3e-4487-b5fa-ee325cae85aa?id=93164 :label: grasple_exercise_5_3_25 :dropdown: @@ -1052,7 +1079,8 @@ Give an alternative proof of {prf:ref}`Cor:DetRowReduction:EqualRows` using Rule :::::: -::::::{dropdown} Solution to {numref}`Exc:DetRowReduction:EqualRows` (*click to show*) +::::::{admonition} Solution to {numref}`Exc:DetRowReduction:EqualRows` +:class: solution, dropdown Suppose $A$ is a matrix with two equal rows, say row $i$ and row $j$ are equal. @@ -1062,14 +1090,14 @@ For instance, with a $4\times 4$ matrix with equal second and fourth row we woul $$ \begin{vmatrix} a_{11} & a_{12} & a_{13} & a_{14} \\ - \color{blue}a_{21} & \color{blue}a_{22} & \color{blue}a_{23} & \color{blue}a_{24} \\ + \class{blue}{a_{21}} & \class{blue}{a_{22}} & \class{blue}{a_{23}} & \class{blue}{a_{24}} \\ a_{31} & a_{32} & a_{33} & a_{34} \\ - \color{blue}a_{21} & \color{blue}a_{22} & \color{blue}a_{23} & \color{blue}a_{24} + \class{blue}{a_{21}} & \class{blue}{a_{22}} & \class{blue}{a_{23}} & \class{blue}{a_{24}} \end{vmatrix} = \begin{vmatrix} a_{11} & a_{12} & a_{13} & a_{14} \\ a_{21} & a_{22} & a_{23} & a_{24} \\ a_{31} & a_{32} & a_{33} & a_{34} \\ - \color{blue}0 & \color{blue}0 &\color{blue} 0 & \color{blue}0 + \class{blue}0 & \class{blue}0 &\class{blue} 0 & \class{blue}0 \end{vmatrix}. $$ diff --git a/Chapter6/CharPolynomial.md b/Chapter6/CharPolynomial.md index 7d3317d..b3d5207 100644 --- a/Chapter6/CharPolynomial.md +++ b/Chapter6/CharPolynomial.md @@ -16,7 +16,8 @@ Suppose $A$ is an $n\times n$ matrix. Then $\lambda$ is an eigenvalue of $A$ if :::::: -::::::{prf:proof} +::::::{admonition} Proof of {prf:ref}`Prop:Eigenvalues:DetAminusLambdaI` +:class: myproof There's not much new here. @@ -135,7 +136,8 @@ For an $n\times n$ matrix $A$ the function det$(A - \lambda I)$ is a polynomial :::::: -::::::{prf:proof} +::::::{admonition} Proof of {prf:ref}`Prop:EigenValues:CharPoly` +:class: myproof We have to dive into the hardware of determinants a bit. If the determinant of an $n\times n$ matrix $M$ is computed by iteratively expanding along the first rows, i.e., doing it the hard way, we end up with a sum of $n!$ terms. Each term is the product of $n$ entries of $M$, where each row and each column of $A$ is represented exactly once. @@ -376,6 +378,7 @@ The eigenvalue $\lambda = -1$ has both algebraic multiplicity and geometric mult The following exercise, which is meant to shed some more light on the concepts just introduced, requires few technicalities. ::::::{grasple} +:iframeclass: dark-light :url: https://embed.grasple.com/exercises/6e01d5c1-897b-44bf-bbb2-4653ff095f48?id=92498 :label: grasple_exercise_6_1_A :dropdown: @@ -416,8 +419,8 @@ $$ :::::: -::::::{dropdown} (Sketch of the) Proof of {prf:ref}`Prop:EigenValues:CharPolyTrace` -%::::::{prf:proof} +::::::{admonition} (Sketch of the) Proof of {prf:ref}`Prop:EigenValues:CharPolyTrace` +:class: myproof, dropdown For $n=2$ we have already seen that the characteristic polynomial of the most general $2 \times 2$ matrix $A = \left[\begin{array}{cc} a_{11} & a_{12} \\ a_{21} & a_{22} \end{array}\right] @@ -517,8 +520,8 @@ Let $A$ an $n\times n$ matrix with $n$ eigenvalues $\lambda_1,\lambda_2, \ld :::::: - -::::::{dropdown} Proof of {prf:ref}`Prop:Eigenvalues:SumEigenvaluesAndTrace` +::::::{admonition} Proof of {prf:ref}`Prop:Eigenvalues:SumEigenvaluesAndTrace` +:class: myproof, dropdown This is more a statement about algebra, in particular about polynomials, than about linear algebra. In {numref}`Section %s <Section:ComplexEV>` we will see that it also holds for matrices with complex eigenvalues. @@ -615,6 +618,7 @@ Every matrix $A$ is a zero of its characteristic polynomial. ::::::{grasple} +:iframeclass: dark-light :url: https://embed.grasple.com/exercises/b43cd5dc-3fff-432a-bdec-d56e38c39e89?id=91450 :label: grasple_exercise_6_2_1 :dropdown: @@ -625,6 +629,7 @@ Every matrix $A$ is a zero of its characteristic polynomial. ::::::{grasple} +:iframeclass: dark-light :url: https://embed.grasple.com/exercises/b89efbb3-c5cc-4fab-874b-8dd285644ab2?id=91452 :label: grasple_exercise_6_2_2 :dropdown: @@ -634,6 +639,7 @@ Every matrix $A$ is a zero of its characteristic polynomial. ::::::{grasple} +:iframeclass: dark-light :url: https://embed.grasple.com/exercises/137aaf98-60d5-4aab-82f4-10ea40811a7b?id=91453 :label: grasple_exercise_6_2_3 :dropdown: @@ -644,6 +650,7 @@ Every matrix $A$ is a zero of its characteristic polynomial. ::::::{grasple} +:iframeclass: dark-light :url: https://embed.grasple.com/exercises/e3793a52-25f0-48cd-b47f-b59f872e3e1a?id=91454 :label: grasple_exercise_6_2_4 :dropdown: @@ -653,6 +660,7 @@ Every matrix $A$ is a zero of its characteristic polynomial. ::::::{grasple} +:iframeclass: dark-light :url: https://embed.grasple.com/exercises/3597a3e9-17b7-491c-89a7-4f33f1a4fb8c?id=91482 :label: grasple_exercise_6_2_5 :dropdown: @@ -661,6 +669,7 @@ Every matrix $A$ is a zero of its characteristic polynomial. :::::: ::::::{grasple} +:iframeclass: dark-light :url: https://embed.grasple.com/exercises/9e16e7ab-87f1-448c-a52a-a8d6c1470c4b?id=91483 :label: grasple_exercise_6_2_6 :dropdown: @@ -674,6 +683,7 @@ Every matrix $A$ is a zero of its characteristic polynomial. ::::::{grasple} +:iframeclass: dark-light :url: https://embed.grasple.com/exercises/2c30dad3-17a4-4f20-b277-fd13e0c93e9f?id=92384 :label: grasple_exercise_6_2_7 :dropdown: @@ -683,6 +693,7 @@ Every matrix $A$ is a zero of its characteristic polynomial. ::::::{grasple} +:iframeclass: dark-light :url: https://embed.grasple.com/exercises/e35e7cfb-2a21-4849-ae48-6c7a94e85707?id=92409 :label: grasple_exercise_6_2_8 :dropdown: @@ -692,6 +703,7 @@ Every matrix $A$ is a zero of its characteristic polynomial. ::::::{grasple} +:iframeclass: dark-light :url: https://embed.grasple.com/exercises/eb3e8ea4-3a0b-4767-aa62-0d8b05e35dda?id=91484 :label: grasple_exercise_6_2_9 :dropdown: @@ -701,6 +713,7 @@ Every matrix $A$ is a zero of its characteristic polynomial. ::::::{grasple} +:iframeclass: dark-light :url: https://embed.grasple.com/exercises/e9044c04-4bfb-474e-8823-bff6449b92ab?id=92210 :label: grasple_exercise_6_2_10 :dropdown: @@ -710,6 +723,7 @@ Every matrix $A$ is a zero of its characteristic polynomial. ::::::{grasple} +:iframeclass: dark-light :url: https://embed.grasple.com/exercises/82387c7b-49c8-4438-b72c-e1d023fb2780?id=92211 :label: grasple_exercise_6_2_11 :dropdown: @@ -719,6 +733,7 @@ Every matrix $A$ is a zero of its characteristic polynomial. ::::::{grasple} +:iframeclass: dark-light :url: https://embed.grasple.com/exercises/b846c6e6-f2c6-4d5b-bc40-adaed4cf6276?id=92490 :label: grasple_exercise_6_2_12 :dropdown: diff --git a/Chapter6/ComplexEigenvalues.md b/Chapter6/ComplexEigenvalues.md index 45761f7..2e9a15a 100644 --- a/Chapter6/ComplexEigenvalues.md +++ b/Chapter6/ComplexEigenvalues.md @@ -35,12 +35,12 @@ $$ = \left[\begin{array}{cc|c} -1 - i & -2& 0 \\ 1 & 1-i & 0 \end{array}\right] \sim -\left[\begin{array}{cc|c} 0 & \color{blue}0 & 0 \\ 1 & 1-i & 0 \end{array}\right] +\left[\begin{array}{cc|c} 0 & \class{blue}0 & 0 \\ 1 & 1-i & 0 \end{array}\right] , $$ where the row operation we invoke is: add the second row $(1+i)$ times to the first row. -The blue {\color{blue}0} is the result of the evaluation of +The blue \class{blue}{0} is the result of the evaluation of $$ -2 + (1+i)(1-i). @@ -140,7 +140,8 @@ then $\overline{AC} = \overline{A}$ $\overline{C}$. :::::: -::::::{prf:proof} +::::::{admonition} Proof of {prf:ref}`Prop:ComplexEV:PropConjugate` +:class: myproof The statements follow immediately from the definitions of the sum and product of two matrices, and of the corresponding rules of complex arithmetic that say @@ -176,7 +177,8 @@ $\overline{\vect{v}} = \vect{u}-i\vect{w}$ is an eigenvector for $\overline{\lam :::::: -::::::{prf:proof} +::::::{admonition} Proof of {prf:ref}`Prop:ComplexEV:Conjugation` +:class: myproof Suppose $A(\vect{u}+i\vect{w}) = (\alpha + \beta i)(\vect{u}+i\vect{w})$. @@ -262,7 +264,8 @@ $, for some $r > 0$ and angle $\varphi$. :::::: -::::::{prf:proof} +::::::{admonition} Proof of {prf:ref}`Prop:ComplexEV:Rotation` +:class: myproof Both columns of $A$ have length $r = \sqrt{a^2 + (\pm b)^2} = \sqrt{a^2 + b^2}$. @@ -319,7 +322,7 @@ $$ {prf:ref}`Prop:ComplexEV:Rotation` can be generalized as follows. If a real $n \times n$ matrix $A$ has a non-real eigenvalue, there is always a rotation 'hidden' in the transformation $T: \vect{x} \mapsto A\vect{x}$. ::::::{prf:proposition} - +:label: Prop:ComplexEV:Invariant Suppose the real $n \times n$ matrix $A$ has a complex eigenvalue $\lambda = \alpha - \beta i$, with $\beta \neq 0$. Then there exist two linearly independent _real_ vectors $\vect{u}$ and $\vect{w}$ for which $$ @@ -333,7 +336,8 @@ That means that the two-dimensional subspace $S = \Span{\vect{u},\vect{w}}$ is i :::::: -::::::{prf:proof} +::::::{admonition} Proof of {prf:ref}`Prop:ComplexEV:Invariant` +:class: myproof Let $\vect{v}$ be an eigenvector for $\lambda=\alpha - \beta i$. So, $\vect{v} = \vect{u}+i\vect{w}$, for real vectors $\vect{u}$ and $\vect{w}$. @@ -568,6 +572,7 @@ A matrix $A$ is complex diagonalizable if and only if for each eigenvalue the ge ## Grasple Exercises ::::::{grasple} +:iframeclass: dark-light :url: https://embed.grasple.com/exercises/bf1aef1c-7948-4b32-951e-d79940282bfb?id=91545 :label: grasple_exercise_6_4_1 :dropdown: @@ -577,6 +582,7 @@ A matrix $A$ is complex diagonalizable if and only if for each eigenvalue the ge ::::::{grasple} +:iframeclass: dark-light :url: https://embed.grasple.com/exercises/4e7c813d-ce37-42a2-be36-9dffb42d5f0b?id=91546 :label: grasple_exercise_6_4_2 :dropdown: @@ -585,6 +591,7 @@ A matrix $A$ is complex diagonalizable if and only if for each eigenvalue the ge :::::: ::::::{grasple} +:iframeclass: dark-light :url: https://embed.grasple.com/exercises/66dcb059-1c37-477c-9f23-8bd1bb26fb44?id=92368 :label: grasple_exercise_6_4_3 :dropdown: @@ -594,6 +601,7 @@ A matrix $A$ is complex diagonalizable if and only if for each eigenvalue the ge ::::::{grasple} +:iframeclass: dark-light :url: https://embed.grasple.com/exercises/507921c2-d568-44d9-a254-536440ca613e?id=91553 :label: grasple_exercise_6_4_4 :dropdown: @@ -602,6 +610,7 @@ A matrix $A$ is complex diagonalizable if and only if for each eigenvalue the ge :::::: ::::::{grasple} +:iframeclass: dark-light :url: https://embed.grasple.com/exercises/593e9ddd-a7b8-4617-958e-95f328e28e80?id=91547 :label: grasple_exercise_6_4_5 :dropdown: @@ -610,6 +619,7 @@ A matrix $A$ is complex diagonalizable if and only if for each eigenvalue the ge :::::: ::::::{grasple} +:iframeclass: dark-light :url: https://embed.grasple.com/exercises/f60a57c2-b0b3-45de-b18c-e0da1bbef601?id=91555 :label: grasple_exercise_6_4_6 :dropdown: @@ -617,6 +627,7 @@ A matrix $A$ is complex diagonalizable if and only if for each eigenvalue the ge :::::: ::::::{grasple} +:iframeclass: dark-light :url: https://embed.grasple.com/exercises/440c03f9-9a5a-40a6-aa1a-77660a588b20?id=91556 :label: grasple_exercise_6_4_7 :dropdown: @@ -626,6 +637,7 @@ A matrix $A$ is complex diagonalizable if and only if for each eigenvalue the ge :::::: ::::::{grasple} +:iframeclass: dark-light :url: https://embed.grasple.com/exercises/f3a6972e-f17b-4984-b0ee-38012ec542b3?id=91563 :label: grasple_exercise_6_4_8 :dropdown: @@ -634,6 +646,7 @@ A matrix $A$ is complex diagonalizable if and only if for each eigenvalue the ge :::::: ::::::{grasple} +:iframeclass: dark-light :url: https://embed.grasple.com/exercises/79c7c433-fbcc-41b8-85d2-b1938a26d40e?id=91566 :label: grasple_exercise_6_4_9 :dropdown: @@ -643,6 +656,7 @@ A matrix $A$ is complex diagonalizable if and only if for each eigenvalue the ge :::::: ::::::{grasple} +:iframeclass: dark-light :url: https://embed.grasple.com/exercises/1720d806-7602-41b3-9beb-569967e74c84?id=92543 :label: grasple_exercise_6_4_10 :dropdown: @@ -651,6 +665,7 @@ A matrix $A$ is complex diagonalizable if and only if for each eigenvalue the ge :::::: ::::::{grasple} +:iframeclass: dark-light :url: https://embed.grasple.com/exercises/510f78e6-717e-4550-8564-7bbf2c2cf673?id=55388 :label: grasple_exercise_6_4_11 :dropdown: diff --git a/Chapter6/Diagonalizability.md b/Chapter6/Diagonalizability.md index 866f363..2460245 100644 --- a/Chapter6/Diagonalizability.md +++ b/Chapter6/Diagonalizability.md @@ -55,7 +55,8 @@ Moreover, if $\vect{v}$ is an eigenvector of $B$, then $P\vect{v}$ is an eigenve :::::: -::::::{prf:proof} +::::::{admonition} Proof of {prf:ref}`Prop:Diagonalizable:SimilarEigenvalues` +:class: myproof Suppose $\lambda$ is an eigenvalue of $B$, and $\vect{v}$ is a corresponding eigenvector. We then see that @@ -78,7 +79,8 @@ Similar matrices have the same characteristic polynomial. :::::: -::::::{prf:proof} +::::::{admonition} Proof of {prf:ref}`Prop:Diagonalizable:SimilarCharpoly` +:class: myproof Suppose $A = PBP^{-1}$. @@ -151,7 +153,8 @@ Using the properties of similar matrices we can prove the inequality that holds for the geometric and the algebraic multiplicity of an eigenvalue (cf. {prf:ref}`Prop:EigenValues:SmallerGeomMultiplicity`). - ::::::{dropdown} Proof of {prf:ref}`Prop:EigenValues:SmallerGeomMultiplicity` (geom.mult. $\leq$ alg.mult.) +::::::{admonition} Proof of {prf:ref}`Prop:EigenValues:SmallerGeomMultiplicity` (geom.mult. $\leq$ alg.mult.) +:class: myproof, dropdown Suppose the $n\times n$ matrix $A$ has the eigenvalue $\lambda_1$ of geometric multiplicity $k$. We have to show that the algebraic multiplicity of $\lambda_1$ is *at least* equal to $k$. We will do so by constructing a matrix $B$ that is similar to $A$ and for which the eigenvalue $\lambda_1$ will clearly have algebraic multiplicity at least equal to $k$. <BR> Suppose $\vect{v}_1,\ldots,\vect{v}_k$ are $k$ linearly independent eigenvectors for $\lambda_1$. We can extend $\{\vect{v}_1,\ldots,\vect{v}_k,\}$ to a basis $\{\vect{v}_1,\ldots,\vect{v}_k, \ldots, \mathbf{v}_n \}$ of $\mathbb{R}^n$. @@ -250,8 +253,8 @@ $A$ and $B$ have the same rank. :::::: -::::::{dropdown} Proof of {prf:ref}`Prop:Eigenvalues:SimilarMatrices` - +::::::{admonition} Proof of {prf:ref}`Prop:Eigenvalues:SimilarMatrices` +:class: myproof, dropdown Suppose $A = PBP^{-1}$. @@ -344,7 +347,8 @@ Such a set of eigenvectors then forms a basis for $\R^n$. Since this proposition is such a pillar on which much of the theory of matrices rests, and diagonalizable matrices are important because they are in many respects easy to work with, we give two proofs. -::::::{prf:proof} +::::::{admonition} Proof of {prf:ref}`Prop:Eigenvalues:DiagbleVersusEigenvectors` +:class: myproof The first proof is algebraic. First we note that @@ -382,9 +386,8 @@ Comparing $AP$ and $PD$ column by column we see that $A\vect{p}_i = d_i\vect{p}_ The second proof has a geometric flavour. Open it if you are interested. - -::::::{dropdown} Second proof of {prf:ref}`Prop:Eigenvalues:DiagbleVersusEigenvectors` - +::::::{admonition} Second proof of {prf:ref}`Prop:Eigenvalues:DiagbleVersusEigenvectors` +:class: myproof, dropdown First we show that diagonalizability implies the existence of $n$ linearly independent eigenvectors. @@ -621,7 +624,8 @@ For each eigenvalue the geometric multiplicity is equal to the algebraic multipl :::::: -::::::{prf:proof} +::::::{admonition} Proof of {prf:ref}`Thm:Diagonalizable:ThirdCharacterization` +:class: myproof First we show that a diagonalizable matrix satisfies the two conditions. @@ -632,8 +636,8 @@ The basic idea is that, since eigenvectors for different eigenvalues are automat :::::: - -::::::{dropdown} (More detailed) Proof of {prf:ref}`Thm:Diagonalizable:ThirdCharacterization` +::::::{admonition} (More detailed) Proof of {prf:ref}`Thm:Diagonalizable:ThirdCharacterization` +:class: myproof, dropdown Suppose that the $n \times n$ matrix $A$ has only real eigenvalues, say $\lambda_1,\ldots,\lambda_k$, and that for each eigenvalue $\lambda_i$ the geometric multiplicity $m_i$ is equal to the algebraic multiplicity, so @@ -970,6 +974,7 @@ $$ ## Grasple Exercises ::::::{grasple} +:iframeclass: dark-light :url: https://embed.grasple.com/exercises/bd1c8f7a-917f-431f-889b-463ab7a7c6f6?id=91486 :label: grasple_exercise_6_3_1 :dropdown: @@ -978,6 +983,7 @@ $$ :::::: ::::::{grasple} +:iframeclass: dark-light :url: https://embed.grasple.com/exercises/5bcb24df-9cfd-4e4b-bcae-b550fb0fad63?id=91488 :label: grasple_exercise_6_3_2 :dropdown: @@ -986,6 +992,7 @@ $$ :::::: ::::::{grasple} +:iframeclass: dark-light :url: https://embed.grasple.com/exercises/c0d56365-5434-45b0-9c82-805112428024?id=91489 :label: grasple_exercise_6_3_3 :dropdown: @@ -994,6 +1001,7 @@ $$ :::::: ::::::{grasple} +:iframeclass: dark-light :url: https://embed.grasple.com/exercises/5a71e703-acd5-48b1-9b6d-8a51f4f8cf95?id=91501 :label: grasple_exercise_6_3_4 :dropdown: @@ -1002,6 +1010,7 @@ $$ :::::: ::::::{grasple} +:iframeclass: dark-light :url: https://embed.grasple.com/exercises/537a306b-47d1-422a-bc15-c7a75b81c24b?id=91496 :label: grasple_exercise_6_3_5 :dropdown: @@ -1010,6 +1019,7 @@ $$ :::::: ::::::{grasple} +:iframeclass: dark-light :url: https://embed.grasple.com/exercises/5a71e703-acd5-48b1-9b6d-8a51f4f8cf95?id=91501 :label: grasple_exercise_6_3_6 :dropdown: @@ -1018,6 +1028,7 @@ $$ :::::: ::::::{grasple} +:iframeclass: dark-light :url: https://embed.grasple.com/exercises/f61dfb8f-db65-4f17-80c7-b1702b0c2c07?id=104493 :label: grasple_exercise_6_3_7 :dropdown: @@ -1027,6 +1038,7 @@ $$ ::::::{grasple} +:iframeclass: dark-light :url: https://embed.grasple.com/exercises/70b5964e-b6c7-4a64-a2e3-d10dc915f324?id=91503 :label: grasple_exercise_6_3_8 :dropdown: @@ -1036,6 +1048,7 @@ $$ ::::::{grasple} +:iframeclass: dark-light :url: https://embed.grasple.com/exercises/534ce865-0960-403a-affc-0f23f2d14110?id=91521 :label: grasple_exercise_6_3_9 :dropdown: @@ -1044,6 +1057,7 @@ $$ :::::: ::::::{grasple} +:iframeclass: dark-light :url: https://embed.grasple.com/exercises/f3cdb060-469a-4a30-be46-1ecc7197d66a?id=91522 :label: grasple_exercise_6_3_10 :dropdown: @@ -1052,6 +1066,7 @@ $$ :::::: ::::::{grasple} +:iframeclass: dark-light :url: https://embed.grasple.com/exercises/d1cb7e54-6c99-4a01-b161-832b37d650d0?id=91523 :label: grasple_exercise_6_3_11 :dropdown: @@ -1060,6 +1075,7 @@ $$ :::::: ::::::{grasple} +:iframeclass: dark-light :url: https://embed.grasple.com/exercises/4398c155-7971-42f6-b809-31ae507c0326?id=87331 :label: grasple_exercise_6_3_12 :dropdown: @@ -1067,6 +1083,7 @@ $$ :::::: ::::::{grasple} +:iframeclass: dark-light :url: https://embed.grasple.com/exercises/9aca77fa-a7c8-4998-be00-a55c19e9fd70?id=62419 :label: grasple_exercise_6_3_13 :dropdown: diff --git a/Chapter6/EigenvaluesEigenvectors.md b/Chapter6/EigenvaluesEigenvectors.md index dfc2665..7e571aa 100644 --- a/Chapter6/EigenvaluesEigenvectors.md +++ b/Chapter6/EigenvaluesEigenvectors.md @@ -156,11 +156,14 @@ since such a $c$ should simultaneously satisfy $2c = -6$ and $(-2)c = 0$. So $\vect{v} = \begin{bmatrix} 2\\-2 \end{bmatrix}$ is not an eigenvector of $A$. See also {numref}`Figure %s <Fig:Eigenvalues:Eigenvector-no-Eigenvector>` -::::{figure} Images/Fig-Eigenvalues-Eigenvector-no-Eigenvector.svg +```{applet} +:url: eigenvalue_eigenvector/no_eigenvector +:fig: Images/Fig-Eigenvalues-Eigenvector-no-Eigenvector.svg :name: Fig:Eigenvalues:Eigenvector-no-Eigenvector +:class: dark-light -To be or not to be (an eigenvector) -:::: +To be or not to be (an eigenvector). +``` :::::: @@ -297,6 +300,7 @@ Moreover, these non-trivial solutions are exactly the corresponding eigenvectors :::::: ::::::{grasple} +:iframeclass: dark-light :url: https://embed.grasple.com/exercises/0a053b62-1e2c-4994-93eb-10e8f99a88dc?id=93701 :label: grasple_exercise_6_1_T1 :dropdown: @@ -420,7 +424,8 @@ Then $S$ is a subspace of $\R^n$. :::::: -::::::{prf:proof} +::::::{admonition} Proof of {prf:ref}`Prop:EigenValues:Subspace` +:class: myproof We can proceed in two ways. @@ -533,6 +538,7 @@ This is a matrix of rank 2, and $\begin{bmatrix} 1 \\1\\1 \end{bmatrix}$ can be :::::: ::::::{grasple} +:iframeclass: dark-light :url: https://embed.grasple.com/exercises/363143ee-08c2-4905-9801-474ed10f59e9?id=93697 :label: grasple_exercise_6_1_T2 :dropdown: @@ -548,7 +554,8 @@ Then $\{ \vect{v}_1, \ldots, \vect{v}_k \}$ is a linearly independent set. :::::: -::::::{prf:proof} +::::::{admonition} Proof of {prf:ref}`Prop:Eigenvalues:IndepEigenvectors` +:class: myproof <BR> @@ -678,8 +685,9 @@ See Figure {numref}`Figure %s <Fig:Eigenvalues:Eigenvector>` ::::{figure} Images/Fig-Eigenvalues-Rotation.svg :name: Fig:Eigenvalues:Eigenvector +:class: dark-light -A rotation has no eigenvectors +A rotation has no eigenvectors. :::: :::::: @@ -723,7 +731,8 @@ Equivalently: a matrix $A$ is singular (non-invertible) if and only if 0 is an e :::::: -::::::{prf:proof} +::::::{admonition} Proof of {prf:ref}`Prop:EigenValues:SingularMatrix` +:class: myproof We prove the second statement. @@ -789,6 +798,7 @@ In a later section we will study matrices $A$ for which such a basis of eigenvec ## Grasple Exercises ::::::{grasple} +:iframeclass: dark-light :url: https://embed.grasple.com/exercises/c99f6e1b-cec6-4be8-828f-7f93fde00a3b?id=91537 :label: grasple_exercise_6_1_1 :dropdown: @@ -798,6 +808,7 @@ In a later section we will study matrices $A$ for which such a basis of eigenvec ::::::{grasple} +:iframeclass: dark-light :url: https://embed.grasple.com/exercises/d858b381-992c-4af3-972d-62a39c4b7a09?id=91538 :label: grasple_exercise_6_1_2 :dropdown: @@ -806,6 +817,7 @@ In a later section we will study matrices $A$ for which such a basis of eigenvec :::::: ::::::{grasple} +:iframeclass: dark-light :url: https://embed.grasple.com/exercises/51a282db-b59f-4bd3-b4b8-fa1f38e402cc?id=91539 :label: grasple_exercise_6_1_3 :dropdown: @@ -814,6 +826,7 @@ In a later section we will study matrices $A$ for which such a basis of eigenvec :::::: ::::::{grasple} +:iframeclass: dark-light :url: https://embed.grasple.com/exercises/fcb91395-9bf7-4fbe-8cb5-100e2c2ad010?id=91540 :label: grasple_exercise_6_1_4 :dropdown: @@ -822,6 +835,7 @@ In a later section we will study matrices $A$ for which such a basis of eigenvec :::::: ::::::{grasple} +:iframeclass: dark-light :url: https://embed.grasple.com/exercises/860849b2-5787-47d1-9ae8-a663123a86d6?id=91541 :label: grasple_exercise_6_1_5 :dropdown: @@ -830,6 +844,7 @@ In a later section we will study matrices $A$ for which such a basis of eigenvec :::::: ::::::{grasple} +:iframeclass: dark-light :url: https://embed.grasple.com/exercises/fa1470cd-81c9-4926-a8a4-587939f4d891?id=91542 :label: grasple_exercise_6_1_6 :dropdown: @@ -838,6 +853,7 @@ In a later section we will study matrices $A$ for which such a basis of eigenvec :::::: ::::::{grasple} +:iframeclass: dark-light :url: https://embed.grasple.com/exercises/2faed848-2a76-4853-a998-4167399c1f68?id=91543 :label: grasple_exercise_6_1_7 :dropdown: @@ -846,6 +862,7 @@ In a later section we will study matrices $A$ for which such a basis of eigenvec :::::: ::::::{grasple} +:iframeclass: dark-light :url: https://embed.grasple.com/exercises/bb20d21d-7eb6-4e3e-8104-05d276883162?id=91544 :label: grasple_exercise_6_1_8 :dropdown: @@ -855,6 +872,7 @@ In a later section we will study matrices $A$ for which such a basis of eigenvec ::::::{grasple} +:iframeclass: dark-light :url: https://embed.grasple.com/exercises/79980409-fec9-4ab0-9fe1-d1a3d334bb0a?id=92492 :label: grasple_exercise_6_1_9 :dropdown: @@ -863,6 +881,7 @@ In a later section we will study matrices $A$ for which such a basis of eigenvec :::::: ::::::{grasple} +:iframeclass: dark-light :url: https://embed.grasple.com/exercises/a467e69f-6a78-4595-a22f-5b68314c04d4?id=92494 :label: grasple_exercise_6_1_10 :dropdown: @@ -884,7 +903,8 @@ Moreover, if $\vect{v}$ is an eigenvector of $A$ for eigenvalue $\lambda$, the :::::: -::::::{dropdown} Solution to {numref}`Exc:EigenValues:EigenvaluesInverse` (_click to show_) +::::::{admonition} Solution to {numref}`Exc:EigenValues:EigenvaluesInverse` +:class: solution, dropdown Suppose the nonzero vector $\vect{v}$ is an eigenvector for the eigenvalue $\lambda$ of the invertible matrix $A$. From {prf:ref}`Prop:EigenValues:SingularMatrix` we know that $\lambda \neq 0$. From diff --git a/Chapter7/GramSchmidt.md b/Chapter7/GramSchmidt.md index a8fa0b1..70263db 100644 --- a/Chapter7/GramSchmidt.md +++ b/Chapter7/GramSchmidt.md @@ -22,7 +22,6 @@ As a second basis vector we can take :::{math} :label: Eq:GramSchmidt:Step2 - \vect{b}_2 = \vect{a}_2 - \text{proj}_{\vect{a}_1}(\vect{a}_2) = \vect{a}_2 - \dfrac{\vect{a}_2\ip\vect{a}_1}{\vect{a}_1\ip\vect{a}_1} \vect{a}_1. @@ -139,8 +138,8 @@ Check for yourself that the vectors $\vect{b}_1,\vect{b}_2, \vect{b}_3$ are inde :::: -::::{prf:proof} -Of {prf:ref}`Thm:GramSchmidt:GramSchmidt` +::::{admonition} Proof of {prf:ref}`Thm:GramSchmidt:GramSchmidt` +:class: myproof Let $W_j$ be the subspace spanned by the first $j$ vectors $\vect{a}_1, \ldots, \vect{a}_j$, for $j = 1,2\ldots,m$. @@ -166,8 +165,9 @@ $(\vect{b}_1, \ldots, \vect{b}_j)$ of $W_j$. See {numref}`Figure %s <Fig:GramSch :::{figure} Images/Fig-GramSchmidt-GS-step123.svg :name: Fig:GramSchmidt:GS-step123 +:class: dark-light -First steps in the Gram-Schmidt process +First steps in the Gram-Schmidt process. ::: That is, @@ -194,6 +194,7 @@ so are the vectors $\vect{b}_1, \ldots, \vect{b}_j, \vect{b}_{j+1}$. :::: ::::{grasple} +:iframeclass: dark-light :url: https://embed.grasple.com/exercises/bb336bca-f300-48ba-8744-e38ad3a7bcd0?id=87814 :label: grasple_exercise_7_3_A :dropdown: @@ -307,6 +308,7 @@ $$ :::: ::::{grasple} +:iframeclass: dark-light :url: https://embed.grasple.com/exercises/40c42331-9c9f-45ca-b498-83a8ba884a57?id=87816 :label: grasple_exercise_7_3_B :dropdown: @@ -337,7 +339,8 @@ The matrix $Q$ is found by applying the Gram-Schmidt process to the (linearly in :::: -::::{prf:proof} +::::{admonition} Proof of {prf:ref}`Thm:GramSchmidt:QR-decomp` +:class: myproof One way to see this, is to look at the creation of the orthonormal set $\{\vect{q}_1,\ldots,\vect{q}_m\}$ from the linearly independent set $\{\vect{a}_1,\ldots,\vect{a}_m\}$. @@ -428,7 +431,8 @@ $$ :::: -::::{prf:proof} +::::{admonition} Proof of {prf:ref}`Prop:GramSchmidt:QR-quick` +:class: myproof We know that for the matrix $Q$ as specified the decomposition @@ -537,6 +541,7 @@ Warning: the columns of $Q$ being orthonormal is equivalent to $Q^TQ = I$. Howev ## Grasple Exercises ::::{grasple} +:iframeclass: dark-light :url: https://embed.grasple.com/exercises/b07d879b-8d64-401d-9175-c346d4cbab9e?id=87823 :label: grasple_exercise_7_3_1 :dropdown: @@ -545,6 +550,7 @@ Warning: the columns of $Q$ being orthonormal is equivalent to $Q^TQ = I$. Howev :::: ::::{grasple} +:iframeclass: dark-light :url: https://embed.grasple.com/exercises/6fd2eb99-c2be-4bc2-887b-1c0bfccbdcf9?id=87837 :label: grasple_exercise_7_3_2 :dropdown: @@ -553,6 +559,7 @@ Warning: the columns of $Q$ being orthonormal is equivalent to $Q^TQ = I$. Howev :::: ::::{grasple} +:iframeclass: dark-light :url: https://embed.grasple.com/exercises/15070d4c-f241-423d-a0af-3f1b4b57a397?id=87828 :label: grasple_exercise_7_3_3 :dropdown: @@ -561,6 +568,7 @@ Warning: the columns of $Q$ being orthonormal is equivalent to $Q^TQ = I$. Howev :::: ::::{grasple} +:iframeclass: dark-light :url: https://embed.grasple.com/exercises/eb46b234-d281-4d02-a92c-d0c4575ffe9c?id=87825 :label: grasple_exercise_7_3_4 :dropdown: @@ -569,6 +577,7 @@ Warning: the columns of $Q$ being orthonormal is equivalent to $Q^TQ = I$. Howev :::: ::::{grasple} +:iframeclass: dark-light :url: https://embed.grasple.com/exercises/63090a52-ba10-4881-b9c2-35ae64e79ffd?id=87827 :label: grasple_exercise_7_3_5 :dropdown: @@ -577,6 +586,7 @@ Warning: the columns of $Q$ being orthonormal is equivalent to $Q^TQ = I$. Howev :::: ::::{grasple} +:iframeclass: dark-light :url: https://embed.grasple.com/exercises/81e5b0f8-9d1a-4ff7-973f-e8b8cb84d42f?id=87838 :label: grasple_exercise_7_3_6 :dropdown: @@ -585,6 +595,7 @@ Warning: the columns of $Q$ being orthonormal is equivalent to $Q^TQ = I$. Howev :::: ::::{grasple} +:iframeclass: dark-light :url: https://embed.grasple.com/exercises/6d39de25-aeaa-4ed0-8abd-7e98f4a0ef15?id=87705 :label: grasple_exercise_7_3_7 :dropdown: @@ -593,6 +604,7 @@ Warning: the columns of $Q$ being orthonormal is equivalent to $Q^TQ = I$. Howev :::: ::::{grasple} +:iframeclass: dark-light :url: https://embed.grasple.com/exercises/11b3cc56-0c2d-4ea8-b5ef-e5f26d58f362?id=87741 :label: grasple_exercise_7_3_8 :dropdown: @@ -601,6 +613,7 @@ Warning: the columns of $Q$ being orthonormal is equivalent to $Q^TQ = I$. Howev :::: ::::{grasple} +:iframeclass: dark-light :url: https://embed.grasple.com/exercises/319f882b-8498-492b-a97c-c1ce346a66f8?id=57189 :label: grasple_exercise_7_3_9 :dropdown: @@ -609,6 +622,7 @@ Warning: the columns of $Q$ being orthonormal is equivalent to $Q^TQ = I$. Howev :::: ::::{grasple} +:iframeclass: dark-light :url: https://embed.grasple.com/exercises/98d48efb-0be6-4dee-a905-55dff061ce17?id=90209 :label: grasple_exercise_7_3_10 :dropdown: @@ -617,6 +631,7 @@ Warning: the columns of $Q$ being orthonormal is equivalent to $Q^TQ = I$. Howev :::: ::::{grasple} +:iframeclass: dark-light :url: https://embed.grasple.com/exercises/d4466fcf-11be-4578-ac9e-3a570710a154?id=87629 :label: grasple_exercise_7_3_11 :dropdown: @@ -625,6 +640,7 @@ Warning: the columns of $Q$ being orthonormal is equivalent to $Q^TQ = I$. Howev :::: ::::{grasple} +:iframeclass: dark-light :url: https://embed.grasple.com/exercises/b7be453d-4fd1-4c41-a3be-72e909ed0220?id=87646 :label: grasple_exercise_7_3_12 :dropdown: @@ -632,6 +648,7 @@ Warning: the columns of $Q$ being orthonormal is equivalent to $Q^TQ = I$. Howev :::: ::::{grasple} +:iframeclass: dark-light :url: https://embed.grasple.com/exercises/2f957bf7-b1f1-424f-ad39-57af14cd1d86?id=87820 :label: grasple_exercise_7_3_13 :dropdown: @@ -640,6 +657,7 @@ Warning: the columns of $Q$ being orthonormal is equivalent to $Q^TQ = I$. Howev :::: ::::{grasple} +:iframeclass: dark-light :url: https://embed.grasple.com/exercises/fb9adc06-f068-4c5b-96ac-575415620c82?id=87821 :label: grasple_exercise_7_3_14 :dropdown: @@ -648,6 +666,7 @@ Warning: the columns of $Q$ being orthonormal is equivalent to $Q^TQ = I$. Howev :::: ::::{grasple} +:iframeclass: dark-light :url: https://embed.grasple.com/exercises/8a85a120-ef0c-41ec-9f60-ca492a35865a?id=87822 :label: grasple_exercise_7_3_15 :dropdown: @@ -656,6 +675,7 @@ Warning: the columns of $Q$ being orthonormal is equivalent to $Q^TQ = I$. Howev :::: ::::{grasple} +:iframeclass: dark-light :url: https://embed.grasple.com/exercises/c02e84cd-aa51-4d2a-8585-0cd56fa08ec6?id=87824 :label: grasple_exercise_7_3_16 :dropdown: @@ -664,6 +684,7 @@ Warning: the columns of $Q$ being orthonormal is equivalent to $Q^TQ = I$. Howev :::: ::::{grasple} +:iframeclass: dark-light :url: https://embed.grasple.com/exercises/ :label: grasple_exercise_7_3_17 :dropdown: @@ -672,6 +693,7 @@ Warning: the columns of $Q$ being orthonormal is equivalent to $Q^TQ = I$. Howev :::: ::::{grasple} +:iframeclass: dark-light :url: https://embed.grasple.com/exercises/12bda5c2-8ec2-44b2-b5c6-ec2cc4bb71d0?id=87841 :label: grasple_exercise_7_3_18 :dropdown: @@ -680,6 +702,7 @@ Warning: the columns of $Q$ being orthonormal is equivalent to $Q^TQ = I$. Howev :::: ::::{grasple} +:iframeclass: dark-light :url: https://embed.grasple.com/exercises/a8741f26-64c7-4245-839a-8c5131bea496?id=87742 :label: grasple_exercise_7_3_19 :dropdown: @@ -688,6 +711,7 @@ Warning: the columns of $Q$ being orthonormal is equivalent to $Q^TQ = I$. Howev :::: ::::{grasple} +:iframeclass: dark-light :url: https://embed.grasple.com/exercises/24a2c96f-0618-4a90-8229-ce04b1dd4640?id=87747 :label: grasple_exercise_7_3_20 :dropdown: diff --git a/Chapter7/LeastSquares.md b/Chapter7/LeastSquares.md index d4061cc..f01f2a4 100644 --- a/Chapter7/LeastSquares.md +++ b/Chapter7/LeastSquares.md @@ -12,9 +12,9 @@ In this section we will reconsider the inconsistent situation and ask ourselves One common situation where an inconsistent linear system arises quite naturally is fitting a line through a set of points. Suppose $n \geq 3$ points $(x_1,y_1), \ldots, (x_n,y_n)$ in the plane are given. -Which line $\ell: y = ax + b$ best fits this set of points? +Which line $\ell: y = ax + b$ best fits this set of points? -There are different ways to define what is the _best_ line. For instance, we may mean the line that minimizes the sum of the distances of the points to the line. From a purely geometric point of view that seems the most natural way. +There are different ways to define what is the _best_ line. For instance, we may mean the line that minimizes the sum of the (perpendicular) distances of the points to the line. From a purely geometric point of view that seems the most natural way. Or, we can take the line for which the sum of vertical distances from the points to the line, i.e., $$ @@ -24,11 +24,14 @@ $$ is minimal. This approach makes sense in a physicial context where typically the $x$-variable may be an input variable over which a researcher has control, and $y$ is some output variable which may be liable to fluctuations and/or uncertainties. See {numref}`Figure %s <Fig:LeastSquares:BestLines>` for both interpretations of 'best' line. -:::{figure} Images/Fig-LeastSquares-BestLines.svg +```{applet} +:url: leastsquares/bestlines_split_canvas +:fig: Images/Fig-LeastSquares-BestLines.svg :name: Fig:LeastSquares:BestLines +:class: dark-light -What is the best best line? -::: +What is the best best line? Can you get the total distance in the left picture below 6.5? Can you get the total distance in the right picture below 9.0 ? +``` Both are sensible ideas. However, to turn any of these two ideas into an algorithm to find the best line is not as straightforward as the computations that come up if we put the question into the realm of linear algebra. And there it will turn out to be the problem of an inconsistent linear system. @@ -72,7 +75,7 @@ is consistent. Which generally is not the case. We will come back to this question in {numref}`Subsection %s <SubSec:LeastSquares:LinearModels>`. -(SubSec:LeastSquares:NormalEquations)= +(SubSec:LeastSquares:LS-solutions)= ## Least Squares Solutions @@ -247,10 +250,12 @@ For each linear system $A\vect{x} = \vect{b}$, where $A$ is an $m \times n$ matr :::: -::::{prf:proof} +::::{admonition} Proof of {prf:ref}`Prop:LeastSquares:Existence` +:class: myproof + In {prf:ref}`Rem:LeastSquares:BestLinComb` it was noted that a least squares solution corresponds to the vector in Col $A$ that is closest to $\vect{b}$. -The vector in Col $A$ that is closest to $\vect{b}$ is precisely the orthogonal projection of $\vect{x}$ onto Col $A$. (See {prf:ref}`Prop:Orthogonality:BestApprox`.) +The vector in Col $A$ that is closest to $\vect{b}$ is precisely the orthogonal projection of $\vect{x}$ onto Col $A$. (See {prf:ref}`Prop:Orthogonality:BestApprox`.) This projection, a linear combination of the colums of $A$, always exists. @@ -262,7 +267,8 @@ Lastly, these coefficients are unique if and only if the columns of $A$ are line ::::{margin} -:::{admonition} {eq}`Eq:OrthoBase:OrthoProj`. +:::{admonition} {prf:ref}`Thm:OrthoBase:OrthoDecomp`. +:class: theorem Let $V$ be a subspace of $\R^{n}$ and let $\vect{v}_{1},...,\vect{v}_{k}$ be an orthogonal basis for $V$. For any $\vect{w}$ in $\R^{n}$, the _orthogonal projection_ of $\vect{w}$ on $V$ is given by @@ -313,7 +319,7 @@ $$ :::: In {prf:ref}`Ex:LeastSquares:OrthogExample` the coefficients of the orthogonal projection were quickly found due to the fact that the vectors $\vect{a}_1$ and $\vect{a}_2$ were orthogonal. -In {numref}`Section %s <Sec:Gram-Schmidt>` we saw how we can construct an orthogonal basis from an arbitrary basis. And then we can use the projection formula {eq}`Eq:OrthoBase:OrthoProj` to find the orthogonal projection. However, we will see that this is an unnecessary detour. +In {numref}`Section %s <Sec:Gram-Schmidt>` we saw how we can construct an orthogonal basis from an arbitrary basis. And then we can use the projection formula {eq}`Eq:OrthoBase:OrthoProj` to find the orthogonal projection. However, we will see that this is an unnecessary detour. (SubSec:LeastSquares:NormalEquations)= @@ -403,12 +409,11 @@ where the norm of the error vector was found to be $\sqrt{15}$. :::: - In the proof properties of the orthogonal projection are combined in a clever way. As usual, feel free to skip it. -::::{dropdown} Proof of {prf:ref}`Thm:LeastSquares:NormalEquations` - +::::{admonition} Proof of {prf:ref}`Thm:LeastSquares:NormalEquations` +:class: myproof, dropdown As usual we denote the columns of the $m \times n$ matrix $A$ by $\vect{a}_1, \ldots, \vect{a}_n$. @@ -470,7 +475,7 @@ $$ So, to find the least squares solution(s) of the linear system $A\vect{x} = \vect{b}$, we have to solve the normal equations :::{math} -:name: Eq:LeastSquares:NormalEquations +:name: Eq:LeastSquares:NormalEquations2 A^TA \vect{x} = A^T\vect{b}. ::: @@ -503,7 +508,8 @@ the matrix $A^TA$ is invertible. :::: -::::{prf:proof} +::::{admonition} Proof of {prf:ref}`Prop:LeastSquares:InvertibleATA` +:class: myproof In fact, something stronger holds: @@ -537,7 +543,8 @@ For any $m \times n$ matrix $A$, if $A^TA$ is invertible, then the columns of $A :::: -::::{dropdown} Solution to {numref}`Exc:LeastSquares:InvertibleATA` (_click to show_) +::::{admonition} Solution to {numref}`Exc:LeastSquares:InvertibleATA` +:class: solution, dropdown Suppose that $A$ is an $m \times n$ matrix $A$ for which $A^TA$ is invertible. To prove that $A$ has linearly independent columns we have to show that the equation @@ -688,7 +695,8 @@ $$ Also explain this simpler formula by interpreting the $QR$ decomposition in a suitable way. :::: -::::{dropdown} Solution to {numref}`Exc:LeastSquares:QR` (_click to show_) +::::{admonition} Solution to {numref}`Exc:LeastSquares:QR` +:class: solution, dropdown This involves some elementary matrix operations. <BR> Suppose $A = QR$, where $Q^TQ = I$, and $R$ is an upper triangular matrix with a positive diagonal. So $R$ is invertible. <BR> @@ -783,8 +791,9 @@ For this low-dimensional problem we can draw a picture. :::{figure} Images/Fig-LeastSquares-SmallestLS.svg :name: Fig:LeastSquares:SmallestLS +:class: dark-light -Multiple least squares solutions +Multiple least squares solutions. ::: The least squares solutions are depicted as the line $\ell: \vect{x} = \hat{\vect{x}}_0 + c\left[\begin{array}{c} 2 \\ 1 \end{array}\right]$. @@ -872,6 +881,7 @@ $$ ## Grasple Exercises ::::{grasple} +:iframeclass: dark-light :url: https://embed.grasple.com/exercises/9666528f-1e81-4273-b571-8dae64a7972c?id=91139 :label: grasple_exercise_7_4_1 :dropdown: @@ -880,6 +890,7 @@ $$ :::: ::::{grasple} +:iframeclass: dark-light :url: https://embed.grasple.com/exercises/c96c0359-9599-4fd4-b5b2-bd7f9d2da463?id=91141 :label: grasple_exercise_7_4_2 :dropdown: @@ -888,6 +899,7 @@ $$ :::: ::::{grasple} +:iframeclass: dark-light :url: https://embed.grasple.com/exercises/6068f5ac-3eb3-40a1-8686-ddbf05f172b2?id=91165 :label: grasple_exercise_7_4_3 :dropdown: @@ -896,6 +908,7 @@ $$ :::: ::::{grasple} +:iframeclass: dark-light :url: https://embed.grasple.com/exercises/a0878702-dcc0-4216-b2d6-0b1d7d1b046e?id=91142 :label: grasple_exercise_7_4_4 :dropdown: @@ -904,6 +917,7 @@ $$ :::: ::::{grasple} +:iframeclass: dark-light :url: https://embed.grasple.com/exercises/6a0628e8-065d-4390-b0c4-8ff131761de4?id=91161 :label: grasple_exercise_7_4_5 :dropdown: @@ -912,6 +926,7 @@ $$ :::: ::::{grasple} +:iframeclass: dark-light :url: https://embed.grasple.com/exercises/1d9a943a-b51f-48c9-99a9-691b80b8df60?id=91159 :label: grasple_exercise_7_4_6 :dropdown: @@ -920,6 +935,7 @@ $$ :::: ::::{grasple} +:iframeclass: dark-light :url: https://embed.grasple.com/exercises/d7480f19-afdb-474d-8542-299fc21a1952?id=91908 :label: grasple_exercise_7_4_7 :dropdown: @@ -928,6 +944,7 @@ $$ :::: ::::{grasple} +:iframeclass: dark-light :url: https://embed.grasple.com/exercises/c6a52270-1c43-46a2-9dda-f1ab8b366066?id=91146 :label: grasple_exercise_7_4_8 :dropdown: @@ -936,6 +953,7 @@ $$ :::: ::::{grasple} +:iframeclass: dark-light :url: https://embed.grasple.com/exercises/743d744c-1bcb-460a-973e-3e693e86e20d?id=91157 :label: grasple_exercise_7_4_9 :dropdown: @@ -944,6 +962,7 @@ $$ :::: ::::{grasple} +:iframeclass: dark-light :url: https://embed.grasple.com/exercises/b081f76a-0e03-48cc-b27b-afab51ac2c91?id=91155 :label: grasple_exercise_7_4_10 :dropdown: @@ -952,6 +971,7 @@ $$ :::: ::::{grasple} +:iframeclass: dark-light :url: https://embed.grasple.com/exercises/679d1581-08bc-416b-89bf-766faad9f118?id=91394 :label: grasple_exercise_7_4_11 :dropdown: @@ -960,6 +980,7 @@ $$ :::: ::::{grasple} +:iframeclass: dark-light :url: https://embed.grasple.com/exercises/3d0a7884-09ee-4f89-a2e5-1c1476d7e2a3?id=91448 :label: grasple_exercise_7_4_12 :dropdown: @@ -968,6 +989,7 @@ $$ :::: ::::{grasple} +:iframeclass: dark-light :url: https://embed.grasple.com/exercises/396fd7a0-10cf-4b49-bb9e-fbc4acc2a06a?id=91148 :label: grasple_exercise_7_4_13 :dropdown: @@ -1012,8 +1034,9 @@ The points and the 'first guess' are depicted in {numref}`Figure %s <Fig:LeastSq :::{figure} Images/Fig-LeastSquares-FirstGuess.svg :name: Fig:LeastSquares:FirstGuess +:class: dark-light -First guess for best line +First guess for best line. ::: For this line the sum of the squares of the errors @@ -1065,8 +1088,9 @@ give a unique least squares solution, and it is $\hat{a} = 1.6$, $\hat{b} = 0.3$ :::{figure} Images/Fig-LeastSquares-LSLine.svg :name: Fig:LeastSquares:LSline +:class: dark-light -Least squares line +Least squares line. ::: @@ -1280,7 +1304,7 @@ Several generalizations are possible. We mention two. \begin{array}{c} (x_{11},x_{12},\ldots,x_{1k},y_1) \\ (x_{21},x_{22},\ldots,x_{2k},y_2)\\ \vdots \quad\quad \vdots \quad\quad \vdots\\ - (x_{n1},x_{n2},\ldots,x_{nk},y_2), + (x_{n1},x_{n2},\ldots,x_{nk},y_n), \end{array} ::: @@ -1324,9 +1348,8 @@ get different weights $w_i$. When building a statistical model this may be desir Then the expression we want to minimize is given by - $$ - \sum_{i=1}^{n} {\color{blue}w_i} \big(y_i - \beta_1f_1(x_{i1},\ldots, x_{ik}) \,-\, \ldots \,-\, + \sum_{i=1}^{n} \class{blue}{w_i} \big(y_i - \beta_1f_1(x_{i1},\ldots, x_{ik}) \,-\, \ldots \,-\, \beta_{\ell}f_{\ell}(x_{i1},\ldots, x_{ik})\big)^2. $$ @@ -1410,8 +1433,9 @@ $(\ln(x_i), \ln(y_i))$, and the last two plots give the points with the two fits :::{figure} Images/Fig-LeastSquares-PowerFit.svg :name: Fig:LeastSquares:Powerfit +:class: dark-light -Least squares fitting via logarithmic scale +Least squares fitting via logarithmic scale. ::: :::: @@ -1419,6 +1443,7 @@ Least squares fitting via logarithmic scale ## Grasple Exercises (for Linear Models) ::::{grasple} +:iframeclass: dark-light :url: https://embed.grasple.com/exercises/6a2b9aeb-3c59-4b8f-8d7c-e51f651998fd?id=91883 :label: grasple_exercise_7_4_14 :dropdown: @@ -1427,6 +1452,7 @@ Least squares fitting via logarithmic scale :::: ::::{grasple} +:iframeclass: dark-light :url: https://embed.grasple.com/exercises/254298e0-f091-4a9d-8e8a-31cc3cf11f16?id=91884 :label: grasple_exercise_7_4_15 :dropdown: @@ -1434,6 +1460,7 @@ Least squares fitting via logarithmic scale :::: ::::{grasple} +:iframeclass: dark-light :url: https://embed.grasple.com/exercises/dad8ca0a-ef17-4757-803c-26b8ae9804de?id=91886 :label: grasple_exercise_7_4_16 :dropdown: @@ -1441,6 +1468,7 @@ Least squares fitting via logarithmic scale :::: ::::{grasple} +:iframeclass: dark-light :url: https://embed.grasple.com/exercises/9ad7148d-ef39-46ef-8f14-20e97511655d?id=91889 :label: grasple_exercise_7_4_17 :dropdown: @@ -1448,6 +1476,7 @@ Least squares fitting via logarithmic scale :::: ::::{grasple} +:iframeclass: dark-light :url: https://embed.grasple.com/exercises/222ee704-85f5-470a-b48f-f88d9900a8d1?id=91890 :label: grasple_exercise_7_4_18 :dropdown: @@ -1455,6 +1484,7 @@ Least squares fitting via logarithmic scale :::: ::::{grasple} +:iframeclass: dark-light :url: https://embed.grasple.com/exercises/ff6329bd-f5b3-41ce-828f-2086cf651181?id=91898 :label: grasple_exercise_7_4_19 :dropdown: @@ -1462,6 +1492,7 @@ Least squares fitting via logarithmic scale :::: ::::{grasple} +:iframeclass: dark-light :url: https://embed.grasple.com/exercises/f75014bf-0e90-43e7-acf4-216cb38ffd11?id=91903 :label: grasple_exercise_7_4_20 :dropdown: diff --git a/Chapter7/OrthoBase.md b/Chapter7/OrthoBase.md index 234ff15..4af00a4 100644 --- a/Chapter7/OrthoBase.md +++ b/Chapter7/OrthoBase.md @@ -30,7 +30,8 @@ An orthogonal set $S$ which does not contain $\vect{0}$ is linearly independent. ::: -:::{prf:proof} +:::{admonition} Proof of {prf:ref}`Prop:OrthoBase:OrthoSetLinInd` +:class: myproof Assume $S$ is linearly dependent. Then there are vectors $\vect{v}_{1},...,\vect{v}_{n}$ in $S$ and scalars $c_{1},...,c_{n}$, not all zero, such that $\vect{0}=c_{1}\vect{v}_{1}+\cdots +c_{n}\vect{v}_{n}.$ But then, for any $i$: @@ -82,7 +83,8 @@ $$\vect{v}=(\vect{v}\ip\vect{v}_{1})\vect{v}_{1}+\cdots +(\vect{v}\ip\vect{v}_{k ::: -:::{prf:proof} +:::{admonition} Proof of {prf:ref}`Thm:OrthoBase:WeightsOrthoBase` +:class: myproof Since $\vect{v}_{1},...,\vect{v}_{k}$ is a basis for $V$ and $\vect{v}$ is in $V$, there are scalars $c_{1},...,c_{k}$ such that $\vect{v}=c_{1}\vect{v}_{1}+\cdots +c_{k}\vect{v}_{k}$. We only have to show that these scalars are as claimed. For any $j$ between $1$ and $k$, @@ -135,7 +137,8 @@ For any $\vect{v}$ in $V$, $\norm{\vect{u}-\vect{u}_{V}}\leq \norm{\vect{u}-\vec ::: -:::{prf:proof} +:::{admonition} Proof of {prf:ref}`Prop:Orthogonality:BestApprox` +:class: myproof Recall that the inner product of any vector with itself is non-negative and that $\vect{u}_{V}\ip\vect{u}_{V^{\bot}}=0$. @@ -201,7 +204,8 @@ Suppose $V$ is a subspace of $\R^{n}$ with orthogonal basis $\vect{v}_{1},...,\v :::: -:::{prf:proof} +:::{admonition} Proof of {prf:ref}`Thm:OrthoBase:OrthoDecomp` +:class: myproof Put @@ -227,6 +231,7 @@ It is worthwhile to compare this result to the formula for the projection of one :fig: Images/Fig-OrthoBase-DecompAs2Proj.svg :name: Fig:OrthoBase:DecompAs2Proj :position: -5.49,7.46,20.08 +:class: dark-light A vector and its orthogonal projection on the subspace $V$. Note that this projection is the sum of the projections of $\vect{u}$ on the orthogonal basis $\vect{v}_{1},\vect{v}_{2}$. ``` @@ -446,7 +451,8 @@ An $n\times n$-matrix $A$ is orthogonal if and only if $A^{T}A=I_{n}$. ::: -:::{prf:proof} +:::{admonition} Proof of {prf:ref}`Prop:OrthoBase:OrthoMat` +:class: myproof Let $\vect{v}_{1},\vect{v}_{2}...,\vect{v}_{n}$ be the columns of $A$, so $\vect{v}_{1}^{T},\vect{v}_{2}^{T},...,\vect{v}_{n}^{T}$ are the rows of $A^{T}$. Consequently, @@ -517,7 +523,8 @@ $\angle(A\vect{v}_{1},A\vect{v}_{2})=\angle(\vect{v}_{1},\vect{v}_{2})$. ::: -:::{prf:proof} +:::{admonition} Proof of {prf:ref}`Prop:OrthoBase:OrthoMatandInnerProd` +:class: myproof Using $A^{T}A=I_{n}$, we find: @@ -536,12 +543,14 @@ Many statements about orthogonal matrices still hold for non-square matrices, as You could of course also consider matrices for which the _rows_ are orthonormal. It turns out, however, that this yields the exact same concept. :::{prf:proposition} +:label: Prop:OrthoBase:Rows An $n\times n$-matrix $A$ is orthogonal if and only if its rows are orthonormal. ::: -:::{prf:proof} +:::{admonition} Proof of {prf:ref}`Prop:OrthoBase:Rows` +:class: myproof We know that $A$ is orthogonal if and only if $A^{T}A=I_{n}$. But this implies $A^{T}=A^{-1}$ and therefore also $AA^{T}=I_{n}$. Since $(A^{T})^{T}A^{T}=AA^{T}=I_{n}$, $A^{T}$ must be orthogonal by {prf:ref}`Prop:OrthoBase:OrthoMat`. Hence the columns of $A^{T}$, which are the rows of $A$, must be orthonormal. @@ -550,6 +559,7 @@ We know that $A$ is orthogonal if and only if $A^{T}A=I_{n}$. But this implies $ ## Grasple Exercises ::::{grasple} +:iframeclass: dark-light :url: https://embed.grasple.com/exercises/c443c628-427c-4ba6-a55b-d7fd0a562904?id=87842 :label: grasple_exercise_7_2_1 :dropdown: @@ -558,6 +568,7 @@ We know that $A$ is orthogonal if and only if $A^{T}A=I_{n}$. But this implies $ :::: ::::{grasple} +:iframeclass: dark-light :url: https://embed.grasple.com/exercises/825980e7-e25f-497e-a077-e009cedd55c4?id=87843 :label: grasple_exercise_7_2_2 :dropdown: @@ -566,6 +577,7 @@ We know that $A$ is orthogonal if and only if $A^{T}A=I_{n}$. But this implies $ :::: ::::{grasple} +:iframeclass: dark-light :url: https://embed.grasple.com/exercises/c815026e-df41-461c-b0dc-0b06a387d0c9?id=91876 :label: grasple_exercise_7_2_3 :dropdown: diff --git a/Chapter7/OrthoComp.md b/Chapter7/OrthoComp.md index 5d3b39d..b8d8a77 100644 --- a/Chapter7/OrthoComp.md +++ b/Chapter7/OrthoComp.md @@ -33,7 +33,8 @@ Prove {prf:ref}`Prop:OrthoComp:OrthotoSpanningSet`. :::: -:::{dropdown} Solution to {numref}`Exc:OrthoComp:OrthotoSpanningSet` (_click to show_) +:::{admonition} Solution to {numref}`Exc:OrthoComp:OrthotoSpanningSet` +:class: solution, dropdown Assume the vector $\vect{u}$ is orthogonal to every $\vect{v}_{i}$. If $\vect{v}_{1},...,\vect{v}_{n}$ spans $V$, then any $\vect{v}$ in $V$ can be written as $c_{1}\vect{v}_{1}+\cdots c_{n}\vect{v}_{n}$ for certain $c_{1},...,c_{n}$ in $\R$. But then $\vect{u}\cdot\vect{v}=c_{1}\vect{u}\cdot\vect{v}_{1}+\cdots+c_{n}\vect{u}\cdot\vect{v}_{n}=0$, so $\vect{u}$ is orthogonl to $\vect{v}$. @@ -112,6 +113,7 @@ Both examples are illustrated in {numref}`Figure %s <Fig:OrthoComp:OrthoComp>`. :url: ortho/orthocomp :fig: Images/Fig-OrthoComp-OrthoComp.svg :name: Fig:OrthoComp:OrthoComp +:class: dark-light The orthogonal complement of a 1-dimensional subspace of $\R^{2}$ (left) and of a 2-dimensional subspace of $\R^{3}$ (right). ``` @@ -125,7 +127,8 @@ For any subspace $V$ of $\R^{n}$, the orthogonal complement $V^{\bot}$ is a subs ::: -:::{prf:proof} +:::{admonition} Proof of {prf:ref}`Prop:OrthoComp:OrthoComplisSpace` +:class: myproof Since the zero vector is orthogonal to any vector, it is in $V^{\bot}$. Suppose now that $\vect{u}_{1}$ and $\vect{u}_{2}$ are in $V^{\bot}$. Then, for arbitrary $\vect{v}$ in $V$, $(\vect{u}_{1}+\vect{u}_{2})\ip \vect{v}=\vect{u}_{1}\ip\vect{v}+\vect{u}_{2}\ip\vect{v}=0$, so $\vect{u}_{1}+\vect{u}_{2}$ is in $V^{\bot}$. @@ -144,7 +147,8 @@ For any matrix $A$ we have $\mathrm{Col}(A^{T})^{\bot}=\mathrm{Nul}(A)$ and $\ma ::: -:::{prf:proof} +:::{admonition} Proof of {prf:ref}`Prop:OrthoComp:OrthoComplementNulA` +:class: myproof Note that the second claim is easily derived from the first by substituting $A^{T}$ for $A$. Let $\vect{r}_{1},...,\vect{r}_{n}$ be the rows of $A$. Then $\vect{r}_{1}^{T},...,\vect{r}_{n}^{T}$ are the columns of $A^{T}$. For any vector $\vect{x}$ in $\R^{m}$, we have @@ -223,12 +227,14 @@ $$ ::: :::{prf:proposition} +:label: Prop:OrthoComp:OrthoComplementSum If $V$ is a subspace of $\R^{n}$, then $\dim(V)+\dim(V^{\bot})=n$. ::: -:::{prf:proof} +:::{admonition} Proof of {prf:ref}`Prop:OrthoComp:OrthoComplementSum` +:class: myproof Let $A$ be a matrix for which the columns are a basis of $V$. Then $n$ is the number of rows of $A$ which in turn is the number of columns of $A^{T}$. By {prf:ref}`Thm:BasisDim:DimensionTheorem`, $\dim(\mathrm{Col}(A^{T}))+\dim(\mathrm{Nul}(A^{T}))$ is the number of columns of $A^{T}$, which is the number of rows of $A$. Using {prf:ref}`Prop:OrthoComp:OrthoComplementNulA`, this yields @@ -251,7 +257,8 @@ Let $V$ be a subspace of $\R^{n}$. For an arbitrary vector $\vect{u}$ in $\R^{n} ::: -:::{prf:proof} +:::{admonition} Proof of {prf:ref}`Prop:OrthoComp:PrthoDecomp` +:class: myproof Let $\vect{v}_{1},...,\vect{v}_{k}$ be a basis for $V$ and let $\vect{v}_{k+1},...,\vect{v}_{n}$ be a basis for $V^{\bot}$. We claim that the vectors $\vect{v}_{1},...,\vect{v}_{k},\vect{v}_{k+1},...,\vect{v}_{n}$ are linearly independent. Indeed, if there were a linear combination @@ -281,6 +288,7 @@ Putting $\vect{u}_{V}=c_{1}\vect{v}_{1}+\cdots+c_{k}\vect{v}_{k}$ and $\vect{u}_ :url: ortho/orthodecomp :fig: Images/Fig-OrthoComp-OrthoDecomp.svg :name: Fig:OrthoBase:OrthoDecomp +:class: dark-light A subspace $V$, a vector $\vect{u}$ and the orthogonal decomposition of $\vect{u}$ with respect to $V$. ``` @@ -329,25 +337,52 @@ It is easy to check that, as the notation suggests, $\vect{u}_{V}$ is in $V$ (si ## Grasple Exercises ::::{grasple} -:url: https://embed.grasple.com/exercises/f216b122-e2f3-4cd4-9268-7a814e12cec3?id=91429 +:iframeclass: dark-light +:url: https://embed.grasple.com/exercises/d69cfb9d-325b-433d-9210-c322fa272d14?id=108892 :label: grasple_exercise_7_1_1 :dropdown: -:description: Find a basis for the orthogonal complement of the span. +:description: Finding vectors orthogonal to two given vectors in $\R^4$. :::: + ::::{grasple} -:url: https://embed.grasple.com/exercises/3e9132d6-c280-4361-a653-002ad50b4784?id=91433 +:iframeclass: dark-light +:url: https://embed.grasple.com/exercises/19e0688c-b00c-46c2-aad8-200a230687b9?id=91435 :label: grasple_exercise_7_1_2 :dropdown: -:description: Find a basis for the orthogonal complement of the column space. +:description: Find the orthogonal complement of a vector $\vect{u}$ in $\R^3$ w.r.t. span$\{\vect{v}_1,\vect{v}_2\}$. :::: + + ::::{grasple} -:url: https://embed.grasple.com/exercises/3e9132d6-c280-4361-a653-002ad50b4784?id=91433 +:iframeclass: dark-light +:url: https://embed.grasple.com/exercises/c0918add-0c17-481a-80e3-c6688e65480a?id=91434 :label: grasple_exercise_7_1_3 :dropdown: :description: Find a geometric description of $V^{\bot}$. :::: + + +::::{grasple} +:iframeclass: dark-light +:url: https://embed.grasple.com/exercises/f216b122-e2f3-4cd4-9268-7a814e12cec3?id=91429 +:label: grasple_exercise_7_1_4 +:dropdown: +:description: Find a basis for the orthogonal complement of span$\{\vect{v}_1,\vect{v}_2\}$ in $\R^4$. + +:::: + +::::{grasple} +:iframeclass: dark-light +:url: https://embed.grasple.com/exercises/3e9132d6-c280-4361-a653-002ad50b4784?id=91433 +:label: grasple_exercise_7_1_5 +:dropdown: +:description: Find a basis for the orthogonal complement of the column space of a matrix. + +:::: + + diff --git a/Chapter7/Orthogonality.md b/Chapter7/Orthogonality.md deleted file mode 100644 index ec1907d..0000000 --- a/Chapter7/Orthogonality.md +++ /dev/null @@ -1,332 +0,0 @@ -(Sec:Orthogonality)= - -# Orthogonality - -## Orthogonal complements - -:::{prf:definition} - -Suppose $V$ is a subspace of $\R^{n}$. Then the _orthogonal complement_ of $V$ is the set - -$$ - -V^{\bot}=\left\{\vect{u}\in\R^{n}\mid \vect{u}\ip\vect{v}=0\text{ for all } \vect{v}\text{ in }V\right\}. - - -$$ - -in other words, it is the set of all vectors that are orthogonal to all of $V$. - -::: - -Note that, for a vector to be in $V^{\bot}$, it suffices that it is orthogonal to all elements in a basis of $V$ or, slightly more general, to all elements in a spanning set of $V$. Let us consider s simple example. - -:::{prf:Example} -:label: Ex:Ortho:OrthoCompOfVect - -Let $V$ be the subspace spanned by a single vector $\vect{v}$, say, by - -$$\vect{v}=\begin{bmatrix}1\\2\\-1\end{bmatrix}\text{ and let }\vect{u}=\begin{bmatrix}a_{1}\\a_{2}\\a_{3}\end{bmatrix}\text{ be any vector in $\R^{3}$}.$$ - -Then $\vect{u}$ is in $V^{\bot}$ is and only if $\vect{u}\ip\vect{v}=a_{1}+2a_{2}-a_{3}=0$. So we find that $V^{\bot}$ is the plane described by the equation $a_{1}+2a_{2}-a_{3}=0$. The vector $\vect{v}$ is a normal vector to this plane. - -::: - -```{figure} Images/Fig-Ortho-OrthoComp.svg -:name: Fig:Ortho:OrthoComp - -The orthogonal complement of a 1-dimensional subspace of $\R^{2}$ (left) and a of a 2-dimensional subspace of $\R^{3}$ (right). -``` - -The plane we found for $V^{\bot}$ in {prf:ref}`Ex:Ortho:OrthoCompOfVect` is a plane through the origin. It is therefore also a subspace. This is not a coincidence, as {prf:ref}`Prop:Ortho:OrthoComplisSpace` shows. - -:::{prf:proposition} -:label: Prop:Ortho:OrthoComplisSpace - -For any subspace $V$ of $\R^{n}$, the orthogonal complement $V^{\bot}$ is a subspace, too. Moreover, the only vector that is both in $V$ and in $V^{\bot}$ is $\vect{0}$. - -::: - -:::{prf:proof} - -Since the zero vector is orthogonal to any vector, it is in $V^{\bot}$. Suppose now that $\vect{u}_{1}$ and $\vect{u}_{2}$ are in $V^{\bot}$. Then, for arbitrary $\vect{v}$ in $V$, $(\vect{u}_{1}+\vect{u}_{2})\ip \vect{v}=\vect{u}_{1}\ip\vect{v}+\vect{u}_{2}\ip\vect{v}=0$, so $\vect{u}_{1}+\vect{u}_{2}$ is in $V^{\bot}$. - -Assume now that $\vect{u}$ is in $V^{\bot}$ and that $c$ is any scalar. Then, again for every $\vect{v}$ in $V$, $(c\vect{u})\ip\vect{v}=c(\vect{u}\ip\vect{v})=0$ so $c\vect{u}$ is in $V^{\bot}$. - -If $\vect{v}$ is both in $V$ and $V^{\bot}$, then $\vect{v}\ip\vect{v}=0$ so $\vect{v}=\vect{0}$. - -::: - -```{margin} TODO - -Add reference to Section Sec:SubspacesRn - -``` - -As we have seen in Section, both the column space and null space of any $n\times m$ matrix are subspaces of $\R^{n}$ and $\R^{m}$, respectively. It turns out that the transposition ${}^{T}$ and the orthogonal complement ${}^{\bot}$ relate these two spaces to each other. - -:::{prf:proposition} -:label: Prop:Orthogonality:OrthoComplementNulA - -For any $n\times m$ matrix $M$ we have $\mathrm{Col}(A^{T})^{\bot}=\mathrm{Nul}(A)$ and $\mathrm{Col}(A)^{\bot}=\mathrm{Nul}(A^{T})$. - -::: - -:::{prf:proof} - -Note that the second claim is easily derived from the first by substituting $A^{T}$ for $A$. Let $\vect{r}_{1},...,\vect{r}_{n}$ be the rows of $A$. Then $\vect{r}_{1}^{T},...,\vect{r}_{n}^{T}$ are the columns of $A^{T}$. For any vector $\vect{x}$ in $\R^{m}$, we have - -$$A\vect{x}=\begin{bmatrix}\vect{r}_{1}\vect{x}\\\vdots\\\vect{r}_{n}\vect{x}\end{bmatrix}=\begin{bmatrix}\vect{r}_{1}^{T}\ip\vect{x}\\\vdots\\\vect{r}_{n}^{T}\ip\vect{x}\end{bmatrix}.$$ - -Now, $\vect{x}$ is in $\mathrm{Nul}(A)$ precisely when $A\vect{x}=\vect{0}$ or, in other words, when $\vect{r}_{i}^{T}\ip\vect{x}=0$ for any $i$. Since the set $\left\{\vect{r}_{1}^{T},..,\vect{r}_{n}^{T}\right\}$ spans $\mathrm{Col}(A^{T})$, this is equivalent to $\vect{x}$ being in $\mathrm{Col}(A^{T})^{\bot}$. - -::: - -## Orthogonal and orthonormal bases - -:::{prf:definition} - -A subset $S$ of $\R^{n}$ is called _orthogonal_ if any two distinct vectors $\vect{v}_{1}$ and $\vect{v}_{2}$ in $S$ are orthogonal to each other. If $S$ is a basis for a subspace $V$ and $S$ is orthogonal, we say it is an _orthogonal basis_ for $V$. - -::: - -:::{prf:Example} -:label: Ex:Ortho:ExOfOrthoBase - -Consider the plane - -$$\mathcal{P}=\left\{\begin{bmatrix}x\\y\\z\end{bmatrix}\mid x+y+z=0\right\}\text{ and the vectors }\vect{v}_{1}=\begin{bmatrix}1\\-1\\0\end{bmatrix},\quad \vect{v}_{2}=\begin{bmatrix}1\\1\\-2\end{bmatrix}.$$ - -Both $\vect{v}_{1}$ and $\vect{v}_{2}$ lie in $\mathcal{P}$. The set $\mathcal{B}=\left\{\vect{v}_{1},\vect{v}_{2}\right\}$ is a linearly independent set of two vectors in $\mathcal{P}$. Since $\dim(\mathcal{P})=2$, it must therefore be a basis. Furthermore, $\vect{v}_{1}\ip\vect{v}_{2}=1-1-0=0$ so $\vect{v}_{1}$ is orthogonal to $\vect{v}_{2}$. Hence $\mathcal{B}$ is an orthogonal basis for $\mathcal{P}$. - -::: - -Since $\vect{0}$ is orthogonal to every vector, adding it to a set or removing it from a set does not change whether the set is orthogonal or not. - -:::{prf:proposition} -:label: Prop:Ortho:OrthoSetLinInd - -An orthogonal set $S$ which does not contain $\vect{0}$ is linearly independent. - -::: - -:::{prf:proof} - -Assume $S$ is linearly dependent. Then there are vectors $\vect{v}_{1},...,\vect{v}_{n}$ in $S$ and scalars $c_{1},...,c_{n}$, not all zero, such that $\vect{0}=c_{1}\vect{v}_{1}+\cdots +c_{n}\vect{v}_{n}.$ But then, for any $i$: - -$$0=\vect{0}\ip \vect{v}_{i}=(c_{1}\vect{v}_{1}+\cdots +c_{n}\vect{v}_{n})\ip\vect{v}_{i}=c_{i}(\vect{v}_{i}\ip\vect{v}_{i}).$$ - -Since no $\vect{v}_{i}$ is $\vect{0}$, all $\vect{v}_{i}\ip\vect{v}_{i}$ are non-zero, hence all $c_{i}$ must be zero, which contradicts our assumption. - -::: - -As a consequence of {prf:ref}`Prop:Ortho:OrthoSetLinInd`, any orthogonal set that does not contain $\vect{0}$ is an orthogonal basis for its span. - -:::{prf:definition} - -An orthogonal basis is called _orthonormal_ if all elements in the basis have norm $1$. - -::: - -:::{prf:remark} - -If $\vect{v}_{1},...,\vect{v}_{n}$ is an orthogonal basis for a subspace $V$, then an orthonormal basis for $V$ can be obtained by dividing each $\vect{v}_{i}$ by its norm. - -::: - -:::{prf:example} -:label: Ex:Ortho:OrthonormalBase - -Consider the plane $\mathcal{P}$, the vectors $\vect{v}_{1},\vect{v}_{2}$ and the basis $\mathcal{B}$ from {prf:ref}`Ex:Ortho:ExOfOrthoBase`. This $\mathcal{B}$ is an orthogonal basis, but $\norm{\vect{v}_{1}}=\sqrt{2}$ and $\norm{\vect{v}_{2}}=\sqrt{6}$ so it is not orthonormal. - -We can remedy this by considering the basis $\mathcal{B}_{2}=\left\{\vect{u}_{1},\vect{u}_{2}\right\}$ where - -$$\vect{u}_{1}=\frac{\vect{v}_{1}}{\norm{\vect{v}_{1}}}=\frac{1}{\sqrt{2}}\begin{bmatrix}1\\-1\\0\end{bmatrix}\quad\text{and}\quad \vect{u}_{2}=\frac{\vect{v}_{2}}{\norm{\vect{v}_{2}}}=\frac{1}{\sqrt{6}}\begin{bmatrix}1\\1\\-2\end{bmatrix}.$$ - -This new basis $\mathcal{B}_{2}$ is an orthonormal basis. We have kept the directions of $\vect{v}_{1}$ and $\vect{v}_{2}$, but we have made sure that our step length is now 1. - -::: - -The essence of {prf:ref}`Thm:Ortho:WeightsOrthoBase` is that it is easy to find the coordinates of any vector in a subspace $V$ with respect to a given orthogonal basis of $V$. In fact, this is largely why we are interested in such bases. - -:::{prf:theorem} -:label: Thm:Ortho:WeightsOrthoBase - -Let $V$ be a subspace of $\R^{n}$ and assume $\vect{v}_{1},...,\vect{v}_{k}$ is an orthogonal basis for $V$. Then any vector $\vect{v}$ in $V$ can be written as: - -$$\vect{v}=\frac{\vect{v}\ip\vect{v}_{1}}{\vect{v}_{1}\ip\vect{v}_{1}}\vect{v}_{1}+\cdots +\frac{\vect{v}\ip\vect{v}_{k}}{\vect{v}_{k}\ip\vect{v}_{k}}\vect{v}_{k}.$$ - -In particular, if $\vect{v}_{1},..,\vect{v}_{k}$ is an orthonormal basis, then any $\vect{v}$ in $V$ can be written as: - -$$\vect{v}=(\vect{v}\ip\vect{v}_{1})\vect{v}_{1}+\cdots +(\vect{v}\ip\vect{v}_{k})\vect{v}_{k}.$$ - -::: - -:::{prf:proof} - -Since $\vect{v}_{1},...,\vect{v}_{k}$ is a basis for $V$ and $\vect{v}$ is in $V$, there are scalars $c_{1},...,c_{k}$ such that $\vect{v}=c_{1}\vect{v}_{1}+\cdots +c_{k}\vect{v}_{k}$. We only have to show that these scalars are as claimed. For any $j$ between $1$ and $k$, - -$$\vect{v}\ip\vect{v}_{j}=(c_{1}\vect{v}_{1}+\cdots +c_{k}\vect{v}_{k})\ip\vect{v}_{j}=c_{j}(\vect{v}_{j}\ip\vect{v}_{j}$$ - -by the orthogonality of $\left\{\vect{v}_{1},...,\vect{v}_{k}\right\}$. This implies $c_{j}=\frac{\vect{v}\ip\vect{v}_{j}}{\vect{v}_{j}\ip\vect{v}_{j}}$ as claimed. - -If $\vect{v}_{1},...,\vect{v}_{k}$ is orthonormal, then $\vect{v}_{j}\ip\vect{v}_{j}=1$ for every $j$, so this reduces to $c_{j}=\vect{v}\ip\vect{v}_{j}$. - -::: - -## Orthogonal projections revisited - -```{margin} TODO - -Add reference to Section Sec:GeomLinTrans - -``` - -In Section we have already briefly toched upon orthogonal projections in higher dimension. Now that we know about orthogonal bases, we can make this more concrete. - -:::{prf:definition} -:label: Dfn:Orthogonality:OrthoProjection - -Let $V$ be a subspace of $\R{n}$ and let $\vect{v}_{1},...,\vect{v}_{k}$ be an orthogonal basis for $V$. For any $\vect{w}$ in $\R^{n}$, we define the _orthogonal projection_ of $\vect{w}$ on $V$ as - -$$\proj_{V}(w)=\frac{\vect{w}\ip\vect{v}_{1}}{\vect{v}_{1}\ip\vect{v}_{1}}\vect{v}_{1}+\cdots +\frac{\vect{w}\ip\vect{v}_{k}}{\vect{v}_{k}\ip\vect{v}_{k}}\vect{v}_{k}.$$ - -::: - -```{figure} Images/Fig-Ortho-DecompAs2Proj.svg -:name: Fig:Ortho:DecompAs2Proj - -A vector and its orthogonal projection on the subspace $V$. -``` - -:::{prf:example} - -Let us revisit the plane $\mathcal{P}$ with basis $\mathcal{B}=\left\{\vect{v}_{1},\vect{v}_{2}\right\}$ from {prf:ref}`Ex:Ortho:ExOfOrthoBase`. Take a vector, say, $\vect{w}=\begin{bmatrix}-1\\1\\2\end{bmatrix}$. We find $\vect{w}\ip\vect{v}_{1}=-2,\vect{w}\ip\vect{v}_{2}=-4,$ and $\vect{v}_{1}\ip\vect{v}_{1}=2,\vect{v}_{2}\ip\vect{v}_{2}=6$. Consequently, - -$$ -\proj_{\mathcal{P}}(\vect{w})=\frac{\vect{w}\ip\vect{v}_{1}}{\vect{v}_{1}\ip\vect{v}_{1}}\vect{v}_{1}+\frac{\vect{w}\ip\vect{v}_{2}}{\vect{v}_{2}\ip\vect{v}_{2}}\vect{v}_{2}=-\frac{2}{2}\vect{v}_{1}-\frac{4}{6}\vect{v}_{2}= -\begin{bmatrix} - -\frac{5}{3} \\ - {-\frac{1}{3}} \\ - {\frac{4}{3}} -\end{bmatrix} -$$ - -is the orthogonal projection of $\vect{w}$ on $\mathcal{P}$. - -::: - -This orthogonal projection can be thought of as the best approximation of $\vect{w}$ using vectors from $V$. Perhaps surprisingly, it is independent of the choice of the orthogonal basis $\vect{v}_{1},...,\vect{v}_{k}$ by {prf:ref}`Thm:Ortho:OrthoDecomp`. This justifies the fact that the chosen orthogonal base is left out of the notation. - -:::{prf:Theorem} -:label: Thm:Ortho:OrthoDecomp - -Suppose $V$ is a subpsace of $\R^{n}$ and $\vect{w}$ is a vector in $\R^{n}$. Then there is a unique decomposition - -$$\vect{w}=\hat{\vect{w}}+\vect{x}\quad\text{where $\hat{\vect{w}}$ is in $V$ and $\vect{x}$ is in $V^{\bot}$.}$$ - -In fact, $\hat{\vect{w}}=\proj_{V}(\vect{w})$. This is called the _orthogonal decomposition_ of $\vect{w}$ with respect to $V$. - -::: - -:::{prf:proof} - -Fix an orthogonal basis $\vect{v}_{1},..,\vect{v}_{k}$ for $V$ and put $\vect{x}=\vect{w}-\proj_{V}(\vect{w})$. Clearly, $\proj_{V}(\vect{w})$ is in $V$. If we can show $\vect{x}\bot \vect{v}_{i}$ for any $i$, it will follow that $\vect{x}$ is in $V^{\bot}$. This follows readily: - -\begin{align*} -\vect{x}\ip \vect{v}*{i}&=\left(\vect{w}-\frac{\vect{w}\ip\vect{v}_{1}}{\vect{v}_{1}\ip\vect{v}_{1}}\vect{v}_{1}+\cdots +\frac{\vect{w}\ip\vect{v}_{k}}{\vect{v}_{k}\ip\vect{v}_{k}}\vect{v}_{k}\right)\ip\vect{v}_{i}\\ -&=\vect{w}\ip\vect{v}_{i}-\frac{\vect{w}\ip\vect{v}_{i}}{\vect{v}_{i}\ip\vect{v}_{i}}(\vect{v}_{i}\ip\vect{v}_{i})=0. -\end{align_} - -The only thing left to show is that this decomposition is unique. Suppose $\vect{w}=\hat{\vect{w}}_{1}+\vect{x}_{1}$ and $\vect{w}=\hat{\vect{w}}_{2}+\vect{x}_{2}$ where $\hat{\vect{w}}_{1},\hat{\vect{w}}_{2}$ are in $V$ and $\vect{x}_{1},\vect{x}_{2}$ are in $V^{\bot}$. Then - -$$\hat{\vect{w}}_{1}-\hat{\vect{w}}_{2}=\vect{x}_{2}-\vect{x}_{1}.$$ - -Since $V$ is a subspace, the left hand side is in $V$ and since $V^{\bot}$ is a subspace the right hand side is in $V^{\bot}$. But the only element in both $V$ and $V^{\bot}$ is $\vect{0}$. So $\vect{x}_{1}=\vect{x}_{2}$ and $\hat{\vect{w}}_{1}=\hat{\vect{w}}_{2}$. - -::: - -```{figure} Images/Fig-Ortho-OrthoDecomp.svg -:name: Fig:Ortho:OrthoDecomp - -A vector, its orthogonal projection on a subspace, and the difference of the two. Note that the difference between the vector and its projection on $V$ if orthogonal to $V$, i.e. it is in $V^{\bot}$. -``` - -{prf:ref}`Thm:Ortho:OrthoDecomp` is quite a powerful tool. For example, it allows us to establish the following useful facts. Of particular interest is [iii.](#It:Ortho:ProjIsClosest), which states in essence that $\proj_{V}(\vect{w})$ is the best approximation of $\vect{w}$ with a vector from $V$ or, in other words, that the projection of $\vect{w}$ onto $V$ is the point in $V$ which is closest to $\vect{w}$. - -:::{prf:Proposition} -:label: Prop:Orthogonality:BestApprox - -Let $V$ be a subspace of $\R^{n}$ and let $\vect{w}$ be an arbitrary vector in $\R^{n}$. Then: - -<ol type="i"> -<li> - -$\norm{\vect{w}}\geq \norm{\proj_{V}(\vect{w})}$. - -</li> -<li> - -$\vect{w}\ip\proj_{V}(\vect{w})\geq 0$ and $\vect{w}\ip\proj_{V}(\vect{w})=0$ precisely when $\vect{w}$ is in $V^{\bot}$. - -</li> -<li id="It:Ortho:ProjIsClosest"> - -For any $\vect{v}$ in $V$, $\norm{\vect{w}-\vect{v}}\leq\norm{\vect{w}-\proj_{V}(\vect{w})}$. - -</li> - -</ol> - -::: - -:::{prf:proof} - -Let $\vect{w}=\proj_{V}(\vect{w})+\vect{x}$ where $\vect{x}$ is in $V^{\bot}$. - -<ol type="i"> -<li> - -Since the inproduct of any vector with itself is non-negative, we find: - -$$ -\begin{align*} -\norm{\vect{w}}&=\sqrt{\vect{w}\ip\vect{w}}=\sqrt{(\proj_{V}(\vect{w})+\vect{x})\ip(\proj_{V}(\vect{w})+\vect{x})}\\ -&=\sqrt{\proj_{V}(\vect{w})\ip\proj_{V}(\vect{w})+\vect{x}\ip\vect{x}}\\ -&\geq\sqrt{\proj_{V}(\vect{w})\ip\proj_{V}(\vect{w})}=\norm{\proj_{V}(\vect{w})} -\end{align*} -$$ - -</li> -<li> - -We have: - -$$ -\begin{align*} -\vect{w}\ip\proj_{V}(\vect{w})&=(\proj_{V}(\vect{w})+\vect{x})\ip\proj_{V}(\vect{w})\\ -&=\proj_{V}(\vect{w})\ip\proj_{V}(\vect{w})\geq 0. -\end{align*} -$$ - -Furthermore, $\proj_{V}(\vect{w})\ip\proj_{V}(\vect{w})=0$ implies $\proj_{V}(\vect{w})=\vect{0}$, so $\vect{w}=\vect{x}$ which is in $V^{\bot}$. - -</li> -<li> - -</li> - -We find, for arbitrary $\vect{v}$ in $V$: - -$$ -\begin{align*} -\norm{\vect{w}-\vect{v}}&=\sqrt{(\proj_{V}(\vect{w})+\vect{x}-\vect{v})\ip(\proj_{V}(\vect{w})+\vect{x}-\vect{v})}\\ -&=\sqrt{(\proj_{V}(\vect{w})-\vect{v})\ip(\proj_{V}(\vect{w})-\vect{v})+\vect{x}\ip\vect{x}} -\end{align*} -$$ - -Again using the fact that the inproduct of any vector with itself is non-negative, we conclude that this is minimal when $\proj_{V}(\vect{w})-\vect{v}=\vect{0}$, i.e. when $\proj_{V}(\vect{w})=\vect{v}$. - -</ol> - -::: diff --git a/Chapter8/Images/Fig-SVD-Decomposition.svg b/Chapter8/Images/Fig-SVD-Decomposition.svg index d5a9ed3..e7c2664 100644 --- a/Chapter8/Images/Fig-SVD-Decomposition.svg +++ b/Chapter8/Images/Fig-SVD-Decomposition.svg @@ -1,89 +1,289 @@ -<?xml version="1.0" encoding="UTF-8"?> -<svg xmlns="http://www.w3.org/2000/svg" xmlns:xlink="http://www.w3.org/1999/xlink" width="97.563pt" height="70.901pt" viewBox="0 0 97.563 70.901" version="1.1"> -<defs> -<g> -<symbol overflow="visible" id="glyph0-0"> -<path style="stroke:none;" d=""/> -</symbol> -<symbol overflow="visible" id="glyph0-1"> -<path style="stroke:none;" d="M 2.671875 -3.125 L 3.03125 -3.125 L 4.53125 -0.8125 C 4.625 -0.65625 4.859375 -0.265625 4.96875 -0.125 C 5.046875 0 5.078125 0 5.296875 0 L 6.671875 0 C 6.859375 0 7.015625 0 7.015625 -0.171875 C 7.015625 -0.265625 6.953125 -0.328125 6.859375 -0.34375 C 6.484375 -0.421875 6 -1.09375 5.765625 -1.40625 C 5.6875 -1.5 5.1875 -2.15625 4.53125 -3.234375 C 5.40625 -3.40625 6.265625 -3.78125 6.265625 -4.96875 C 6.265625 -6.34375 4.8125 -6.828125 3.625 -6.828125 L 0.5 -6.828125 C 0.3125 -6.828125 0.15625 -6.828125 0.15625 -6.65625 C 0.15625 -6.484375 0.34375 -6.484375 0.421875 -6.484375 C 1 -6.484375 1.046875 -6.40625 1.046875 -5.90625 L 1.046875 -0.921875 C 1.046875 -0.421875 1 -0.34375 0.421875 -0.34375 C 0.34375 -0.34375 0.15625 -0.34375 0.15625 -0.171875 C 0.15625 0 0.3125 0 0.5 0 L 3.234375 0 C 3.40625 0 3.5625 0 3.5625 -0.171875 C 3.5625 -0.34375 3.390625 -0.34375 3.28125 -0.34375 C 2.71875 -0.34375 2.671875 -0.421875 2.671875 -0.921875 Z M 4.59375 -3.625 C 4.875 -3.984375 4.90625 -4.515625 4.90625 -4.953125 C 4.90625 -5.4375 4.84375 -5.96875 4.53125 -6.375 C 4.9375 -6.28125 5.921875 -5.96875 5.921875 -4.96875 C 5.921875 -4.3125 5.625 -3.8125 4.59375 -3.625 Z M 2.671875 -5.9375 C 2.671875 -6.15625 2.671875 -6.484375 3.296875 -6.484375 C 4.140625 -6.484375 4.5625 -6.125 4.5625 -4.953125 C 4.5625 -3.671875 4.25 -3.484375 2.671875 -3.484375 Z M 1.3125 -0.34375 C 1.390625 -0.53125 1.390625 -0.8125 1.390625 -0.890625 L 1.390625 -5.9375 C 1.390625 -6.03125 1.390625 -6.296875 1.3125 -6.484375 L 2.453125 -6.484375 C 2.328125 -6.3125 2.328125 -6.125 2.328125 -5.96875 L 2.328125 -0.890625 C 2.328125 -0.796875 2.328125 -0.53125 2.40625 -0.34375 Z M 3.4375 -3.125 C 3.515625 -3.140625 3.546875 -3.15625 3.625 -3.15625 C 3.78125 -3.15625 4 -3.171875 4.140625 -3.1875 C 4.296875 -2.953125 5.375 -1.171875 6.203125 -0.34375 L 5.234375 -0.34375 Z M 3.4375 -3.125 "/> -</symbol> -<symbol overflow="visible" id="glyph1-0"> -<path style="stroke:none;" d=""/> -</symbol> -<symbol overflow="visible" id="glyph1-1"> -<path style="stroke:none;" d="M 0.84375 -0.4375 C 0.828125 -0.34375 0.78125 -0.171875 0.78125 -0.15625 C 0.78125 0 0.90625 0.0625 1.015625 0.0625 C 1.140625 0.0625 1.25 -0.015625 1.296875 -0.078125 C 1.328125 -0.140625 1.375 -0.375 1.421875 -0.515625 C 1.453125 -0.640625 1.53125 -0.96875 1.5625 -1.140625 C 1.609375 -1.296875 1.65625 -1.453125 1.6875 -1.609375 C 1.765625 -1.890625 1.78125 -1.953125 1.984375 -2.234375 C 2.171875 -2.515625 2.5 -2.875 3.03125 -2.875 C 3.421875 -2.875 3.4375 -2.515625 3.4375 -2.390625 C 3.4375 -1.96875 3.140625 -1.203125 3.03125 -0.90625 C 2.953125 -0.703125 2.921875 -0.640625 2.921875 -0.53125 C 2.921875 -0.15625 3.21875 0.0625 3.578125 0.0625 C 4.28125 0.0625 4.578125 -0.890625 4.578125 -1 C 4.578125 -1.09375 4.5 -1.09375 4.46875 -1.09375 C 4.375 -1.09375 4.375 -1.046875 4.34375 -0.96875 C 4.1875 -0.40625 3.875 -0.125 3.609375 -0.125 C 3.453125 -0.125 3.421875 -0.21875 3.421875 -0.375 C 3.421875 -0.53125 3.46875 -0.625 3.59375 -0.9375 C 3.671875 -1.15625 3.953125 -1.890625 3.953125 -2.28125 C 3.953125 -2.953125 3.421875 -3.078125 3.046875 -3.078125 C 2.46875 -3.078125 2.078125 -2.71875 1.875 -2.4375 C 1.828125 -2.921875 1.421875 -3.078125 1.125 -3.078125 C 0.828125 -3.078125 0.671875 -2.859375 0.578125 -2.703125 C 0.421875 -2.4375 0.328125 -2.046875 0.328125 -2 C 0.328125 -1.921875 0.421875 -1.921875 0.453125 -1.921875 C 0.546875 -1.921875 0.546875 -1.9375 0.59375 -2.125 C 0.703125 -2.53125 0.84375 -2.875 1.109375 -2.875 C 1.296875 -2.875 1.34375 -2.71875 1.34375 -2.53125 C 1.34375 -2.40625 1.28125 -2.140625 1.21875 -1.953125 C 1.171875 -1.765625 1.109375 -1.484375 1.078125 -1.328125 Z M 0.84375 -0.4375 "/> -</symbol> -<symbol overflow="visible" id="glyph1-2"> -<path style="stroke:none;" d="M 3.03125 -0.5625 C 2.984375 -0.421875 2.921875 -0.1875 2.921875 -0.15625 C 2.921875 0 3.046875 0.0625 3.15625 0.0625 C 3.296875 0.0625 3.40625 -0.015625 3.4375 -0.078125 C 3.46875 -0.140625 3.53125 -0.375 3.5625 -0.515625 C 3.59375 -0.640625 3.671875 -0.96875 3.71875 -1.140625 C 3.75 -1.296875 3.796875 -1.453125 3.828125 -1.609375 C 3.90625 -1.90625 3.90625 -1.921875 4.046875 -2.140625 C 4.265625 -2.484375 4.625 -2.875 5.15625 -2.875 C 5.546875 -2.875 5.578125 -2.5625 5.578125 -2.390625 C 5.578125 -1.96875 5.28125 -1.203125 5.15625 -0.90625 C 5.09375 -0.703125 5.0625 -0.640625 5.0625 -0.53125 C 5.0625 -0.15625 5.359375 0.0625 5.71875 0.0625 C 6.421875 0.0625 6.71875 -0.890625 6.71875 -1 C 6.71875 -1.09375 6.640625 -1.09375 6.609375 -1.09375 C 6.515625 -1.09375 6.515625 -1.046875 6.484375 -0.96875 C 6.328125 -0.40625 6.015625 -0.125 5.75 -0.125 C 5.59375 -0.125 5.5625 -0.21875 5.5625 -0.375 C 5.5625 -0.53125 5.609375 -0.625 5.734375 -0.9375 C 5.8125 -1.15625 6.09375 -1.890625 6.09375 -2.28125 C 6.09375 -2.390625 6.09375 -2.6875 5.84375 -2.890625 C 5.71875 -2.96875 5.515625 -3.078125 5.1875 -3.078125 C 4.5625 -3.078125 4.1875 -2.65625 3.953125 -2.375 C 3.90625 -2.96875 3.40625 -3.078125 3.046875 -3.078125 C 2.46875 -3.078125 2.078125 -2.71875 1.875 -2.4375 C 1.828125 -2.921875 1.421875 -3.078125 1.125 -3.078125 C 0.828125 -3.078125 0.671875 -2.859375 0.578125 -2.703125 C 0.421875 -2.4375 0.328125 -2.046875 0.328125 -2 C 0.328125 -1.921875 0.421875 -1.921875 0.453125 -1.921875 C 0.546875 -1.921875 0.546875 -1.9375 0.59375 -2.125 C 0.703125 -2.53125 0.84375 -2.875 1.109375 -2.875 C 1.296875 -2.875 1.34375 -2.71875 1.34375 -2.53125 C 1.34375 -2.40625 1.28125 -2.140625 1.21875 -1.953125 C 1.171875 -1.765625 1.109375 -1.484375 1.078125 -1.328125 L 0.84375 -0.4375 C 0.828125 -0.34375 0.78125 -0.171875 0.78125 -0.15625 C 0.78125 0 0.90625 0.0625 1.015625 0.0625 C 1.140625 0.0625 1.25 -0.015625 1.296875 -0.078125 C 1.328125 -0.140625 1.375 -0.375 1.421875 -0.515625 C 1.453125 -0.640625 1.53125 -0.96875 1.5625 -1.140625 C 1.609375 -1.296875 1.65625 -1.453125 1.6875 -1.609375 C 1.765625 -1.890625 1.78125 -1.953125 1.984375 -2.234375 C 2.171875 -2.515625 2.5 -2.875 3.03125 -2.875 C 3.421875 -2.875 3.4375 -2.515625 3.4375 -2.390625 C 3.4375 -2.21875 3.421875 -2.125 3.3125 -1.734375 Z M 3.03125 -0.5625 "/> -</symbol> -<symbol overflow="visible" id="glyph1-3"> -<path style="stroke:none;" d="M 1.4375 -0.84375 C 1.1875 -0.453125 0.96875 -0.28125 0.5625 -0.25 C 0.484375 -0.25 0.390625 -0.25 0.390625 -0.109375 C 0.390625 -0.03125 0.453125 0 0.5 0 C 0.671875 0 0.90625 -0.03125 1.09375 -0.03125 C 1.3125 -0.03125 1.609375 0 1.8125 0 C 1.84375 0 1.953125 0 1.953125 -0.15625 C 1.953125 -0.25 1.859375 -0.25 1.828125 -0.25 C 1.78125 -0.265625 1.53125 -0.265625 1.53125 -0.453125 C 1.53125 -0.546875 1.59375 -0.65625 1.625 -0.71875 L 2.1875 -1.59375 L 4.1875 -1.59375 L 4.34375 -0.4375 C 4.328125 -0.359375 4.28125 -0.25 3.875 -0.25 C 3.78125 -0.25 3.6875 -0.25 3.6875 -0.09375 C 3.6875 -0.0625 3.703125 0 3.796875 0 C 4 0 4.5 -0.03125 4.703125 -0.03125 C 4.828125 -0.03125 4.984375 -0.015625 5.109375 -0.015625 C 5.234375 -0.015625 5.375 0 5.5 0 C 5.59375 0 5.640625 -0.0625 5.640625 -0.140625 C 5.640625 -0.25 5.5625 -0.25 5.453125 -0.25 C 5.046875 -0.25 5.03125 -0.3125 5.015625 -0.46875 L 4.390625 -4.78125 C 4.375 -4.921875 4.359375 -4.96875 4.234375 -4.96875 C 4.09375 -4.96875 4.0625 -4.90625 4 -4.8125 Z M 2.359375 -1.84375 L 3.8125 -4.125 L 4.140625 -1.84375 Z M 2.359375 -1.84375 "/> -</symbol> -<symbol overflow="visible" id="glyph1-4"> -<path style="stroke:none;" d="M 4.984375 -3.9375 C 5.234375 -4.3125 5.46875 -4.484375 5.84375 -4.515625 C 5.921875 -4.515625 6 -4.515625 6 -4.65625 C 6 -4.6875 5.984375 -4.765625 5.90625 -4.765625 C 5.734375 -4.765625 5.515625 -4.734375 5.34375 -4.734375 C 5.125 -4.734375 4.828125 -4.765625 4.625 -4.765625 C 4.5625 -4.765625 4.484375 -4.734375 4.484375 -4.609375 C 4.484375 -4.515625 4.578125 -4.515625 4.609375 -4.515625 C 4.828125 -4.5 4.890625 -4.40625 4.890625 -4.3125 C 4.890625 -4.203125 4.84375 -4.140625 4.765625 -4.03125 L 2.484375 -0.65625 L 1.84375 -4.21875 C 1.828125 -4.28125 1.828125 -4.296875 1.828125 -4.328125 C 1.828125 -4.515625 2.21875 -4.515625 2.265625 -4.515625 C 2.390625 -4.515625 2.484375 -4.515625 2.484375 -4.65625 C 2.484375 -4.671875 2.46875 -4.765625 2.359375 -4.765625 C 2.15625 -4.765625 1.671875 -4.734375 1.46875 -4.734375 C 1.296875 -4.734375 0.859375 -4.765625 0.6875 -4.765625 C 0.625 -4.765625 0.546875 -4.734375 0.546875 -4.609375 C 0.546875 -4.515625 0.640625 -4.515625 0.71875 -4.515625 C 1.109375 -4.515625 1.125 -4.46875 1.15625 -4.28125 L 1.921875 -0.046875 C 1.9375 0.09375 1.953125 0.140625 2.078125 0.140625 C 2.21875 0.140625 2.25 0.09375 2.328125 -0.015625 Z M 4.984375 -3.9375 "/> -</symbol> -<symbol overflow="visible" id="glyph1-5"> -<path style="stroke:none;" d="M 4.953125 -4.8125 C 4.953125 -4.84375 4.921875 -4.90625 4.859375 -4.90625 C 4.8125 -4.90625 4.8125 -4.890625 4.71875 -4.796875 L 4.375 -4.40625 C 4.109375 -4.78125 3.671875 -4.90625 3.25 -4.90625 C 2.265625 -4.90625 1.390625 -4.109375 1.390625 -3.296875 C 1.390625 -3.203125 1.421875 -2.921875 1.625 -2.65625 C 1.859375 -2.390625 2.125 -2.328125 2.59375 -2.203125 C 2.734375 -2.171875 3.078125 -2.09375 3.1875 -2.0625 C 3.40625 -2.015625 3.828125 -1.859375 3.828125 -1.34375 C 3.828125 -0.78125 3.234375 -0.109375 2.453125 -0.109375 C 1.828125 -0.109375 1.09375 -0.328125 1.09375 -1.09375 C 1.09375 -1.171875 1.109375 -1.328125 1.140625 -1.453125 C 1.140625 -1.484375 1.140625 -1.484375 1.140625 -1.484375 C 1.140625 -1.578125 1.0625 -1.578125 1.03125 -1.578125 C 0.9375 -1.578125 0.921875 -1.5625 0.90625 -1.4375 L 0.546875 -0.046875 C 0.53125 -0.015625 0.515625 0.015625 0.515625 0.0625 C 0.515625 0.09375 0.546875 0.140625 0.625 0.140625 C 0.65625 0.140625 0.671875 0.125 0.765625 0.046875 C 0.84375 -0.046875 1.015625 -0.265625 1.09375 -0.34375 C 1.46875 0.0625 2 0.140625 2.421875 0.140625 C 3.484375 0.140625 4.328125 -0.765625 4.328125 -1.59375 C 4.328125 -1.890625 4.203125 -2.171875 4.046875 -2.328125 C 3.8125 -2.578125 3.703125 -2.609375 2.796875 -2.828125 C 2.65625 -2.859375 2.421875 -2.90625 2.359375 -2.9375 C 2.1875 -3 1.890625 -3.171875 1.890625 -3.5625 C 1.890625 -4.125 2.515625 -4.671875 3.234375 -4.671875 C 4 -4.671875 4.359375 -4.25 4.359375 -3.59375 C 4.359375 -3.5 4.328125 -3.34375 4.328125 -3.28125 C 4.328125 -3.171875 4.40625 -3.171875 4.453125 -3.171875 C 4.546875 -3.171875 4.5625 -3.21875 4.578125 -3.328125 Z M 4.953125 -4.8125 "/> -</symbol> -<symbol overflow="visible" id="glyph1-6"> -<path style="stroke:none;" d="M 4.921875 -4 C 5 -4.265625 5.109375 -4.5 5.671875 -4.515625 C 5.703125 -4.515625 5.8125 -4.515625 5.8125 -4.65625 C 5.8125 -4.703125 5.765625 -4.765625 5.703125 -4.765625 C 5.484375 -4.765625 5.21875 -4.734375 4.984375 -4.734375 C 4.75 -4.734375 4.453125 -4.765625 4.25 -4.765625 C 4.21875 -4.765625 4.109375 -4.765625 4.109375 -4.609375 C 4.109375 -4.515625 4.203125 -4.515625 4.265625 -4.515625 C 4.59375 -4.5 4.703125 -4.390625 4.703125 -4.21875 C 4.703125 -4.1875 4.703125 -4.15625 4.703125 -4.125 C 4.59375 -3.671875 4.078125 -1.578125 4 -1.359375 C 3.609375 -0.46875 2.78125 -0.109375 2.21875 -0.109375 C 1.75 -0.109375 1.25 -0.34375 1.25 -1.03125 C 1.25 -1.203125 1.28125 -1.375 1.3125 -1.53125 L 2 -4.21875 C 2.0625 -4.453125 2.0625 -4.515625 2.609375 -4.515625 C 2.71875 -4.515625 2.8125 -4.515625 2.8125 -4.65625 C 2.8125 -4.6875 2.796875 -4.765625 2.703125 -4.765625 C 2.5 -4.765625 2 -4.734375 1.796875 -4.734375 C 1.671875 -4.734375 1.421875 -4.734375 1.3125 -4.734375 C 1.171875 -4.75 1 -4.765625 0.875 -4.765625 C 0.828125 -4.765625 0.71875 -4.765625 0.71875 -4.609375 C 0.71875 -4.515625 0.8125 -4.515625 0.953125 -4.515625 C 0.953125 -4.515625 1.09375 -4.515625 1.21875 -4.5 C 1.359375 -4.484375 1.375 -4.46875 1.375 -4.390625 C 1.375 -4.359375 1.296875 -4.078125 1.265625 -3.9375 L 1.109375 -3.3125 L 0.703125 -1.71875 C 0.640625 -1.4375 0.640625 -1.375 0.640625 -1.234375 C 0.640625 -0.375 1.359375 0.140625 2.1875 0.140625 C 3.15625 0.140625 4.078125 -0.640625 4.3125 -1.546875 Z M 4.921875 -4 "/> -</symbol> -<symbol overflow="visible" id="glyph2-0"> -<path style="stroke:none;" d=""/> -</symbol> -<symbol overflow="visible" id="glyph2-1"> -<path style="stroke:none;" d="M 2.890625 -2.96875 C 2.9375 -3.125 2.9375 -3.140625 3.140625 -3.140625 L 3.671875 -3.140625 C 4.234375 -3.140625 4.3125 -2.984375 4.3125 -2.671875 C 4.3125 -2.640625 4.3125 -2.546875 4.265625 -2.3125 L 4.265625 -2.265625 C 4.265625 -2.21875 4.296875 -2.171875 4.375 -2.171875 C 4.46875 -2.171875 4.46875 -2.21875 4.484375 -2.3125 L 4.609375 -3.203125 C 4.625 -3.25 4.625 -3.265625 4.625 -3.28125 C 4.625 -3.359375 4.546875 -3.359375 4.453125 -3.359375 L 0.96875 -3.359375 C 0.828125 -3.359375 0.828125 -3.359375 0.78125 -3.265625 L 0.453125 -2.34375 C 0.453125 -2.328125 0.421875 -2.265625 0.421875 -2.265625 C 0.421875 -2.234375 0.453125 -2.171875 0.53125 -2.171875 C 0.609375 -2.171875 0.625 -2.1875 0.65625 -2.3125 C 0.890625 -2.90625 1.03125 -3.140625 1.703125 -3.140625 L 2.25 -3.140625 C 2.28125 -3.140625 2.359375 -3.140625 2.40625 -3.125 L 2.40625 -3.09375 L 1.734375 -0.4375 C 1.703125 -0.28125 1.6875 -0.21875 1.15625 -0.21875 L 1.046875 -0.21875 C 0.953125 -0.21875 0.9375 -0.21875 0.921875 -0.203125 C 0.890625 -0.171875 0.875 -0.125 0.875 -0.078125 C 0.875 -0.0625 0.890625 0 0.96875 0 C 1.125 0 1.28125 -0.015625 1.4375 -0.015625 C 1.578125 -0.015625 1.734375 -0.015625 1.890625 -0.015625 C 2.046875 -0.015625 2.21875 -0.015625 2.375 -0.015625 C 2.53125 -0.015625 2.6875 0 2.84375 0 C 2.875 0 2.96875 0 2.96875 -0.140625 C 2.96875 -0.21875 2.890625 -0.21875 2.8125 -0.21875 L 2.703125 -0.21875 C 2.5625 -0.21875 2.4375 -0.21875 2.296875 -0.25 C 2.265625 -0.25 2.234375 -0.265625 2.234375 -0.3125 C 2.234375 -0.34375 2.234375 -0.34375 2.25 -0.421875 Z M 2.890625 -2.96875 "/> -</symbol> -</g> -</defs> -<g id="surface1"> -<g style="fill:rgb(0%,0%,0%);fill-opacity:1;"> - <use xlink:href="#glyph0-1" x="15.778" y="17.414"/> -</g> -<g style="fill:rgb(0%,0%,0%);fill-opacity:1;"> - <use xlink:href="#glyph1-1" x="22.973" y="13.798"/> -</g> -<g style="fill:rgb(0%,0%,0%);fill-opacity:1;"> - <use xlink:href="#glyph0-1" x="72.841" y="17.414"/> -</g> -<g style="fill:rgb(0%,0%,0%);fill-opacity:1;"> - <use xlink:href="#glyph1-2" x="80.036" y="13.798"/> -</g> -<g style="fill:rgb(0%,0%,0%);fill-opacity:1;"> - <use xlink:href="#glyph0-1" x="15.778" y="58.468"/> -</g> -<g style="fill:rgb(0%,0%,0%);fill-opacity:1;"> - <use xlink:href="#glyph1-1" x="22.973" y="54.853"/> -</g> -<g style="fill:rgb(0%,0%,0%);fill-opacity:1;"> - <use xlink:href="#glyph0-1" x="72.841" y="58.468"/> -</g> -<g style="fill:rgb(0%,0%,0%);fill-opacity:1;"> - <use xlink:href="#glyph1-2" x="80.036" y="54.853"/> -</g> -<path style="fill:none;stroke-width:0.39848;stroke-linecap:butt;stroke-linejoin:miter;stroke:rgb(0%,0%,0%);stroke-opacity:1;stroke-miterlimit:10;" d="M -18.804281 19.587125 L 16.262125 19.587125 " transform="matrix(1,0,0,-1,51.691,34.509)"/> -<path style="fill:none;stroke-width:0.39848;stroke-linecap:round;stroke-linejoin:round;stroke:rgb(0%,0%,0%);stroke-opacity:1;stroke-miterlimit:10;" d="M -2.071139 2.39122 C -1.692233 0.957626 -0.848483 0.277939 -0.00082625 0.000595 C -0.848483 -0.280655 -1.692233 -0.956436 -2.071139 -2.39003 " transform="matrix(1,0,0,-1,68.15317,14.92247)"/> -<g style="fill:rgb(0%,0%,0%);fill-opacity:1;"> - <use xlink:href="#glyph1-3" x="47.623" y="12.579"/> -</g> -<path style="fill:none;stroke-width:0.39848;stroke-linecap:butt;stroke-linejoin:miter;stroke:rgb(0%,0%,0%);stroke-opacity:1;stroke-miterlimit:10;" d="M -29.605063 13.251188 L -29.605063 -12.850375 " transform="matrix(1,0,0,-1,51.691,34.509)"/> -<path style="fill:none;stroke-width:0.39848;stroke-linecap:round;stroke-linejoin:round;stroke:rgb(0%,0%,0%);stroke-opacity:1;stroke-miterlimit:10;" d="M -2.071959 2.389672 C -1.693053 0.956079 -0.849303 0.280297 -0.00164625 -0.0009525 C -0.849303 -0.278296 -1.693053 -0.957984 -2.071959 -2.391578 " transform="matrix(0,1,1,0,22.08689,47.56024)"/> -<g style="fill:rgb(0%,0%,0%);fill-opacity:1;"> - <use xlink:href="#glyph1-4" x="7.814" y="37.715"/> -</g> -<g style="fill:rgb(0%,0%,0%);fill-opacity:1;"> - <use xlink:href="#glyph2-1" x="14.234" y="34.708"/> -</g> -<path style="fill:none;stroke-width:0.39848;stroke-linecap:butt;stroke-linejoin:miter;stroke:rgb(0%,0%,0%);stroke-opacity:1;stroke-miterlimit:10;" d="M -18.804281 -21.467562 L 16.262125 -21.467562 " transform="matrix(1,0,0,-1,51.691,34.509)"/> -<path style="fill:none;stroke-width:0.39848;stroke-linecap:round;stroke-linejoin:round;stroke:rgb(0%,0%,0%);stroke-opacity:1;stroke-miterlimit:10;" d="M -2.071139 2.391443 C -1.692233 0.957849 -0.848483 0.278161 -0.00082625 0.0008175 C -0.848483 -0.280432 -1.692233 -0.956214 -2.071139 -2.389807 " transform="matrix(1,0,0,-1,68.15317,55.97738)"/> -<g style="fill:rgb(0%,0%,0%);fill-opacity:1;"> - <use xlink:href="#glyph1-5" x="47.982" y="63.087"/> -</g> -<path style="fill:none;stroke-width:0.39848;stroke-linecap:butt;stroke-linejoin:miter;stroke:rgb(0%,0%,0%);stroke-opacity:1;stroke-miterlimit:10;" d="M 28.531656 -13.248812 L 28.531656 12.85275 " transform="matrix(1,0,0,-1,51.691,34.509)"/> -<path style="fill:none;stroke-width:0.39848;stroke-linecap:round;stroke-linejoin:round;stroke:rgb(0%,0%,0%);stroke-opacity:1;stroke-miterlimit:10;" d="M -2.07349 2.390719 C -1.694584 0.957125 -0.850834 0.277438 0.00072875 0.00009375 C -0.850834 -0.27725 -1.694584 -0.956937 -2.07349 -2.390531 " transform="matrix(0,-1,-1,0,80.22275,21.45776)"/> -<g style="fill:rgb(0%,0%,0%);fill-opacity:1;"> - <use xlink:href="#glyph1-6" x="82.566" y="36.892"/> -</g> -</g> +<?xml version="1.0" encoding="UTF-8" standalone="no"?> +<svg + width="240.05289pt" + height="166.85213pt" + viewBox="0 0 240.05288 166.85212" + version="1.1" + id="svg26" + sodipodi:docname="Fig-SVD-Decomposition.svg" + inkscape:version="1.3 (0e150ed6c4, 2023-07-21)" + xmlns:inkscape="http://www.inkscape.org/namespaces/inkscape" + xmlns:sodipodi="http://sodipodi.sourceforge.net/DTD/sodipodi-0.dtd" + xmlns:xlink="http://www.w3.org/1999/xlink" + xmlns="http://www.w3.org/2000/svg" + xmlns:svg="http://www.w3.org/2000/svg"> + <sodipodi:namedview + id="namedview26" + pagecolor="#ffffff" + bordercolor="#000000" + borderopacity="0.25" + inkscape:showpageshadow="2" + inkscape:pageopacity="0.0" + inkscape:pagecheckerboard="0" + inkscape:deskcolor="#d1d1d1" + inkscape:document-units="pt" + inkscape:zoom="2.9407518" + inkscape:cx="136.35969" + inkscape:cy="116.46682" + inkscape:window-width="1920" + inkscape:window-height="1017" + inkscape:window-x="-8" + inkscape:window-y="-8" + inkscape:window-maximized="1" + inkscape:current-layer="svg26" /> + <defs + id="defs11"> + <g + id="g11"> + <symbol + overflow="visible" + id="glyph0-0"> + <path + style="stroke:none" + d="" + id="path1" /> + </symbol> + <symbol + overflow="visible" + id="glyph0-1"> + <path + style="stroke:none" + d="M 2.671875,-3.125 H 3.03125 l 1.5,2.3125 C 4.625,-0.65625 4.859375,-0.265625 4.96875,-0.125 5.046875,0 5.078125,0 5.296875,0 h 1.375 c 0.1875,0 0.34375,0 0.34375,-0.171875 0,-0.09375 -0.0625,-0.15625 -0.15625,-0.171875 C 6.484375,-0.421875 6,-1.09375 5.765625,-1.40625 5.6875,-1.5 5.1875,-2.15625 4.53125,-3.234375 5.40625,-3.40625 6.265625,-3.78125 6.265625,-4.96875 6.265625,-6.34375 4.8125,-6.828125 3.625,-6.828125 H 0.5 c -0.1875,0 -0.34375,0 -0.34375,0.171875 0,0.171875 0.1875,0.171875 0.265625,0.171875 0.578125,0 0.625,0.078125 0.625,0.578125 v 4.984375 c 0,0.5 -0.046875,0.578125 -0.625,0.578125 -0.078125,0 -0.265625,0 -0.265625,0.171875 C 0.15625,0 0.3125,0 0.5,0 H 3.234375 C 3.40625,0 3.5625,0 3.5625,-0.171875 c 0,-0.171875 -0.171875,-0.171875 -0.28125,-0.171875 -0.5625,0 -0.609375,-0.078125 -0.609375,-0.578125 z m 1.921875,-0.5 c 0.28125,-0.359375 0.3125,-0.890625 0.3125,-1.328125 0,-0.484375 -0.0625,-1.015625 -0.375,-1.421875 0.40625,0.09375 1.390625,0.40625 1.390625,1.40625 0,0.65625 -0.296875,1.15625 -1.328125,1.34375 z M 2.671875,-5.9375 c 0,-0.21875 0,-0.546875 0.625,-0.546875 0.84375,0 1.265625,0.359375 1.265625,1.53125 0,1.28125 -0.3125,1.46875 -1.890625,1.46875 z M 1.3125,-0.34375 C 1.390625,-0.53125 1.390625,-0.8125 1.390625,-0.890625 V -5.9375 c 0,-0.09375 0,-0.359375 -0.078125,-0.546875 h 1.140625 c -0.125,0.171875 -0.125,0.359375 -0.125,0.515625 v 5.078125 c 0,0.09375 0,0.359375 0.078125,0.546875 z M 3.4375,-3.125 c 0.078125,-0.015625 0.109375,-0.03125 0.1875,-0.03125 0.15625,0 0.375,-0.015625 0.515625,-0.03125 0.15625,0.234375 1.234375,2.015625 2.0625,2.84375 h -0.96875 z m 0,0" + id="path2" /> + </symbol> + <symbol + overflow="visible" + id="glyph1-0"> + <path + style="stroke:none" + d="" + id="path3" /> + </symbol> + <symbol + overflow="visible" + id="glyph1-1"> + <path + style="stroke:none" + d="m 0.84375,-0.4375 c -0.015625,0.09375 -0.0625,0.265625 -0.0625,0.28125 0,0.15625 0.125,0.21875 0.234375,0.21875 0.125,0 0.234375,-0.078125 0.28125,-0.140625 0.03125,-0.0625 0.078125,-0.296875 0.125,-0.4375 0.03125,-0.125 0.109375,-0.453125 0.140625,-0.625 0.046875,-0.15625 0.09375,-0.3125 0.125,-0.46875 0.078125,-0.28125 0.09375,-0.34375 0.296875,-0.625 C 2.171875,-2.515625 2.5,-2.875 3.03125,-2.875 c 0.390625,0 0.40625,0.359375 0.40625,0.484375 0,0.421875 -0.296875,1.1875 -0.40625,1.484375 -0.078125,0.203125 -0.109375,0.265625 -0.109375,0.375 0,0.375 0.296875,0.59375 0.65625,0.59375 0.703125,0 1,-0.953125 1,-1.0625 0,-0.09375 -0.078125,-0.09375 -0.109375,-0.09375 -0.09375,0 -0.09375,0.046875 -0.125,0.125 C 4.1875,-0.40625 3.875,-0.125 3.609375,-0.125 c -0.15625,0 -0.1875,-0.09375 -0.1875,-0.25 0,-0.15625 0.046875,-0.25 0.171875,-0.5625 0.078125,-0.21875 0.359375,-0.953125 0.359375,-1.34375 0,-0.671875 -0.53125,-0.796875 -0.90625,-0.796875 -0.578125,0 -0.96875,0.359375 -1.171875,0.640625 -0.046875,-0.484375 -0.453125,-0.640625 -0.75,-0.640625 -0.296875,0 -0.453125,0.21875 -0.546875,0.375 -0.15625,0.265625 -0.25,0.65625 -0.25,0.703125 0,0.078125 0.09375,0.078125 0.125,0.078125 0.09375,0 0.09375,-0.015625 0.140625,-0.203125 0.109375,-0.40625 0.25,-0.75 0.515625,-0.75 0.1875,0 0.234375,0.15625 0.234375,0.34375 0,0.125 -0.0625,0.390625 -0.125,0.578125 -0.046875,0.1875 -0.109375,0.46875 -0.140625,0.625 z m 0,0" + id="path4" /> + </symbol> + <symbol + overflow="visible" + id="glyph1-2"> + <path + style="stroke:none" + d="m 3.03125,-0.5625 c -0.046875,0.140625 -0.109375,0.375 -0.109375,0.40625 0,0.15625 0.125,0.21875 0.234375,0.21875 0.140625,0 0.25,-0.078125 0.28125,-0.140625 0.03125,-0.0625 0.09375,-0.296875 0.125,-0.4375 0.03125,-0.125 0.109375,-0.453125 0.15625,-0.625 0.03125,-0.15625 0.078125,-0.3125 0.109375,-0.46875 0.078125,-0.296875 0.078125,-0.3125 0.21875,-0.53125 C 4.265625,-2.484375 4.625,-2.875 5.15625,-2.875 c 0.390625,0 0.421875,0.3125 0.421875,0.484375 0,0.421875 -0.296875,1.1875 -0.421875,1.484375 -0.0625,0.203125 -0.09375,0.265625 -0.09375,0.375 0,0.375 0.296875,0.59375 0.65625,0.59375 0.703125,0 1,-0.953125 1,-1.0625 0,-0.09375 -0.078125,-0.09375 -0.109375,-0.09375 -0.09375,0 -0.09375,0.046875 -0.125,0.125 C 6.328125,-0.40625 6.015625,-0.125 5.75,-0.125 c -0.15625,0 -0.1875,-0.09375 -0.1875,-0.25 0,-0.15625 0.046875,-0.25 0.171875,-0.5625 0.078125,-0.21875 0.359375,-0.953125 0.359375,-1.34375 0,-0.109375 0,-0.40625 -0.25,-0.609375 -0.125,-0.078125 -0.328125,-0.1875 -0.65625,-0.1875 -0.625,0 -1,0.421875 -1.234375,0.703125 C 3.90625,-2.96875 3.40625,-3.078125 3.046875,-3.078125 2.46875,-3.078125 2.078125,-2.71875 1.875,-2.4375 1.828125,-2.921875 1.421875,-3.078125 1.125,-3.078125 c -0.296875,0 -0.453125,0.21875 -0.546875,0.375 -0.15625,0.265625 -0.25,0.65625 -0.25,0.703125 0,0.078125 0.09375,0.078125 0.125,0.078125 0.09375,0 0.09375,-0.015625 0.140625,-0.203125 0.109375,-0.40625 0.25,-0.75 0.515625,-0.75 0.1875,0 0.234375,0.15625 0.234375,0.34375 0,0.125 -0.0625,0.390625 -0.125,0.578125 -0.046875,0.1875 -0.109375,0.46875 -0.140625,0.625 L 0.84375,-0.4375 c -0.015625,0.09375 -0.0625,0.265625 -0.0625,0.28125 0,0.15625 0.125,0.21875 0.234375,0.21875 0.125,0 0.234375,-0.078125 0.28125,-0.140625 0.03125,-0.0625 0.078125,-0.296875 0.125,-0.4375 0.03125,-0.125 0.109375,-0.453125 0.140625,-0.625 0.046875,-0.15625 0.09375,-0.3125 0.125,-0.46875 0.078125,-0.28125 0.09375,-0.34375 0.296875,-0.625 C 2.171875,-2.515625 2.5,-2.875 3.03125,-2.875 c 0.390625,0 0.40625,0.359375 0.40625,0.484375 0,0.171875 -0.015625,0.265625 -0.125,0.65625 z m 0,0" + id="path5" /> + </symbol> + <symbol + overflow="visible" + id="glyph1-3"> + <path + style="stroke:none" + d="m 1.4375,-0.84375 c -0.25,0.390625 -0.46875,0.5625 -0.875,0.59375 -0.078125,0 -0.171875,0 -0.171875,0.140625 C 0.390625,-0.03125 0.453125,0 0.5,0 0.671875,0 0.90625,-0.03125 1.09375,-0.03125 1.3125,-0.03125 1.609375,0 1.8125,0 1.84375,0 1.953125,0 1.953125,-0.15625 1.953125,-0.25 1.859375,-0.25 1.828125,-0.25 1.78125,-0.265625 1.53125,-0.265625 1.53125,-0.453125 c 0,-0.09375 0.0625,-0.203125 0.09375,-0.265625 l 0.5625,-0.875 h 2 L 4.34375,-0.4375 C 4.328125,-0.359375 4.28125,-0.25 3.875,-0.25 c -0.09375,0 -0.1875,0 -0.1875,0.15625 C 3.6875,-0.0625 3.703125,0 3.796875,0 4,0 4.5,-0.03125 4.703125,-0.03125 c 0.125,0 0.28125,0.015625 0.40625,0.015625 C 5.234375,-0.015625 5.375,0 5.5,0 5.59375,0 5.640625,-0.0625 5.640625,-0.140625 5.640625,-0.25 5.5625,-0.25 5.453125,-0.25 c -0.40625,0 -0.421875,-0.0625 -0.4375,-0.21875 l -0.625,-4.3125 C 4.375,-4.921875 4.359375,-4.96875 4.234375,-4.96875 4.09375,-4.96875 4.0625,-4.90625 4,-4.8125 Z m 0.921875,-1 L 3.8125,-4.125 4.140625,-1.84375 Z m 0,0" + id="path6" /> + </symbol> + <symbol + overflow="visible" + id="glyph1-4"> + <path + style="stroke:none" + d="m 4.984375,-3.9375 c 0.25,-0.375 0.484375,-0.546875 0.859375,-0.578125 0.078125,0 0.15625,0 0.15625,-0.140625 0,-0.03125 -0.015625,-0.109375 -0.09375,-0.109375 -0.171875,0 -0.390625,0.03125 -0.5625,0.03125 -0.21875,0 -0.515625,-0.03125 -0.71875,-0.03125 -0.0625,0 -0.140625,0.03125 -0.140625,0.15625 0,0.09375 0.09375,0.09375 0.125,0.09375 0.21875,0.015625 0.28125,0.109375 0.28125,0.203125 0,0.109375 -0.046875,0.171875 -0.125,0.28125 l -2.28125,3.375 -0.640625,-3.5625 c -0.015625,-0.0625 -0.015625,-0.078125 -0.015625,-0.109375 0,-0.1875 0.390625,-0.1875 0.4375,-0.1875 0.125,0 0.21875,0 0.21875,-0.140625 0,-0.015625 -0.015625,-0.109375 -0.125,-0.109375 -0.203125,0 -0.6875,0.03125 -0.890625,0.03125 -0.171875,0 -0.609375,-0.03125 -0.78125,-0.03125 -0.0625,0 -0.140625,0.03125 -0.140625,0.15625 0,0.09375 0.09375,0.09375 0.171875,0.09375 0.390625,0 0.40625,0.046875 0.4375,0.234375 l 0.765625,4.234375 c 0.015625,0.140625 0.03125,0.1875 0.15625,0.1875 0.140625,0 0.171875,-0.046875 0.25,-0.15625 z m 0,0" + id="path7" /> + </symbol> + <symbol + overflow="visible" + id="glyph1-5"> + <path + style="stroke:none" + d="m 4.953125,-4.8125 c 0,-0.03125 -0.03125,-0.09375 -0.09375,-0.09375 -0.046875,0 -0.046875,0.015625 -0.140625,0.109375 L 4.375,-4.40625 c -0.265625,-0.375 -0.703125,-0.5 -1.125,-0.5 -0.984375,0 -1.859375,0.796875 -1.859375,1.609375 0,0.09375 0.03125,0.375 0.234375,0.640625 0.234375,0.265625 0.5,0.328125 0.96875,0.453125 0.140625,0.03125 0.484375,0.109375 0.59375,0.140625 0.21875,0.046875 0.640625,0.203125 0.640625,0.71875 0,0.5625 -0.59375,1.234375 -1.375,1.234375 -0.625,0 -1.359375,-0.21875 -1.359375,-0.984375 0,-0.078125 0.015625,-0.234375 0.046875,-0.359375 0,-0.03125 0,-0.03125 0,-0.03125 0,-0.09375 -0.078125,-0.09375 -0.109375,-0.09375 -0.09375,0 -0.109375,0.015625 -0.125,0.140625 l -0.359375,1.390625 c -0.015625,0.03125 -0.03125,0.0625 -0.03125,0.109375 0,0.03125 0.03125,0.078125 0.109375,0.078125 0.03125,0 0.046875,-0.015625 0.140625,-0.09375 0.078125,-0.09375 0.25,-0.3125 0.328125,-0.390625 C 1.46875,0.0625 2,0.140625 2.421875,0.140625 c 1.0625,0 1.90625,-0.90625 1.90625,-1.734375 0,-0.296875 -0.125,-0.578125 -0.28125,-0.734375 -0.234375,-0.25 -0.34375,-0.28125 -1.25,-0.5 C 2.65625,-2.859375 2.421875,-2.90625 2.359375,-2.9375 2.1875,-3 1.890625,-3.171875 1.890625,-3.5625 c 0,-0.5625 0.625,-1.109375 1.34375,-1.109375 0.765625,0 1.125,0.421875 1.125,1.078125 0,0.09375 -0.03125,0.25 -0.03125,0.3125 0,0.109375 0.078125,0.109375 0.125,0.109375 0.09375,0 0.109375,-0.046875 0.125,-0.15625 z m 0,0" + id="path8" /> + </symbol> + <symbol + overflow="visible" + id="glyph1-6"> + <path + style="stroke:none" + d="m 4.921875,-4 c 0.078125,-0.265625 0.1875,-0.5 0.75,-0.515625 0.03125,0 0.140625,0 0.140625,-0.140625 0,-0.046875 -0.046875,-0.109375 -0.109375,-0.109375 -0.21875,0 -0.484375,0.03125 -0.71875,0.03125 -0.234375,0 -0.53125,-0.03125 -0.734375,-0.03125 -0.03125,0 -0.140625,0 -0.140625,0.15625 0,0.09375 0.09375,0.09375 0.15625,0.09375 0.328125,0.015625 0.4375,0.125 0.4375,0.296875 0,0.03125 0,0.0625 0,0.09375 C 4.59375,-3.671875 4.078125,-1.578125 4,-1.359375 c -0.390625,0.890625 -1.21875,1.25 -1.78125,1.25 C 1.75,-0.109375 1.25,-0.34375 1.25,-1.03125 c 0,-0.171875 0.03125,-0.34375 0.0625,-0.5 L 2,-4.21875 c 0.0625,-0.234375 0.0625,-0.296875 0.609375,-0.296875 0.109375,0 0.203125,0 0.203125,-0.140625 0,-0.03125 -0.015625,-0.109375 -0.109375,-0.109375 -0.203125,0 -0.703125,0.03125 -0.90625,0.03125 -0.125,0 -0.375,0 -0.484375,0 C 1.171875,-4.75 1,-4.765625 0.875,-4.765625 c -0.046875,0 -0.15625,0 -0.15625,0.15625 0,0.09375 0.09375,0.09375 0.234375,0.09375 0,0 0.140625,0 0.265625,0.015625 0.140625,0.015625 0.15625,0.03125 0.15625,0.109375 0,0.03125 -0.078125,0.3125 -0.109375,0.453125 l -0.15625,0.625 -0.40625,1.59375 c -0.0625,0.28125 -0.0625,0.34375 -0.0625,0.484375 0,0.859375 0.71875,1.375 1.546875,1.375 0.96875,0 1.890625,-0.78125 2.125,-1.6875 z m 0,0" + id="path9" /> + </symbol> + <symbol + overflow="visible" + id="glyph2-0"> + <path + style="stroke:none" + d="" + id="path10" /> + </symbol> + <symbol + overflow="visible" + id="glyph2-1"> + <path + style="stroke:none" + d="M 2.890625,-2.96875 C 2.9375,-3.125 2.9375,-3.140625 3.140625,-3.140625 h 0.53125 c 0.5625,0 0.640625,0.15625 0.640625,0.46875 0,0.03125 0,0.125 -0.046875,0.359375 v 0.046875 c 0,0.046875 0.03125,0.09375 0.109375,0.09375 0.09375,0 0.09375,-0.046875 0.109375,-0.140625 l 0.125,-0.890625 C 4.625,-3.25 4.625,-3.265625 4.625,-3.28125 4.625,-3.359375 4.546875,-3.359375 4.453125,-3.359375 H 0.96875 c -0.140625,0 -0.140625,0 -0.1875,0.09375 L 0.453125,-2.34375 c 0,0.015625 -0.03125,0.078125 -0.03125,0.078125 0,0.03125 0.03125,0.09375 0.109375,0.09375 0.078125,0 0.09375,-0.015625 0.125,-0.140625 0.234375,-0.59375 0.375,-0.828125 1.046875,-0.828125 H 2.25 c 0.03125,0 0.109375,0 0.15625,0.015625 v 0.03125 L 1.734375,-0.4375 C 1.703125,-0.28125 1.6875,-0.21875 1.15625,-0.21875 H 1.046875 c -0.09375,0 -0.109375,0 -0.125,0.015625 C 0.890625,-0.171875 0.875,-0.125 0.875,-0.078125 0.875,-0.0625 0.890625,0 0.96875,0 1.125,0 1.28125,-0.015625 1.4375,-0.015625 c 0.140625,0 0.296875,0 0.453125,0 0.15625,0 0.328125,0 0.484375,0 C 2.53125,-0.015625 2.6875,0 2.84375,0 2.875,0 2.96875,0 2.96875,-0.140625 2.96875,-0.21875 2.890625,-0.21875 2.8125,-0.21875 H 2.703125 c -0.140625,0 -0.265625,0 -0.40625,-0.03125 -0.03125,0 -0.0625,-0.015625 -0.0625,-0.0625 0,-0.03125 0,-0.03125 0.015625,-0.109375 z m 0,0" + id="path11" /> + </symbol> + </g> + </defs> + <g + id="surface1" + transform="matrix(3,0,0,3,-25.082625,-22.830751)"> + <g + style="fill:#000000;fill-opacity:1" + id="g12"> + <use + xlink:href="#glyph0-1" + x="15.778" + y="17.414" + id="use11" /> + </g> + <g + style="fill:#000000;fill-opacity:1" + id="g13"> + <use + xlink:href="#glyph1-1" + x="22.973" + y="13.798" + id="use12" /> + </g> + <g + style="fill:#000000;fill-opacity:1" + id="g14"> + <use + xlink:href="#glyph0-1" + x="72.841003" + y="17.414" + id="use13" /> + </g> + <g + style="fill:#000000;fill-opacity:1" + id="g15"> + <use + xlink:href="#glyph1-2" + x="80.036003" + y="13.798" + id="use14" /> + </g> + <g + style="fill:#000000;fill-opacity:1" + id="g16"> + <use + xlink:href="#glyph0-1" + x="15.778" + y="58.467999" + id="use15" /> + </g> + <g + style="fill:#000000;fill-opacity:1" + id="g17"> + <use + xlink:href="#glyph1-1" + x="22.973" + y="54.853001" + id="use16" /> + </g> + <g + style="fill:#000000;fill-opacity:1" + id="g18"> + <use + xlink:href="#glyph0-1" + x="72.841003" + y="58.467999" + id="use17" /> + </g> + <g + style="fill:#000000;fill-opacity:1" + id="g19"> + <use + xlink:href="#glyph1-2" + x="80.036003" + y="54.853001" + id="use18" /> + </g> + <path + style="fill:none;stroke:#000000;stroke-width:0.39848;stroke-linecap:butt;stroke-linejoin:miter;stroke-miterlimit:10;stroke-opacity:1" + d="M -18.804281,19.587125 H 16.262125" + transform="matrix(1,0,0,-1,51.691,34.509)" + id="path19" /> + <path + style="fill:none;stroke:#000000;stroke-width:0.39848;stroke-linecap:round;stroke-linejoin:round;stroke-miterlimit:10;stroke-opacity:1" + d="M -2.071139,2.39122 C -1.692233,0.957626 -0.848483,0.277939 -8.2625e-4,5.95e-4 -0.848483,-0.280655 -1.692233,-0.956436 -2.071139,-2.39003" + transform="matrix(1,0,0,-1,68.15317,14.92247)" + id="path20" /> + <g + style="fill:#000000;fill-opacity:1" + id="g20"> + <use + xlink:href="#glyph1-3" + x="47.623001" + y="12.579" + id="use20" /> + </g> + <path + style="fill:none;stroke:#000000;stroke-width:0.39848;stroke-linecap:butt;stroke-linejoin:miter;stroke-miterlimit:10;stroke-opacity:1" + d="M -29.605063,13.251188 V -12.850375" + transform="matrix(1,0,0,-1,51.691,34.509)" + id="path21" /> + <path + style="fill:none;stroke:#000000;stroke-width:0.39848;stroke-linecap:round;stroke-linejoin:round;stroke-miterlimit:10;stroke-opacity:1" + d="M -2.071959,2.389672 C -1.693053,0.956079 -0.849303,0.280297 -0.00164625,-9.525e-4 -0.849303,-0.278296 -1.693053,-0.957984 -2.071959,-2.391578" + transform="matrix(0,1,1,0,22.08689,47.56024)" + id="path22" /> + <g + style="fill:#000000;fill-opacity:1" + id="g22"> + <use + xlink:href="#glyph1-4" + x="7.8140001" + y="37.715" + id="use22" /> + </g> + <g + style="fill:#000000;fill-opacity:1" + id="g23"> + <use + xlink:href="#glyph2-1" + x="14.234" + y="34.708" + id="use23" /> + </g> + <path + style="fill:none;stroke:#000000;stroke-width:0.39848;stroke-linecap:butt;stroke-linejoin:miter;stroke-miterlimit:10;stroke-opacity:1" + d="M -18.804281,-21.467562 H 16.262125" + transform="matrix(1,0,0,-1,51.691,34.509)" + id="path23" /> + <path + style="fill:none;stroke:#000000;stroke-width:0.39848;stroke-linecap:round;stroke-linejoin:round;stroke-miterlimit:10;stroke-opacity:1" + d="M -2.071139,2.391443 C -1.692233,0.957849 -0.848483,0.278161 -8.2625e-4,8.175e-4 -0.848483,-0.280432 -1.692233,-0.956214 -2.071139,-2.389807" + transform="matrix(1,0,0,-1,68.15317,55.97738)" + id="path24" /> + <g + style="fill:#000000;fill-opacity:1" + id="g24"> + <use + xlink:href="#glyph1-5" + x="47.981998" + y="63.087002" + id="use24" /> + </g> + <path + style="fill:none;stroke:#000000;stroke-width:0.39848;stroke-linecap:butt;stroke-linejoin:miter;stroke-miterlimit:10;stroke-opacity:1" + d="M 28.531656,-13.248812 V 12.85275" + transform="matrix(1,0,0,-1,51.691,34.509)" + id="path25" /> + <path + style="fill:none;stroke:#000000;stroke-width:0.39848;stroke-linecap:round;stroke-linejoin:round;stroke-miterlimit:10;stroke-opacity:1" + d="M -2.07349,2.390719 C -1.694584,0.957125 -0.850834,0.277438 7.2875e-4,9.375e-5 -0.850834,-0.27725 -1.694584,-0.956937 -2.07349,-2.390531" + transform="matrix(0,-1,-1,0,80.22275,21.45776)" + id="path26" /> + <g + style="fill:#000000;fill-opacity:1" + id="g26"> + <use + xlink:href="#glyph1-6" + x="82.566002" + y="36.891998" + id="use26" /> + </g> + </g> </svg> diff --git a/Chapter8/QuadraticForms.md b/Chapter8/QuadraticForms.md index 9d0d1f4..47169e7 100644 --- a/Chapter8/QuadraticForms.md +++ b/Chapter8/QuadraticForms.md @@ -130,8 +130,9 @@ the graph of a linear function $z = a_1x_1 + a_2x_2 + b$ is a plane. :::{figure} Images/Fig-QuadForms-Plane1.svg :name: Fig:QuadForms:Plane1 +:class: dark-light -The plane $z = \frac13x_1 - x_2 +2$ +The plane $z = \frac13x_1 - x_2 +2$. ::: The graph of a quadratic function is a curved surface. @@ -140,14 +141,16 @@ The graph of a quadratic function is a curved surface. :::{figure} Images/Fig-QuadForms-QuadSurface1.png :name: Fig:QuadForms:QuadSurface1 +:class: dark-light -The surface $z = -\frac13x_1^2 + \frac13x_2^2 + 2 $ +The surface $z = -\frac13x_1^2 + \frac13x_2^2 + 2 $. ::: :::{figure} Images/Fig-QuadForms-QuadSurface2.png :name: Fig:QuadForms:QuadSurface2 +:class: dark-light -The surface $z = -\frac12x_1^2 - \frac14x_2^2 + x_1 - x_2 + 2$ +The surface $z = -\frac12x_1^2 - \frac14x_2^2 + x_1 - x_2 + 2$. ::: The shape of the surfaces is in most cases determined by the quadratic part $\vect{x}^TA\vect{x}$. The linear part is then only relevant for the position. @@ -309,7 +312,8 @@ $$ :::: -::::{prf:proof} +::::{admonition} Proof of {prf:ref}`Prop:QuadForms:Substitution` +:class: myproof If we put $\vect{x} = P\vect{y}$ we get @@ -412,7 +416,8 @@ $$ where $\lambda_1, \ldots, \lambda_n$ are the _eigenvalues_ of the matrix $A$. :::: -::::{prf:proof} +::::{admonition} Proof of {prf:ref}`Prop:QuadForms:Diagonalize` +:class: myproof If we make the substitution $\vect{x} = Q\vect{y}$ we find that @@ -501,6 +506,7 @@ The property is known as _Sylvester's Law of Inertia_. :::: ::::{grasple} +:iframeclass: dark-light :url: https://embed.grasple.com/exercises/5a3d937b-6ecb-4fe8-b805-424af7e7ac55?id=90077 :label: grasple_exercise_8_2_T1 :dropdown: @@ -607,7 +613,8 @@ $q_A$ is **indefinite** if at least one eigenvalue is positive, and at least one :::: -::::{prf:proof} +::::{admonition} Proof of {prf:ref}`Thm:QuadForms:Classification` +:class: myproof This immediately follows from {prf:ref}`Prop:QuadForms:Diagonalize`. If we make the substitution $\vect{x} = Q\vect{y}$ with the matrix $Q$ of the orthogonal diagonalization, i.e., @@ -736,6 +743,7 @@ A _conic section_ or _conic_ is a curve that results when a circular cone is int :::{figure} Images/Fig-QuadForms-ConicSections.png :name: Fig:QuadForms:ConeWithPlanes +:class: dark-light Intersections of a cone with several planes (not going through the apex). @@ -809,8 +817,9 @@ Both curves have the coordinates axes as axes of symmetry. In this context they :::{figure} Images/Fig-QuadForms-EllipseHyperbola.svg :name: Fig:QuadForms:EllipseHyperbola +:class: dark-light -(Standard) Hyperbola and Ellipse +(Standard) Hyperbola and Ellipse. ::: ::::{exercise} @@ -1045,8 +1054,9 @@ See Figure {numref}`Fig:QuadForms:Ellipses` :::{figure} Images/Fig-QuadForms-Ellipses(2).svg :name: Fig:QuadForms:Ellipses +:class: dark-light -The two ellipses +The two ellipses. ::: :::: @@ -1055,6 +1065,7 @@ The two ellipses ## Grasple Exercises ::::{grasple} +:iframeclass: dark-light :url: https://embed.grasple.com/exercises/b0668dff-a174-447b-8008-09b242a804fb?id=87448 :label: grasple_exercise_8_2_1 :dropdown: @@ -1064,6 +1075,7 @@ The two ellipses ::::{grasple} +:iframeclass: dark-light :url: https://embed.grasple.com/exercises/eaec14bd-fe7a-4c7a-a269-68e1d369bc2b?id=90207 :label: grasple_exercise_8_2_2 :dropdown: @@ -1073,6 +1085,7 @@ The two ellipses ::::{grasple} +:iframeclass: dark-light :url: https://embed.grasple.com/exercises/7044809f-28ca-4caf-b3fc-139010112ca1?id=90052 :label: grasple_exercise_8_2_3 :dropdown: @@ -1082,6 +1095,7 @@ The two ellipses ::::{grasple} +:iframeclass: dark-light :url: https://embed.grasple.com/exercises/b71d8b9f-a3e8-48f6-b236-58f85a4818a6?id=90997 :label: grasple_exercise_8_2_4 :dropdown: @@ -1091,6 +1105,7 @@ The two ellipses ::::{grasple} +:iframeclass: dark-light :url: https://embed.grasple.com/exercises/f0f9e677-eb21-4f84-9850-039b24ee0999?id=93112 :label: grasple_exercise_8_2_5 :dropdown: @@ -1101,6 +1116,7 @@ The two ellipses ::::{grasple} +:iframeclass: dark-light :url: https://embed.grasple.com/exercises/f4657e73-219d-4ac9-bf17-81b240ddac96?id=93113 :label: grasple_exercise_8_2_6 :dropdown: @@ -1110,6 +1126,7 @@ The two ellipses ::::{grasple} +:iframeclass: dark-light :url: https://embed.grasple.com/exercises/21ad829b-77f5-4e14-9808-4fbbb901c9b4?id=93119 :label: grasple_exercise_8_2_7 :dropdown: @@ -1119,6 +1136,7 @@ The two ellipses ::::{grasple} +:iframeclass: dark-light :url: https://embed.grasple.com/exercises/03704333-e9db-46f0-b292-eb235aee6b22?id=91025 :label: grasple_exercise_8_2_8 :dropdown: @@ -1128,6 +1146,7 @@ The two ellipses ::::{grasple} +:iframeclass: dark-light :url: https://embed.grasple.com/exercises/8b851997-932f-4ee6-8dfd-785bd7908e1c?id=91091 :label: grasple_exercise_8_2_9 :dropdown: @@ -1136,6 +1155,7 @@ The two ellipses ::::{grasple} +:iframeclass: dark-light :url: https://embed.grasple.com/exercises/7c47dc31-b7d8-409e-9334-8a5de188c928?id=91912 :label: grasple_exercise_8_2_10 :dropdown: @@ -1146,6 +1166,7 @@ The two ellipses ::::{grasple} +:iframeclass: dark-light :url: https://embed.grasple.com/exercises/ee9c377f-5150-4264-8d3e-1150c482fd7f?id=93116 :label: grasple_exercise_8_2_11 :dropdown: @@ -1155,6 +1176,7 @@ The two ellipses ::::{grasple} +:iframeclass: dark-light :url: https://embed.grasple.com/exercises/51f56e96-3761-44c5-8d20-4cf0047a1ea4?id=93115 :label: grasple_exercise_8_2_12 :dropdown: @@ -1165,6 +1187,7 @@ The two ellipses The following exercises are a more theoretical. ::::{grasple} +:iframeclass: dark-light :url: https://embed.grasple.com/exercises/01a3d009-b2e0-4f2b-9d49-fcca955d6c5d?id=91048 :label: grasple_exercise_8_2_13 :dropdown: @@ -1174,6 +1197,7 @@ The following exercises are a more theoretical. ::::{grasple} +:iframeclass: dark-light :url: https://embed.grasple.com/exercises/7fea2ed7-c54f-4665-8ac8-611a8b0f6c5e?id=93114 :label: grasple_exercise_8_2_14 :dropdown: @@ -1183,6 +1207,7 @@ The following exercises are a more theoretical. ::::{grasple} +:iframeclass: dark-light :url: https://embed.grasple.com/exercises/78b55ab4-4f27-4d32-90ec-9bb28bb8f7b8?id=91021 :label: grasple_exercise_8_2_15 :dropdown: diff --git a/Chapter8/SingularValueDecomp.md b/Chapter8/SingularValueDecomp.md index e00ff01..b6c00b0 100644 --- a/Chapter8/SingularValueDecomp.md +++ b/Chapter8/SingularValueDecomp.md @@ -2,7 +2,7 @@ # Singular Value Decomposition (SVD) -We have seen already several ways to factorise matrices. In {numref}`Sec:MatFactor`, we studied the $LU$ and the $PLU$ factorisations, and in {numref}`Sec:Gram-Schmidt:QRdecomp` +We have seen already several ways to factorise matrices. In {numref}`Sec:LU-decomp`, we studied the $LU$ and the $PLU$ factorisations, and in {numref}`Sec:Gram-Schmidt:QRdecomp` we laid the QR Decomposition on the table. In {numref}`Sec:SymmetricMat` we showed that every symmetric (square) matrix $A$ can be written as $A = QDQ^{-1} = QDQ^T$. In this section it is in a sense this last decomposition we will generalize to non-symmetric matrices, and even to non-square matrices. We will introduce and study the so-called **singular value decomposition** (SVD) of a matrix. In the first subsection ({numref}`Subsec:SVD:Definition`) we will give the definition of the SVD, and illustrate it with a few examples. In the second subsection ({numref}`Subsec:SVD:Existence`) an algorithm to compute the SVD is presented and illustrated. And it will be shown that this algorithm always yields a proper SVD. @@ -162,7 +162,8 @@ Suppose $A = U\Sigma V^T$, with $U, \Sigma, V$ as in the definition. :::: -::::{dropdown} Proof of {prf:ref}`Prop:SVD:BasicProp` +::::{admonition} Proof of {prf:ref}`Prop:SVD:BasicProp` +:class: myproof, dropdown Suppose $\sigma_1>0, \ldots, \sigma_r>0$ and $\sigma_{r+1}=0 , \ldots, \sigma_p=0$, where $p=$min$\{m,n\}$. @@ -236,8 +237,8 @@ Moreover, the columns of $V$ are corresponding eigenvectors (of $A^TA$). :::: - -::::{dropdown} Proof of {prf:ref}`Prop:SVD:singularvalues` +::::{admonition} Proof of {prf:ref}`Prop:SVD:singularvalues` +:class: myproof, dropdown First of all, because of the properties of the matrices $U$, $\Sigma$ and $V$ we have that @@ -377,7 +378,8 @@ Let $A$ be an $m\times n$ matrix with real entries. Then the following propertie ::::: -::::{dropdown} Proof of {prf:ref}`Prop:SVD:propertiesATA` +::::{admonition} Proof of {prf:ref}`Prop:SVD:propertiesATA` +:class: myproof, dropdown :::{latexlist} :enumerated: true @@ -480,7 +482,8 @@ For every $m \times n$ matrix $A$ a singular value decomposition exists The proof consists in showing that all steps in the algorithm do what they are supposed to do, and that the final result consists of three matrices $U, \Sigma, V$ that can act as a singular value decomposition of $A$. -::::{dropdown} Proof of {prf:ref}`Thm:SVD:Existence` +::::{admonition} Proof of {prf:ref}`Thm:SVD:Existence` +:class: myproof, dropdown Let us first consider the six steps of the algorithm. @@ -666,13 +669,13 @@ In this section we will have a deeper look at the decomposition and its meaning. By definition, the matrices $U$ and $V$ in the SVD of an $m\times n$ matrix $A$ are orthogonal matrices. Thus the columns of $U$ give an orthonormal basis of $\R^m$, the columns of $V$ an orthonormal basis of $\R^n$. The decomposition $U\Sigma V^T$ then becomes a composition of transformations. We can visualise this using the graph in {numref}`Figure %s <Fig:SVD:decomposition>`: -:::{figure} Images/Fig-SVD-Decomposition.svg -:width: 300px +:::::{figure} Images/Fig-SVD-Decomposition.svg :name: Fig:SVD:decomposition +:class: dark-light Diagram showing the SVD as a composition of linear transformations. -:::: +::::: Let us first consider the case where $A$ is a $2 \times 2$ matrix, as in that case everything takes place in the plane, and we can make an exact drawing of what is going on. @@ -774,8 +777,9 @@ $$ :::{figure} Images/Fig-SVD-GeometricView.svg :name: Fig:SVD:GeometricView +:class: dark-light -Geometric decomposition of $\tilde{A} = \dfrac{1}{\sqrt{5}}\begin{bmatrix} 5 & 2 \\ 0 & 6 \end{bmatrix} = U\tilde{\Sigma}V^T$ +Geometric decomposition of $\tilde{A} = \dfrac{1}{\sqrt{5}}\begin{bmatrix} 5 & 2 \\ 0 & 6 \end{bmatrix} = U\tilde{\Sigma}V^T$. ::: :::: @@ -963,7 +967,7 @@ We expect $A_3$ to be a good approximation of $A$. $$ - As you can see, $A_3$ closely resembles $A$. (You have to trust us with regard to the hidden columns. ;-) <BR> + As you can see, $A_3$ closely resembles $A$. (You have to trust us with regard to the hidden columns. <html>😉</html> <BR> The gain: to store the $12\times10$ matrix $A$, we have to store $120$ reals. <BR> To store $U_3, \Sigma_{33}$ and $V_3$ , we only have to store $12\times3 + 3 + 10\times 3 = 69$ numbers. The middle 3 comes from first three elements ($=$ singular values) on the diagonal of $\Sigma$. @@ -977,6 +981,7 @@ We expect $A_3$ to be a good approximation of $A$. ## Grasple Exercises ::::{grasple} +:iframeclass: dark-light :url: https://embed.grasple.com/exercises/27adae2a-db2a-46fa-800f-49e4c0dfe4fa?id=93487 :label: grasple_exercise_8_3_9 :dropdown: @@ -985,6 +990,7 @@ We expect $A_3$ to be a good approximation of $A$. ::::{grasple} +:iframeclass: dark-light :url: https://embed.grasple.com/exercises/caac29d1-9700-4a30-8c7c-19ea6148258f?id=93490 :label: grasple_exercise_8_3_10 :dropdown: @@ -994,6 +1000,7 @@ We expect $A_3$ to be a good approximation of $A$. ::::{grasple} +:iframeclass: dark-light :url: https://embed.grasple.com/exercises/e4c651aa-a998-4e19-957b-20ddf41509bf?id=93468 :label: grasple_exercise_8_3_2 :dropdown: @@ -1001,6 +1008,7 @@ We expect $A_3$ to be a good approximation of $A$. :::: ::::{grasple} +:iframeclass: dark-light :url: https://embed.grasple.com/exercises/47ebaa77-9f3c-4363-a57e-d37242c6e598?id=93471 :label: grasple_exercise_8_3_3 :dropdown: @@ -1008,6 +1016,7 @@ We expect $A_3$ to be a good approximation of $A$. :::: ::::{grasple} +:iframeclass: dark-light :url: https://embed.grasple.com/exercises/79d22478-56e3-49ee-9b19-77ab1ad06eaf?id=93470 :label: grasple_exercise_8_3_4 :dropdown: @@ -1017,6 +1026,7 @@ We expect $A_3$ to be a good approximation of $A$. ::::{grasple} +:iframeclass: dark-light :url: https://embed.grasple.com/exercises/10affbae-4221-40f8-bf0e-df626a0e64ae?id=93479 :label: grasple_exercise_8_3_5 :dropdown: @@ -1025,6 +1035,7 @@ We expect $A_3$ to be a good approximation of $A$. ::::{grasple} +:iframeclass: dark-light :url: https://embed.grasple.com/exercises/37ea17f1-1bfb-4a19-b9e2-1292a593dfa3?id=93480 :label: grasple_exercise_8_3_6 :dropdown: @@ -1033,6 +1044,7 @@ We expect $A_3$ to be a good approximation of $A$. ::::{grasple} +:iframeclass: dark-light :url: https://embed.grasple.com/exercises/20dd219a-35f3-48d7-ad9d-35038047336b?id=92586 :label: grasple_exercise_8_3_7 :dropdown: @@ -1041,6 +1053,7 @@ We expect $A_3$ to be a good approximation of $A$. ::::{grasple} +:iframeclass: dark-light :url: https://embed.grasple.com/exercises/9848d7be-1530-46b0-941f-9ae76e95abfa?id=93481 :label: grasple_exercise_8_3_8 :dropdown: @@ -1049,6 +1062,7 @@ We expect $A_3$ to be a good approximation of $A$. ::::{grasple} +:iframeclass: dark-light :url: https://embed.grasple.com/exercises/3fdad317-fc18-4f88-b416-87cbd1d5e708?id=93495 :label: grasple_exercise_8_3_1 :dropdown: diff --git a/Chapter8/SymmetricMatrices.md b/Chapter8/SymmetricMatrices.md index 6933ccc..eb59118 100644 --- a/Chapter8/SymmetricMatrices.md +++ b/Chapter8/SymmetricMatrices.md @@ -23,7 +23,7 @@ Note that this definition implies that a symmetric matrix must be a square matri The matrices $$ - A_1 = \begin{bmatrix} 2&\color{blue}3&\color{red}4\\\color{blue}3&1&\color{green}5 \\\color{red}4&\color{green}5&7 \end{bmatrix} \quad \text{and} \quad + A_1 = \begin{bmatrix} 2&\class{blue}3&\class{red}4\\\class{blue}3&1&\class{green}5 \\\class{red}4&\class{green}5&7 \end{bmatrix} \quad \text{and} \quad A_2 = \begin{bmatrix} 0&2&3&4\\ 2&0&1&5 \\ 3&1&0&6 \\ @@ -68,7 +68,8 @@ In other contexts the word _spectrum_ of a transformation is used for the set of So, for a symmetric matrix an orthonormal basis of eigenvectors always exists. For the inertia tensor of a 3D body such a basis corresponds to the (perpendicular) principal axes. -::::{prf:proof} Of the converse of {prf:ref}`Thm:SymmetricMat:OrthogDiag`. +::::{admonition} Of the converse of {prf:ref}`Thm:SymmetricMat:OrthogDiag` +:class: myproof Recall that an orthogonal matrix is a matrix $Q$ for which $Q^{-1} = Q^T$. @@ -118,6 +119,7 @@ the image of the unit circle under the transformation $\vect{x} \mapsto A\vect{x :::{figure} Images/Fig-SymmetricMat-Evectors.svg :name: Fig:SymmetricMat:Evectors +:class: dark-light The transformation $T(\vect{x}) = \begin{bmatrix} 1&2\\2&-2 \end{bmatrix}\vect{x}$. ::: @@ -144,7 +146,8 @@ Suppose $A$ is a symmetric matrix. If $\mathbf{v}_1$ and $\mathbf{v}_2$ are eigenvectors of $A$ for _different_ eigenvalues, then $\mathbf{v}_1\perp \mathbf{v}_2$. :::: -::::{prf:proof} +::::{admonition} Proof of {prf:ref}`Prop:SymmetricMat:OrthogonalEigenvectors` +:class: myproof Suppose $\mathbf{v}_1$ and $\mathbf{v}_2$ are eigenvectors of the symmetric matrix $A$ for the different eigenvalues $\lambda_1,\lambda_2$. We want to show that $\mathbf{v}_1 \ip \mathbf{v}_2 = 0$. @@ -214,7 +217,8 @@ If $\vect{u}$ is an eigenvector of $A$ for the eigenvalue $\lambda$, and $\vect{ :::: -::::{dropdown} Solution to {numref}`Exc:SymmetricMat:uTAv` (_click to show_) +::::{admonition} Solution to {numref}`Exc:SymmetricMat:uTAv` +:class: solution, dropdown The proof is completely analogous to the proof of {prf:ref}`Prop:SymmetricMat:OrthogonalEigenvectors`. Suppose @@ -257,7 +261,8 @@ All eigenvalues of symmetric matrices are real. The easiest proof is via complex numbers. Feel free to skip it, in particular when you don't feel comfortable with complex numbers. -::::{dropdown} Proof of {prf:ref}`Prop:SymmetricMat:RealEigenvalues` +::::{admonition} Proof of {prf:ref}`Prop:SymmetricMat:RealEigenvalues` +:class: myproof, dropdown For two vectors $\mathbf{u},\mathbf{v}$ in $\C^n$ we consider the expression @@ -533,8 +538,8 @@ $$ And now it's time for the proof of the main theorem. The proof is of the type technical and intricate. Skip it if you like. -::::{dropdown} Proof of {prf:ref}`Thm:SymmetricMat:OrthogDiag` -%::::{prf:proof} (of {prf:ref}`Thm:SymmetricMat:OrthogDiag`) +::::{admonition} Proof of {prf:ref}`Thm:SymmetricMat:OrthogDiag` +:class: myproof, dropdown Suppose that $A$ is a symmetric $n \times n$ matrix. We know there are $n$ real, possibly multiple, eigenvalues $\lambda_1, \lambda_2, \ldots, \lambda_n$. @@ -870,7 +875,9 @@ of $n$ matrices $P_i$ that represent orthogonal projections onto one-dimensional Formula {eq}`Eq:SymmetricMat:SpectralDecomp` is referred to as being a **spectral decomposition** of the matrix $A$. :::: -::::{prf:proof} +::::{admonition} Proof of {prf:ref}`Thm:SymmetricMat:SpectralDecomp` +:class: myproof + For a general $n\times n$ symmetric matrix $A$, there exists an orthogonal diagonalization $$ @@ -911,7 +918,8 @@ $$ where $P_i$ denotes the orthogonal projection onto the eigenspace $E_{\lambda_i}$. :::: -::::{prf:proof} +::::{admonition} Proof of {prf:ref}`Cor:SymmetricMat:SpectralThm-2` +:class: myproof We know that @@ -983,6 +991,7 @@ $$ ::::{grasple} +:iframeclass: dark-light :url: https://embed.grasple.com/exercises/f76823e6-8936-4edf-bd0b-fa3a2aa7246f?id=88040 :label: grasple_exercise_8_1_1 :dropdown: @@ -991,6 +1000,7 @@ $$ ::::{grasple} +:iframeclass: dark-light :url: https://embed.grasple.com/exercises/9828a4b4-98f7-46c3-8dab-74ac04fc1955?id=88032 :label: grasple_exercise_8_1_2 :dropdown: @@ -999,6 +1009,7 @@ $$ ::::{grasple} +:iframeclass: dark-light :url: https://embed.grasple.com/exercises/8af926a0-80d8-459f-af55-c37a492a18c6?id=88045 :label: grasple_exercise_8_1_3 :dropdown: @@ -1007,6 +1018,7 @@ $$ ::::{grasple} +:iframeclass: dark-light :url: https://embed.grasple.com/exercises/03d75a31-7e1b-4dd2-be0a-5e9a93a0ef09?id=94940 :label: grasple_exercise_8_1_4 :dropdown: @@ -1015,6 +1027,7 @@ $$ ::::{grasple} +:iframeclass: dark-light :url: https://embed.grasple.com/exercises/926933aa-a33e-40f5-8e70-84bb9ed63fc8?id=87465 :label: grasple_exercise_8_1_5 :dropdown: @@ -1023,6 +1036,7 @@ $$ ::::{grasple} +:iframeclass: dark-light :url: https://embed.grasple.com/exercises/9aac9c37-aa3b-4d5a-bb92-f00c09e5f052?id=94943 :label: grasple_exercise_8_1_6 :dropdown: @@ -1031,6 +1045,7 @@ $$ ::::{grasple} +:iframeclass: dark-light :url: https://embed.grasple.com/exercises/a6a95823-15e4-4354-b89d-559306a5a7fa?id=94941 :label: grasple_exercise_8_1_7 :dropdown: @@ -1039,6 +1054,7 @@ $$ ::::{grasple} +:iframeclass: dark-light :url: https://embed.grasple.com/exercises/0403af25-edba-4bc6-b077-3de227253419?id=56931 :label: grasple_exercise_8_1_8 :dropdown: @@ -1047,6 +1063,7 @@ $$ ::::{grasple} +:iframeclass: dark-light :url: https://embed.grasple.com/exercises/3a45e358-4898-4d1d-b6f4-ba9679dd13e0?id=87765 :label: grasple_exercise_8_1_9 :dropdown: @@ -1055,6 +1072,7 @@ $$ ::::{grasple} +:iframeclass: dark-light :url: https://embed.grasple.com/exercises/eb8b0e2f-d909-47ce-8ef1-50ad67e2b0f6?id=87905 :label: grasple_exercise_8_1_10 :dropdown: @@ -1064,6 +1082,7 @@ $$ ::::{grasple} +:iframeclass: dark-light :url: https://embed.grasple.com/exercises/5ce15529-61a7-43d0-9fd3-5ad5469618e8?id=89131 :label: grasple_exercise_8_1_11 :dropdown: @@ -1073,6 +1092,7 @@ $$ ::::{grasple} +:iframeclass: dark-light :url: https://embed.grasple.com/exercises/5511e064-f22d-4601-9156-f00545d59f80?id=88649 :label: grasple_exercise_8_1_12 :dropdown: @@ -1081,6 +1101,7 @@ $$ ::::{grasple} +:iframeclass: dark-light :url: https://embed.grasple.com/exercises/c994fa76-f723-4700-922b-2f05ff0ef822?id=87760 :label: grasple_exercise_8_1_13 :dropdown: @@ -1089,13 +1110,16 @@ $$ ::::{grasple} +:iframeclass: dark-light :url: https://embed.grasple.com/exercises/4fd8d027-0e63-46ec-aaf5-f2d10d8707c9?id=87038 :label: grasple_exercise_8_1_14 :dropdown: :description: To give an example of a 3x3 symm matrix with given eigenvalues and eigenspace. +:::: ::::{grasple} +:iframeclass: dark-light :url: https://embed.grasple.com/exercises/77b08679-8974-453a-8f68-7e08e8ecfaf5?id=94944 :label: grasple_exercise_8_1_15 :dropdown: @@ -1105,6 +1129,7 @@ $$ The following exercise have a more theoretical flavour. ::::{grasple} +:iframeclass: dark-light :url: https://embed.grasple.com/exercises/6e0ebf73-fba2-46d0-aaa8-44e53ea07e53?id=88034 :label: grasple_exercise_8_1_16 :dropdown: @@ -1113,6 +1138,7 @@ The following exercise have a more theoretical flavour. ::::{grasple} +:iframeclass: dark-light :url: https://embed.grasple.com/exercises/73c272d7-dbb0-47c9-8bee-074b1f8cc154?id=82845 :label: grasple_exercise_8_1_17 :dropdown: @@ -1121,6 +1147,7 @@ The following exercise have a more theoretical flavour. ::::{grasple} +:iframeclass: dark-light :url: https://embed.grasple.com/exercises/7959665f-09d0-4362-a0e8-c0a3e613399f?id=82848 :label: grasple_exercise_8_1_18 :dropdown: @@ -1129,6 +1156,7 @@ The following exercise have a more theoretical flavour. ::::{grasple} +:iframeclass: dark-light :url: https://embed.grasple.com/exercises/33f5be5a-1cfa-4056-ac91-c2282de234b1?id=87864 :label: grasple_exercise_8_1_19 :dropdown: @@ -1137,6 +1165,7 @@ The following exercise have a more theoretical flavour. ::::{grasple} +:iframeclass: dark-light :url: https://embed.grasple.com/exercises/59c4c327-1603-4cc1-8b92-7415c691098b?id=87873 :label: grasple_exercise_8_1_20 :dropdown: diff --git a/Chapter9/DynSystContinuous.md b/Chapter9/DynSystContinuous.md index 727a2c9..7d0c92f 100644 --- a/Chapter9/DynSystContinuous.md +++ b/Chapter9/DynSystContinuous.md @@ -81,19 +81,21 @@ $$ :::{prf:definition} -In this context, we call $\vect{x}'=A\vect{x}$ a **system of (linear) differential equations** or a **synamical system**, $\vect{x}$ a **vector-valued function**, $\vect{x}'$ the **derivative** of $\vect{x}$, and the $x_{i}$'s the **component functions** of $\vect{x}$. Any $\vect{y}$ for which $\vect{y}'=A\vect{y}$ holds is called a **solution** to the system of differential equations. +In this context, we call $\vect{x}'=A\vect{x}$ a **system of (linear) differential equations** or a **dynamical system**, $\vect{x}$ a **vector-valued function**, $\vect{x}'$ the **derivative** of $\vect{x}$, and the $x_{i}$'s the **component functions** of $\vect{x}$. Any $\vect{y}$ for which $\vect{y}'=A\vect{y}$ holds is called a **solution** to the system of differential equations. ::: The following proposition will be quite useful to us. It tells us that, in order to find the full (infinite) solution set, it suffices to find a (finite) basis of solutions. :::{prf:proposition} +:label: Prop:DynSystContinuous:LinComb If $\vect{y}$ and $\vect{z}$ are solutions of $\vect{x}'=A\vect{x}$ and $c$ and $d$ are arbitrary real numbers, then $c\vect{y}+d\vect{z}$ is also a solution of $\vect{x}=A\vect{x}'$. ::: -:::{prf:proof} +:::{admonition} Proof of {prf:ref}`Prop:DynSystContinuous:LinComb` +:class: myproof Exercise. @@ -184,13 +186,13 @@ A=\begin{bmatrix} \end{bmatrix}. $$ -Since $A$ is an upper diagonal matrix, we can conclude that its eigenvalues are $-\beta$ and $-\alpha$, which for simplicity's sake we will assume to be different. Therefore, a solution to the system of linear differential equations $\vect{y}'=A\vect{y}$ is given by +Since $A$ is an upper diagonal matrix, we can conclude that its eigenvalues are $-\beta$ and $-\alpha$, which, for simplicity's sake, we will assume to be different. Therefore, a solution to the system of linear differential equations $\vect{y}'=A\vect{y}$ is given by $$ \vect{y}=c_{1}\vect{v}_{-\beta}e^{-\beta t}+c_{2}\vect{v}_{-\alpha}e^{-\alpha t} $$ -where $c_{1}$ and $c_{2}$ are some constants while $\vect{v}_{-\beta}$ and $\vect{v}_{-\alpha}$ are the eigenvectors of $A$ corresponding $-\beta $ and $-\alpha$, respectively. In particular, if $t$ gets very large, we find very large but negative exponents on the right hand side. That is, both $\lim_{t\to\infty}S(t)$ and $\lim_{t\to\infty} I(t)$ are $0$. This makes perfect sense intuitively, as we expect all members of the population to get infected and recover. After that, they are neither susceptible nor infected anymore. +where $c_{1}$ and $c_{2}$ are some constants while $\vect{v}_{-\beta}$ and $\vect{v}_{-\alpha}$ are the eigenvectors of $A$ corresponding to $-\beta $ and $-\alpha$, respectively. In particular, if $t$ gets very large, we find very large but negative exponents on the right hand side. That is, both $\lim_{t\to\infty}S(t)$ and $\lim_{t\to\infty} I(t)$ are $0$. This makes perfect sense intuitively, as we expect all members of the population to get infected and recover. After that, they are neither susceptible nor infected anymore. Note that, in the long run, we will end up arbitrarily close to $\vect{0}$ regardless of the starting values of $S$ and $I$. That is, if we start in any $\vect{v}$ and follow the solution $\vect{y}(t)$ of the system of linear differential equations satisfying the initial condition $\vect{y}(0)=\vect{v}$, then we will always end up in $\vect{0}$. In other words, $\vect{v}$ *attracts* all points. @@ -222,8 +224,11 @@ a **saddle point** if $\lambda_{1}\lambda_{2}<0$, i.e. if $\lambda_{1}$ and $\la </ul> +The three different behaviours are illustrated in {numref}`Figure %s <Fig:DynSystContinuous:Trajectories>`. + ::: + Let us once again consider the system $\vect{y}'=A\vect{y}$. By {prf:ref}`Prop:DynSystContinuous:EVsgiveSols`, we can find solutions $\vect{y}=\vect{v}e^{\lambda t}$ where $\lambda$ is an eigenvalue of $A$ and $\vect{v}$ is a corresponding eigenvector. But if $\lambda$ is not a real number, this does not give a real-valued function. In some applications that's perfectly fine, but often we're interested in real solutions to systems of linear differential equations. Can we stil find any of those if some eigenvalues are complex? Yes, we can! First, we can use the following well-known fact from calculus: @@ -273,14 +278,22 @@ $$ $$ -are linearly independent solutions to the linear system of differential equations $\vect{y}'=A\vect{y}$. In this case, the origin is called a **spiral point**. +are linearly independent solutions to the linear system of differential equations $\vect{y}'=A\vect{y}$. In this case, the origin is called a **spiral point**. An example of a spiral point can be seen in {numref}`Figure %s <Fig:DynSystContinuous:Trajectories>`. ::: If $a<0$ in this proposition, then $e^{at}$ will become arbitrarily small, so as $t$ increases, $\vect{y}(t)$ will approach $0$. In this case, the trajectory will spiral towards the origin. If $a>0$, then $e^{at}$ becomes arbitrarily large and the trajectory will spiral away from the origin. + +::::{figure} Images/Fig-DynSystContinuous-Trajectories.svg +:name: Fig:DynSystContinuous:Trajectories +:class: dark-light + +The possible behaviours of the origin illustrated. On the top left, it's an attractor, on the top right a repeller, on the bottom left a saddle point, and on the bottom right a spiral point. For the spiral point, do you expect the real part of the eigenvalues to be positive or negative, given the figure? +:::: + ## Decoupling a dynamical system -In the previous section, we say that the eigenvalues and eigenvectors determine the long-term behaviour of a dynamical system. This leads naturally to the suspicions that, perhaps, diagonalizing a matrix can help us solve a system of linear differential equations. This is indeed the case. +In the previous section, we saw that the eigenvalues and eigenvectors determine the long-term behaviour of a dynamical system. This leads naturally to the suspicion that, perhaps, diagonalizing a matrix can help us solve a system of linear differential equations. This is indeed the case. -Let us assume $A$ is an $n\times n$-matrix with eigenfunctions $\vect{y}_{1},...,\vect{v}_{n}$, that is $\vect{y}_{i}=\vect{v}_{i}e^{\lambda_{i}t}$ where $\lambda_{i}$ is an eigenvalue of $A$ with associated eigenvector $\vect{v}_{i}$. \ No newline at end of file +Let us assume $A$ is an $n\times n$-matrix with eigenfunctions $\vect{y}_{1},...,\vect{y}_{n}$, that is $\vect{y}_{i}=\vect{v}_{i}e^{\lambda_{i}t}$ where $\lambda_{i}$ is an eigenvalue of $A$ with associated eigenvector $\vect{v}_{i}$. \ No newline at end of file diff --git a/Chapter9/DynSystDiscrete.md b/Chapter9/DynSystDiscrete.md index 5829e90..67deffa 100644 --- a/Chapter9/DynSystDiscrete.md +++ b/Chapter9/DynSystDiscrete.md @@ -45,6 +45,7 @@ individuals of the age group 'full grown' reproduce 4 offspring and with probabi :::{figure} Images/Fig-DynSystDiscrete-LeslieGraph.svg :name: Fig:DynSystDiscrete:Leslie1 +:class: dark-light The graph of the population model. ::: @@ -179,7 +180,8 @@ The expression for $\vect{x}_k$ with unspecified parameters $c_1,\ldots,c_n$ is :::: -::::{prf:proof} +::::{admonition} Proof of {prf:ref}`Prop:DynSystDiscrete:DiagCase` +:class: myproof There is nothing much to prove. @@ -262,7 +264,8 @@ If $|\lambda_1| = 1$ the origin is stable but not asymptotically stable. </ul> :::: -::::{prf:proof} +::::{admonition} Proof of {prf:ref}`Prop:DynSystDiscrete:DiagCase2` +:class: myproof From Equation {eq}`Eq:DynSystDiscrete:GenSolDiagble` in {prf:ref}`Prop:DynSystDiscrete:DiagCase` it follows immediately that if all @@ -384,8 +387,9 @@ The trajectories in $\R^4$ are hard to plot. Instead we can plot the progression :::{figure} Images/Fig-DynSystDiscrete-Leslie-2.svg :name: Fig:DynSystDiscrete:Leslie2 +:class: dark-light -The evolvement in time of the population model +The evolvement in time of the population model. ::: What is not so clear in the picture is that for large $k$ the state vectors $\vect{x}_k$ are approximately eigenvectors for the matrix $M$. However, numerical values shed light on this phenomenon. For instance, the last two 'states' are given by @@ -467,8 +471,9 @@ In {numref}`Fig:DynSystDiscrete:SimplestSystem` the paths are shown for the star :::{figure} Images/Fig-DynSystDiscrete-SimplestSystem.svg :name: Fig:DynSystDiscrete:SimplestSystem +:class: dark-light -A very simple dynamical system +A very simple dynamical system. ::: @@ -499,8 +504,9 @@ matrix $A = \left[\begin{array}{cc} 0.5 & 0.2 \\ -0.2 & 1.0 \end{array}\right]$. :::{figure} Images/Fig-DynSystDiscrete-NiceNode.svg :name: Fig:DynSystDiscrete:NiceNode +:class: dark-light -A dynamical system with a stable node +A dynamical system with a stable node. ::: @@ -549,8 +555,9 @@ $(1,-1)$ and $(-1,1)$. On each of them the direction of the points $\vect{x}_k$ :::{figure} Images/Fig-DynSystDiscrete-Spiral1A.svg :name: Fig:DynSystDiscrete:Spiral1A +:class: dark-light -A dynamical system with a spiral point +A dynamical system with a spiral point. ::: @@ -599,8 +606,9 @@ $$ :::{figure} Images/Fig-DynSystDiscrete-Spiral1B.svg :name: Fig:DynSystDiscrete:Spiral1B +:class: dark-light -One trajectory $\vect{y}_0$, $\vect{y}_1$, $\vect{y}_2$, ..... +One trajectory $\vect{y}_0$, $\vect{y}_1$, $\vect{y}_2$, $\ldots$. ::: diff --git a/Chapter9/Images/Fig-DynSystContinuous-Trajectories.svg b/Chapter9/Images/Fig-DynSystContinuous-Trajectories.svg new file mode 100644 index 0000000..e97f0d2 --- /dev/null +++ b/Chapter9/Images/Fig-DynSystContinuous-Trajectories.svg @@ -0,0 +1,445 @@ +<?xml version="1.0" encoding="UTF-8"?> +<svg xmlns="http://www.w3.org/2000/svg" xmlns:xlink="http://www.w3.org/1999/xlink" width="387.78pt" height="374.182pt" viewBox="0 0 387.78 374.182" version="1.2"> +<defs> +<g> +<symbol overflow="visible" id="glyph0-0"> +<path style="stroke:none;" d=""/> +</symbol> +<symbol overflow="visible" id="glyph0-1"> +<path style="stroke:none;" d="M 8.65625 -5.21875 C 8.65625 -7.1875 7.375 -8.390625 5.703125 -8.390625 C 3.140625 -8.390625 0.578125 -5.65625 0.578125 -2.890625 C 0.578125 -1.03125 1.8125 0.25 3.546875 0.25 C 6.046875 0.25 8.65625 -2.359375 8.65625 -5.21875 Z M 3.609375 -0.03125 C 2.640625 -0.03125 1.59375 -0.734375 1.59375 -2.59375 C 1.59375 -3.6875 1.984375 -5.453125 2.96875 -6.65625 C 3.84375 -7.703125 4.84375 -8.125 5.640625 -8.125 C 6.6875 -8.125 7.703125 -7.375 7.703125 -5.65625 C 7.703125 -4.59375 7.25 -2.9375 6.453125 -1.796875 C 5.578125 -0.578125 4.5 -0.03125 3.609375 -0.03125 Z M 3.609375 -0.03125 "/> +</symbol> +<symbol overflow="visible" id="glyph0-2"> +<path style="stroke:none;" d="M 5.65625 -4.859375 C 5.265625 -4.796875 5.125 -4.5 5.125 -4.28125 C 5.125 -4 5.359375 -3.90625 5.515625 -3.90625 C 5.875 -3.90625 6.125 -4.203125 6.125 -4.53125 C 6.125 -5.03125 5.5625 -5.25 5.0625 -5.25 C 4.328125 -5.25 3.921875 -4.546875 3.8125 -4.3125 C 3.546875 -5.203125 2.796875 -5.25 2.59375 -5.25 C 1.375 -5.25 0.734375 -3.703125 0.734375 -3.4375 C 0.734375 -3.390625 0.78125 -3.328125 0.859375 -3.328125 C 0.953125 -3.328125 0.984375 -3.390625 1 -3.453125 C 1.40625 -4.765625 2.203125 -5.015625 2.546875 -5.015625 C 3.09375 -5.015625 3.1875 -4.515625 3.1875 -4.234375 C 3.1875 -3.96875 3.125 -3.703125 2.984375 -3.125 L 2.578125 -1.484375 C 2.390625 -0.78125 2.046875 -0.125 1.421875 -0.125 C 1.359375 -0.125 1.0625 -0.125 0.8125 -0.28125 C 1.234375 -0.359375 1.328125 -0.71875 1.328125 -0.859375 C 1.328125 -1.09375 1.15625 -1.234375 0.9375 -1.234375 C 0.640625 -1.234375 0.328125 -0.984375 0.328125 -0.609375 C 0.328125 -0.109375 0.890625 0.125 1.40625 0.125 C 1.984375 0.125 2.390625 -0.328125 2.640625 -0.828125 C 2.828125 -0.125 3.421875 0.125 3.859375 0.125 C 5.078125 0.125 5.71875 -1.4375 5.71875 -1.703125 C 5.71875 -1.765625 5.671875 -1.8125 5.609375 -1.8125 C 5.5 -1.8125 5.484375 -1.75 5.453125 -1.65625 C 5.125 -0.609375 4.4375 -0.125 3.90625 -0.125 C 3.484375 -0.125 3.25 -0.421875 3.25 -0.921875 C 3.25 -1.1875 3.296875 -1.375 3.5 -2.15625 L 3.90625 -3.78125 C 4.09375 -4.5 4.5 -5.015625 5.046875 -5.015625 C 5.0625 -5.015625 5.40625 -5.015625 5.65625 -4.859375 Z M 5.65625 -4.859375 "/> +</symbol> +<symbol overflow="visible" id="glyph0-3"> +<path style="stroke:none;" d="M 3.140625 1.328125 C 2.8125 1.78125 2.34375 2.1875 1.765625 2.1875 C 1.625 2.1875 1.046875 2.171875 0.875 1.625 C 0.90625 1.640625 0.96875 1.640625 0.984375 1.640625 C 1.34375 1.640625 1.578125 1.328125 1.578125 1.046875 C 1.578125 0.78125 1.359375 0.671875 1.1875 0.671875 C 0.984375 0.671875 0.578125 0.828125 0.578125 1.40625 C 0.578125 2.015625 1.078125 2.4375 1.765625 2.4375 C 2.953125 2.4375 4.15625 1.328125 4.5 0.015625 L 5.65625 -4.640625 C 5.671875 -4.703125 5.703125 -4.765625 5.703125 -4.84375 C 5.703125 -5.015625 5.5625 -5.140625 5.375 -5.140625 C 5.265625 -5.140625 5.015625 -5.09375 4.921875 -4.734375 L 4.046875 -1.234375 C 3.984375 -1.015625 3.984375 -0.984375 3.890625 -0.859375 C 3.640625 -0.53125 3.25 -0.125 2.6875 -0.125 C 2.015625 -0.125 1.953125 -0.78125 1.953125 -1.09375 C 1.953125 -1.78125 2.28125 -2.6875 2.59375 -3.546875 C 2.734375 -3.90625 2.796875 -4.0625 2.796875 -4.296875 C 2.796875 -4.796875 2.4375 -5.25 1.859375 -5.25 C 0.765625 -5.25 0.328125 -3.53125 0.328125 -3.4375 C 0.328125 -3.390625 0.375 -3.328125 0.453125 -3.328125 C 0.5625 -3.328125 0.578125 -3.375 0.625 -3.546875 C 0.90625 -4.546875 1.359375 -5.015625 1.828125 -5.015625 C 1.9375 -5.015625 2.140625 -5.015625 2.140625 -4.625 C 2.140625 -4.3125 2 -3.96875 1.828125 -3.515625 C 1.234375 -1.953125 1.234375 -1.5625 1.234375 -1.28125 C 1.234375 -0.140625 2.046875 0.125 2.640625 0.125 C 3 0.125 3.421875 0.015625 3.84375 -0.421875 C 3.671875 0.28125 3.546875 0.75 3.140625 1.328125 Z M 3.140625 1.328125 "/> +</symbol> +</g> +<clipPath id="clip1"> + <path d="M 12.132813 92 L 104 92 L 104 182.160156 L 12.132813 182.160156 Z M 12.132813 92 "/> +</clipPath> +<clipPath id="clip2"> + <path d="M 45 91 L 104 91 L 104 182.160156 L 45 182.160156 Z M 45 91 "/> +</clipPath> +<clipPath id="clip3"> + <path d="M 72 91 L 104 91 L 104 182.160156 L 72 182.160156 Z M 72 91 "/> +</clipPath> +<clipPath id="clip4"> + <path d="M 79 90 L 140 90 L 140 182.160156 L 79 182.160156 Z M 79 90 "/> +</clipPath> +<clipPath id="clip5"> + <path d="M 81 90 L 173.171875 90 L 173.171875 182.160156 L 81 182.160156 Z M 81 90 "/> +</clipPath> +<clipPath id="clip6"> + <path d="M 12.132813 91 L 104 91 L 104 152 L 12.132813 152 Z M 12.132813 91 "/> +</clipPath> +<clipPath id="clip7"> + <path d="M 81 84 L 173.171875 84 L 173.171875 149 L 81 149 Z M 81 84 "/> +</clipPath> +<clipPath id="clip8"> + <path d="M 12.132813 90 L 104 90 L 104 132 L 12.132813 132 Z M 12.132813 90 "/> +</clipPath> +<clipPath id="clip9"> + <path d="M 81 72 L 173.171875 72 L 173.171875 113 L 81 113 Z M 81 72 "/> +</clipPath> +<clipPath id="clip10"> + <path d="M 12.132813 54 L 104 54 L 104 119 L 12.132813 119 Z M 12.132813 54 "/> +</clipPath> +<clipPath id="clip11"> + <path d="M 82 51 L 173.171875 51 L 173.171875 112 L 82 112 Z M 82 51 "/> +</clipPath> +<clipPath id="clip12"> + <path d="M 12.132813 21.121094 L 104 21.121094 L 104 113 L 12.132813 113 Z M 12.132813 21.121094 "/> +</clipPath> +<clipPath id="clip13"> + <path d="M 45 21.121094 L 107 21.121094 L 107 113 L 45 113 Z M 45 21.121094 "/> +</clipPath> +<clipPath id="clip14"> + <path d="M 81 21.121094 L 114 21.121094 L 114 113 L 81 113 Z M 81 21.121094 "/> +</clipPath> +<clipPath id="clip15"> + <path d="M 82 21.121094 L 140 21.121094 L 140 112 L 82 112 Z M 82 21.121094 "/> +</clipPath> +<clipPath id="clip16"> + <path d="M 82 21.121094 L 173.171875 21.121094 L 173.171875 112 L 82 112 Z M 82 21.121094 "/> +</clipPath> +<clipPath id="clip17"> + <path d="M 199.945313 92 L 291 92 L 291 182.160156 L 199.945313 182.160156 Z M 199.945313 92 "/> +</clipPath> +<clipPath id="clip18"> + <path d="M 233 91 L 292 91 L 292 182.160156 L 233 182.160156 Z M 233 91 "/> +</clipPath> +<clipPath id="clip19"> + <path d="M 260 91 L 292 91 L 292 182.160156 L 260 182.160156 Z M 260 91 "/> +</clipPath> +<clipPath id="clip20"> + <path d="M 266 90 L 328 90 L 328 182.160156 L 266 182.160156 Z M 266 90 "/> +</clipPath> +<clipPath id="clip21"> + <path d="M 269 90 L 360.980469 90 L 360.980469 182.160156 L 269 182.160156 Z M 269 90 "/> +</clipPath> +<clipPath id="clip22"> + <path d="M 199.945313 91 L 292 91 L 292 152 L 199.945313 152 Z M 199.945313 91 "/> +</clipPath> +<clipPath id="clip23"> + <path d="M 269 84 L 360.980469 84 L 360.980469 149 L 269 149 Z M 269 84 "/> +</clipPath> +<clipPath id="clip24"> + <path d="M 199.945313 90 L 292 90 L 292 132 L 199.945313 132 Z M 199.945313 90 "/> +</clipPath> +<clipPath id="clip25"> + <path d="M 269 72 L 360.980469 72 L 360.980469 113 L 269 113 Z M 269 72 "/> +</clipPath> +<clipPath id="clip26"> + <path d="M 199.945313 54 L 292 54 L 292 119 L 199.945313 119 Z M 199.945313 54 "/> +</clipPath> +<clipPath id="clip27"> + <path d="M 269 51 L 360.980469 51 L 360.980469 112 L 269 112 Z M 269 51 "/> +</clipPath> +<clipPath id="clip28"> + <path d="M 199.945313 21.121094 L 292 21.121094 L 292 113 L 199.945313 113 Z M 199.945313 21.121094 "/> +</clipPath> +<clipPath id="clip29"> + <path d="M 233 21.121094 L 294 21.121094 L 294 113 L 233 113 Z M 233 21.121094 "/> +</clipPath> +<clipPath id="clip30"> + <path d="M 269 21.121094 L 301 21.121094 L 301 113 L 269 113 Z M 269 21.121094 "/> +</clipPath> +<clipPath id="clip31"> + <path d="M 269 21.121094 L 328 21.121094 L 328 112 L 269 112 Z M 269 21.121094 "/> +</clipPath> +<clipPath id="clip32"> + <path d="M 270 21.121094 L 360.980469 21.121094 L 360.980469 112 L 270 112 Z M 270 21.121094 "/> +</clipPath> +<clipPath id="clip33"> + <path d="M 126 202.148438 L 172 202.148438 L 172 337 L 126 337 Z M 126 202.148438 "/> +</clipPath> +<clipPath id="clip34"> + <path d="M 111 202.148438 L 170 202.148438 L 170 348 L 111 348 Z M 111 202.148438 "/> +</clipPath> +<clipPath id="clip35"> + <path d="M 81 202.148438 L 140 202.148438 L 140 294 L 81 294 Z M 81 202.148438 "/> +</clipPath> +<clipPath id="clip36"> + <path d="M 23 202.148438 L 131 202.148438 L 131 255 L 23 255 Z M 23 202.148438 "/> +</clipPath> +<clipPath id="clip37"> + <path d="M 28 202.148438 L 122 202.148438 L 122 241 L 28 241 Z M 28 202.148438 "/> +</clipPath> +<clipPath id="clip38"> + <path d="M 12.132813 202.148438 L 104 202.148438 L 104 294 L 12.132813 294 Z M 12.132813 202.148438 "/> +</clipPath> +<clipPath id="clip39"> + <path d="M 12.132813 208 L 76 208 L 76 359 L 12.132813 359 Z M 12.132813 208 "/> +</clipPath> +<clipPath id="clip40"> + <path d="M 12.132813 217 L 65 217 L 65 363 L 12.132813 363 Z M 12.132813 217 "/> +</clipPath> +<clipPath id="clip41"> + <path d="M 45 271 L 104 271 L 104 363.1875 L 45 363.1875 Z M 45 271 "/> +</clipPath> +<clipPath id="clip42"> + <path d="M 54 310 L 163 310 L 163 363.1875 L 54 363.1875 Z M 54 310 "/> +</clipPath> +<clipPath id="clip43"> + <path d="M 63 324 L 157 324 L 157 363.1875 L 63 363.1875 Z M 63 324 "/> +</clipPath> +<clipPath id="clip44"> + <path d="M 81 271 L 173.171875 271 L 173.171875 363.1875 L 81 363.1875 Z M 81 271 "/> +</clipPath> +<clipPath id="clip45"> + <path d="M 199.945313 237 L 360.980469 237 L 360.980469 351 L 199.945313 351 Z M 199.945313 237 "/> +</clipPath> +<clipPath id="clip46"> + <path d="M 199.945313 215 L 360.980469 215 L 360.980469 329 L 199.945313 329 Z M 199.945313 215 "/> +</clipPath> +</defs> +<g id="surface1"> +<path style="fill:none;stroke-width:0.3985;stroke-linecap:butt;stroke-linejoin:miter;stroke:rgb(0%,0%,0%);stroke-opacity:1;stroke-miterlimit:10;" d="M -0.000527242 80.695178 L 159.397955 80.695178 " transform="matrix(0.997819,0,0,-0.997819,12.133339,182.15978)"/> +<path style=" stroke:none;fill-rule:nonzero;fill:rgb(0%,0%,0%);fill-opacity:1;" d="M 173.171875 101.640625 L 169.992188 100.050781 L 171.183594 101.640625 L 169.992188 103.230469 "/> +<path style="fill:none;stroke-width:0.3985;stroke-linecap:butt;stroke-linejoin:miter;stroke:rgb(0%,0%,0%);stroke-opacity:1;stroke-miterlimit:10;" d="M 80.695028 -0.000376923 L 80.695028 159.398106 " transform="matrix(0.997819,0,0,-0.997819,12.133339,182.15978)"/> +<path style=" stroke:none;fill-rule:nonzero;fill:rgb(0%,0%,0%);fill-opacity:1;" d="M 92.652344 21.121094 L 91.0625 24.300781 L 92.652344 23.109375 L 94.242188 24.300781 "/> +<g style="fill:rgb(0%,0%,0%);fill-opacity:1;"> + <use xlink:href="#glyph0-1" x="79.308487" y="113.885036"/> +</g> +<g clip-path="url(#clip1)" clip-rule="nonzero"> +<path style="fill:none;stroke-width:0.79701;stroke-linecap:butt;stroke-linejoin:miter;stroke:rgb(0%,65.098572%,83.921814%);stroke-opacity:1;stroke-miterlimit:10;" d="M 8.964341 8.964491 C 8.964341 8.964491 8.968255 8.964491 8.968255 8.964491 C 8.968255 8.964491 8.968255 8.968406 8.968255 8.968406 C 8.97217 8.968406 8.97217 8.968406 8.97217 8.968406 C 8.97217 8.968406 8.976085 8.968406 8.976085 8.968406 C 8.976085 8.968406 8.976085 8.968406 8.98 8.968406 C 8.98 8.968406 8.98 8.968406 8.983915 8.968406 C 8.987829 8.968406 8.987829 8.972321 8.987829 8.972321 C 8.987829 8.972321 8.991744 8.972321 8.991744 8.972321 C 8.991744 8.972321 8.995659 8.972321 8.995659 8.972321 C 8.995659 8.972321 8.999574 8.972321 8.999574 8.972321 C 9.003489 8.972321 9.003489 8.972321 9.007403 8.976235 C 9.007403 8.976235 9.011318 8.976235 9.015233 8.976235 C 9.015233 8.976235 9.019148 8.976235 9.023062 8.976235 C 9.023062 8.976235 9.026977 8.98015 9.030892 8.98015 C 9.034807 8.98015 9.038722 8.98015 9.042636 8.98015 C 9.046551 8.98015 9.050466 8.984065 9.054381 8.984065 C 9.058296 8.984065 9.066125 8.984065 9.07004 8.98798 C 9.073955 8.98798 9.081784 8.98798 9.085699 8.991894 C 9.089614 8.991894 9.101358 8.991894 9.105273 8.995809 C 9.113103 8.995809 9.120932 8.995809 9.128762 8.999724 C 9.136591 8.999724 9.148336 9.003639 9.156165 9.003639 C 9.163995 9.007554 9.175739 9.007554 9.187484 9.011468 C 9.195313 9.011468 9.210972 9.015383 9.222717 9.019298 C 9.234461 9.019298 9.254035 9.023213 9.265779 9.027128 C 9.277524 9.031042 9.301013 9.034957 9.316672 9.034957 C 9.332331 9.038872 9.35582 9.046702 9.375394 9.050616 C 9.391053 9.050616 9.422371 9.058446 9.441945 9.062361 C 9.461519 9.066275 9.496752 9.074105 9.520241 9.07802 C 9.543729 9.081935 9.582877 9.093679 9.610281 9.097594 C 9.637684 9.101509 9.684662 9.113253 9.71598 9.121083 C 9.747299 9.124997 9.802106 9.136742 9.841253 9.144571 C 9.876487 9.152401 9.943038 9.16806 9.986101 9.17589 C 10.029163 9.183719 10.103544 9.199378 10.150522 9.211123 C 10.201414 9.222867 10.287539 9.242441 10.346261 9.254185 C 10.404983 9.26593 10.502853 9.289418 10.573319 9.301163 C 10.639871 9.316822 10.753399 9.344226 10.83561 9.359885 C 10.913906 9.379459 11.047009 9.406862 11.137049 9.430351 C 11.227089 9.449925 11.383681 9.485158 11.48938 9.508647 C 11.595079 9.53605 11.775159 9.575198 11.896518 9.606516 C 12.017876 9.63392 12.22536 9.684812 12.366293 9.716131 C 12.507225 9.751364 12.749942 9.810085 12.910448 9.853148 C 13.07487 9.892296 13.35282 9.962762 13.536815 10.00974 C 13.724725 10.060632 14.045737 10.142843 14.261051 10.201564 C 14.476364 10.256371 14.84044 10.358156 15.087071 10.428622 C 15.333703 10.495174 15.752586 10.616532 16.03445 10.698743 C 16.316315 10.780953 16.797834 10.921886 17.118847 11.02367 C 17.43986 11.12154 17.98793 11.293791 18.352006 11.411234 C 18.716081 11.532593 19.334618 11.740077 19.749586 11.881009 C 20.160638 12.025856 20.861386 12.276403 21.327246 12.448654 C 21.789191 12.620904 22.576064 12.922343 23.096731 13.133742 C 23.617398 13.341226 24.49431 13.705301 25.073699 13.959762 C 25.653088 14.210309 26.627871 14.648765 27.265981 14.954119 C 27.904092 15.259472 28.980659 15.787969 29.677492 16.152044 C 30.378239 16.520035 31.552676 17.15423 32.312145 17.592687 C 33.071614 18.031143 34.343921 18.794527 35.158197 19.315194 C 35.976388 19.839776 37.33482 20.744092 38.203903 21.362629 C 39.072986 21.981166 40.509714 23.049903 41.425775 23.774139 C 42.337921 24.50229 43.837285 25.751108 44.784664 26.592788 C 45.728128 27.430553 47.27447 28.87511 48.241423 29.834234 C 49.204461 30.797272 50.774292 32.433654 51.74516 33.514136 C 52.716028 34.594618 54.281943 36.426739 55.244982 37.61292 C 56.20802 38.803016 57.746532 40.803474 58.682167 42.08361 C 59.621716 43.363746 61.105421 45.497306 62.005823 46.840079 C 62.90231 48.178937 64.311634 50.390793 65.157229 51.75314 C 65.998908 53.119401 67.310363 55.335172 68.089406 56.677945 C 68.868449 58.020718 70.06246 60.162108 70.759292 61.430499 C 71.46004 62.702806 72.520948 64.687604 73.131655 65.842467 C 73.742362 66.993415 74.650593 68.751156 75.167345 69.749427 C 75.684097 70.747698 76.431822 72.219659 76.84679 73.03785 C 77.265672 73.859956 77.848976 75.022648 78.169989 75.652929 C 78.487087 76.287125 78.917713 77.144464 79.144771 77.59858 C 79.375744 78.05661 79.818115 78.945267 79.818115 78.945267 " transform="matrix(0.997819,0,0,-0.997819,12.133339,182.15978)"/> +</g> +<path style="fill:none;stroke-width:0.79701;stroke-linecap:butt;stroke-linejoin:miter;stroke:rgb(0%,65.098572%,83.921814%);stroke-opacity:1;stroke-miterlimit:10;" d="M 50.06963 31.552826 L 52.077917 33.905615 " transform="matrix(0.997819,0,0,-0.997819,12.133339,182.15978)"/> +<path style="fill-rule:nonzero;fill:rgb(0%,65.098572%,83.921814%);fill-opacity:1;stroke-width:0.79701;stroke-linecap:butt;stroke-linejoin:miter;stroke:rgb(0%,65.098572%,83.921814%);stroke-opacity:1;stroke-miterlimit:10;" d="M 7.36942 0.00191249 L 1.288275 2.294886 L 3.28985 -0.00122489 L 1.287456 -2.292552 Z M 7.36942 0.00191249 " transform="matrix(0.647864,-0.758811,-0.758811,-0.647864,62.094259,150.675269)"/> +<g clip-path="url(#clip2)" clip-rule="nonzero"> +<path style="fill:none;stroke-width:0.79701;stroke-linecap:butt;stroke-linejoin:miter;stroke:rgb(0%,65.098572%,83.921814%);stroke-opacity:1;stroke-miterlimit:10;" d="M 44.831642 8.964491 C 44.831642 8.964491 44.831642 8.968406 44.831642 8.968406 C 44.831642 8.968406 44.831642 8.972321 44.831642 8.972321 C 44.831642 8.972321 44.831642 8.972321 44.835556 8.972321 C 44.835556 8.972321 44.835556 8.972321 44.835556 8.976235 C 44.835556 8.976235 44.835556 8.98015 44.835556 8.98015 C 44.839471 8.98015 44.839471 8.98015 44.839471 8.98015 C 44.839471 8.984065 44.839471 8.984065 44.839471 8.984065 C 44.839471 8.984065 44.839471 8.98798 44.839471 8.98798 C 44.843386 8.98798 44.843386 8.98798 44.843386 8.991894 C 44.843386 8.991894 44.843386 8.991894 44.843386 8.995809 C 44.847301 8.995809 44.847301 8.999724 44.847301 8.999724 C 44.847301 8.999724 44.847301 9.003639 44.851216 9.003639 C 44.851216 9.007554 44.851216 9.011468 44.85513 9.011468 C 44.85513 9.011468 44.85513 9.015383 44.85513 9.019298 C 44.859045 9.019298 44.859045 9.023213 44.86296 9.027128 C 44.86296 9.031042 44.866875 9.034957 44.866875 9.038872 C 44.866875 9.042787 44.87079 9.046702 44.87079 9.050616 C 44.874704 9.054531 44.878619 9.058446 44.878619 9.062361 C 44.882534 9.066275 44.886449 9.074105 44.886449 9.07802 C 44.890364 9.085849 44.894278 9.093679 44.898193 9.097594 C 44.898193 9.105423 44.906023 9.113253 44.909937 9.121083 C 44.909937 9.128912 44.917767 9.140656 44.921682 9.144571 C 44.925597 9.152401 44.929511 9.16806 44.937341 9.17589 C 44.941256 9.183719 44.949085 9.199378 44.953 9.211123 C 44.956915 9.222867 44.968659 9.238526 44.972574 9.250271 C 44.980404 9.26593 44.988233 9.285504 44.996063 9.297248 C 45.003892 9.312907 45.015637 9.336396 45.023466 9.35597 C 45.031296 9.371629 45.046955 9.399033 45.058699 9.418607 C 45.066529 9.43818 45.082188 9.469499 45.093933 9.492988 C 45.105677 9.516476 45.125251 9.555624 45.136995 9.579113 C 45.152654 9.606516 45.172228 9.649579 45.187888 9.680897 C 45.203547 9.712216 45.23095 9.763108 45.246609 9.798341 C 45.266183 9.833574 45.297502 9.896211 45.317076 9.939274 C 45.33665 9.978421 45.371883 10.048888 45.395371 10.095865 C 45.41886 10.146757 45.461923 10.228968 45.489326 10.283775 C 45.51673 10.338582 45.563707 10.436452 45.59894 10.499088 C 45.630259 10.56564 45.685066 10.675254 45.724214 10.749635 C 45.759447 10.827931 45.825998 10.957119 45.869061 11.043244 C 45.912124 11.12937 45.986505 11.282046 46.037397 11.379916 C 46.088289 11.481701 46.174414 11.657866 46.233136 11.77531 C 46.291858 11.892753 46.393643 12.092408 46.464109 12.229425 C 46.53066 12.366443 46.648104 12.60133 46.7264 12.757922 C 46.804696 12.914514 46.941713 13.184634 47.031753 13.368629 C 47.121793 13.548709 47.278385 13.861893 47.384084 14.069376 C 47.489784 14.280775 47.665949 14.640936 47.787308 14.883653 C 47.908666 15.122455 48.11615 15.537422 48.257082 15.815372 C 48.3941 16.093323 48.632902 16.567012 48.789494 16.888025 C 48.95 17.205123 49.224035 17.749278 49.404116 18.113354 C 49.588111 18.477429 49.897379 19.099881 50.104863 19.514849 C 50.312347 19.929816 50.664678 20.638393 50.90348 21.108168 C 51.138367 21.581857 51.537676 22.384389 51.803882 22.916801 C 52.074002 23.449212 52.524203 24.353528 52.825642 24.952491 C 53.123166 25.551454 53.632088 26.569299 53.964845 27.238728 C 54.301517 27.908157 54.869162 29.039531 55.241067 29.783341 C 55.612972 30.527151 56.239338 31.779884 56.646476 32.598075 C 57.057529 33.420181 57.742617 34.794272 58.192818 35.686844 C 58.639104 36.579416 59.382914 38.074865 59.864433 39.037904 C 60.345952 40.000942 61.148484 41.606005 61.661322 42.63168 C 62.174159 43.657355 63.023668 45.352459 63.563909 46.429026 C 64.100235 47.505593 64.984978 49.275078 65.540878 50.382963 C 66.092863 51.490849 66.99718 53.299482 67.556994 54.423026 C 68.116809 55.542656 69.021126 57.351289 69.577026 58.455259 C 70.129011 59.55923 71.009839 61.3248 71.538335 62.381793 C 72.070747 63.442701 72.904597 65.110401 73.393946 66.096928 C 73.887209 67.083455 74.650593 68.602394 75.089049 69.487136 C 75.531421 70.367964 76.196935 71.698992 76.576669 72.458461 C 76.956404 73.214016 77.512304 74.325816 77.817658 74.944353 C 78.126926 75.562889 78.565382 76.435887 78.804185 76.913492 C 79.042987 77.387181 79.363999 78.029207 79.53625 78.373708 C 79.704586 78.714295 80.037343 79.379809 80.037343 79.379809 " transform="matrix(0.997819,0,0,-0.997819,12.133339,182.15978)"/> +</g> +<path style="fill:none;stroke-width:0.79701;stroke-linecap:butt;stroke-linejoin:miter;stroke:rgb(0%,65.098572%,83.921814%);stroke-opacity:1;stroke-miterlimit:10;" d="M 60.533862 40.368932 L 61.915783 43.136688 " transform="matrix(0.997819,0,0,-0.997819,12.133339,182.15978)"/> +<path style="fill-rule:nonzero;fill:rgb(0%,65.098572%,83.921814%);fill-opacity:1;stroke-width:0.79701;stroke-linecap:butt;stroke-linejoin:miter;stroke:rgb(0%,65.098572%,83.921814%);stroke-opacity:1;stroke-miterlimit:10;" d="M 7.369989 -0.00168484 L 1.285809 2.292044 L 3.290497 -0.00161186 L 1.285727 -2.295196 Z M 7.369989 -0.00168484 " transform="matrix(0.446195,-0.892429,-0.892429,-0.446195,72.534266,141.877222)"/> +<g clip-path="url(#clip3)" clip-rule="nonzero"> +<path style="fill:none;stroke-width:0.79701;stroke-linecap:butt;stroke-linejoin:miter;stroke:rgb(0%,65.098572%,83.921814%);stroke-opacity:1;stroke-miterlimit:10;" d="M 80.695028 8.964491 C 80.695028 8.964491 80.695028 8.968406 80.695028 8.968406 C 80.695028 8.972321 80.695028 8.972321 80.695028 8.972321 C 80.695028 8.972321 80.691113 8.972321 80.691113 8.972321 C 80.691113 8.972321 80.691113 8.976235 80.691113 8.976235 C 80.691113 8.98015 80.691113 8.98015 80.691113 8.98015 C 80.691113 8.98015 80.687198 8.98015 80.687198 8.984065 C 80.687198 8.984065 80.687198 8.98798 80.687198 8.98798 C 80.687198 8.98798 80.683284 8.991894 80.683284 8.991894 C 80.683284 8.991894 80.683284 8.995809 80.683284 8.995809 C 80.683284 8.995809 80.683284 8.999724 80.679369 8.999724 C 80.679369 9.003639 80.679369 9.003639 80.679369 9.007554 C 80.679369 9.007554 80.675454 9.011468 80.675454 9.015383 C 80.675454 9.015383 80.675454 9.019298 80.671539 9.023213 C 80.671539 9.023213 80.671539 9.027128 80.667624 9.031042 C 80.667624 9.034957 80.667624 9.038872 80.66371 9.042787 C 80.66371 9.046702 80.659795 9.050616 80.659795 9.054531 C 80.659795 9.058446 80.65588 9.066275 80.65588 9.07019 C 80.651965 9.074105 80.64805 9.081935 80.64805 9.085849 C 80.644136 9.089764 80.640221 9.101509 80.640221 9.105423 C 80.636306 9.113253 80.632391 9.121083 80.628476 9.128912 C 80.628476 9.136742 80.624562 9.148486 80.620647 9.156316 C 80.616732 9.164145 80.608903 9.17589 80.604988 9.187634 C 80.604988 9.195464 80.597158 9.211123 80.593243 9.222867 C 80.589329 9.234611 80.581499 9.254185 80.573669 9.26593 C 80.569755 9.277674 80.561925 9.301163 80.554095 9.316822 C 80.550181 9.332481 80.538436 9.35597 80.530607 9.375544 C 80.526692 9.391203 80.514948 9.422521 80.507118 9.442095 C 80.499288 9.461669 80.483629 9.496902 80.4758 9.520391 C 80.464055 9.54388 80.448396 9.583028 80.436652 9.610431 C 80.428822 9.637835 80.409248 9.684812 80.397504 9.716131 C 80.381845 9.747449 80.362271 9.802256 80.346612 9.841404 C 80.330952 9.876637 80.307464 9.943188 80.291805 9.986251 C 80.272231 10.029314 80.244827 10.103695 80.225253 10.150672 C 80.205679 10.201564 80.170446 10.28769 80.146957 10.346412 C 80.127383 10.405133 80.088236 10.503003 80.060832 10.573469 C 80.033428 10.640021 79.990366 10.75355 79.959047 10.831846 C 79.927729 10.914056 79.876837 11.047159 79.841604 11.137199 C 79.806371 11.227239 79.747649 11.383831 79.704586 11.48953 C 79.665438 11.595229 79.594972 11.77531 79.547995 11.896668 C 79.501017 12.018027 79.422721 12.225511 79.371829 12.366443 C 79.317022 12.507375 79.226982 12.750092 79.164345 12.910599 C 79.105623 13.07502 78.999924 13.35297 78.929458 13.536965 C 78.862906 13.724875 78.745463 14.045888 78.667167 14.261201 C 78.584956 14.476515 78.451854 14.84059 78.365728 15.087222 C 78.275688 15.333853 78.126926 15.752736 78.025141 16.034601 C 77.927272 16.316466 77.758936 16.797985 77.645407 17.118997 C 77.535793 17.44001 77.347883 17.988081 77.226524 18.352156 C 77.101251 18.716231 76.897682 19.334768 76.760665 19.749736 C 76.627562 20.160789 76.404419 20.861536 76.255657 21.323481 C 76.110809 21.789341 75.868093 22.576214 75.711501 23.096881 C 75.558824 23.617548 75.300448 24.494461 75.136027 25.07385 C 74.975521 25.653238 74.7054 26.628021 74.540979 27.266132 C 74.372643 27.904242 74.098608 28.976895 73.934187 29.677642 C 73.765851 30.378389 73.49573 31.552826 73.335224 32.312295 C 73.174717 33.071764 72.920256 34.344071 72.771494 35.158347 C 72.626647 35.976538 72.399589 37.33497 72.274316 38.204053 C 72.149043 39.073137 71.965047 40.509864 71.871092 41.425925 C 71.777138 42.338071 71.651864 43.837435 71.600972 44.7809 C 71.546165 45.728279 71.495273 47.274621 71.491358 48.237659 C 71.491358 49.204612 71.526591 50.774442 71.581398 51.74531 C 71.63229 52.716178 71.765393 54.282094 71.878922 55.245132 C 71.992451 56.20817 72.223424 57.746682 72.395674 58.682317 C 72.567925 59.621867 72.888938 61.105572 73.112081 62.005973 C 73.335224 62.90246 73.734532 64.311784 73.992908 65.157379 C 74.255199 65.999059 74.7054 67.310513 74.987265 68.089556 C 75.273045 68.868599 75.742819 70.06261 76.028599 70.759443 C 76.318293 71.46019 76.780238 72.521098 77.050359 73.131805 C 77.320479 73.742512 77.743277 74.650743 77.985994 75.167496 C 78.228711 75.684248 78.588871 76.431973 78.788525 76.84694 C 78.992094 77.265823 79.281789 77.849126 79.43838 78.170139 C 79.594972 78.487237 79.806371 78.917864 79.923814 79.144922 C 80.037343 79.375894 80.256571 79.818265 80.256571 79.818265 " transform="matrix(0.997819,0,0,-0.997819,12.133339,182.15978)"/> +</g> +<path style="fill:none;stroke-width:0.79701;stroke-linecap:butt;stroke-linejoin:miter;stroke:rgb(0%,65.098572%,83.921814%);stroke-opacity:1;stroke-miterlimit:10;" d="M 71.965047 40.282807 L 71.714501 43.367661 " transform="matrix(0.997819,0,0,-0.997819,12.133339,182.15978)"/> +<path style="fill-rule:nonzero;fill:rgb(0%,65.098572%,83.921814%);fill-opacity:1;stroke-width:0.79701;stroke-linecap:butt;stroke-linejoin:miter;stroke:rgb(0%,65.098572%,83.921814%);stroke-opacity:1;stroke-miterlimit:10;" d="M 7.370727 -0.00107838 L 1.287658 2.293945 L 3.289772 -0.00083172 L 1.285706 -2.293556 Z M 7.370727 -0.00107838 " transform="matrix(-0.0804641,-0.994516,-0.994516,0.0804641,83.939663,141.963204)"/> +<g clip-path="url(#clip4)" clip-rule="nonzero"> +<path style="fill:none;stroke-width:0.79701;stroke-linecap:butt;stroke-linejoin:miter;stroke:rgb(0%,65.098572%,83.921814%);stroke-opacity:1;stroke-miterlimit:10;" d="M 116.558414 8.964491 C 116.558414 8.964491 116.558414 8.968406 116.558414 8.968406 C 116.558414 8.968406 116.558414 8.968406 116.554499 8.968406 C 116.554499 8.972321 116.554499 8.972321 116.554499 8.972321 C 116.554499 8.972321 116.554499 8.976235 116.550585 8.976235 C 116.550585 8.976235 116.550585 8.976235 116.550585 8.98015 C 116.550585 8.98015 116.550585 8.98015 116.54667 8.98015 C 116.54667 8.98015 116.54667 8.984065 116.54667 8.984065 C 116.54667 8.984065 116.54667 8.984065 116.542755 8.984065 C 116.542755 8.98798 116.542755 8.98798 116.542755 8.98798 C 116.542755 8.98798 116.53884 8.991894 116.53884 8.991894 C 116.53884 8.991894 116.534925 8.995809 116.534925 8.995809 C 116.534925 8.999724 116.531011 8.999724 116.531011 9.003639 C 116.531011 9.003639 116.527096 9.007554 116.527096 9.007554 C 116.527096 9.011468 116.523181 9.011468 116.519266 9.015383 C 116.519266 9.015383 116.515351 9.019298 116.515351 9.023213 C 116.511437 9.027128 116.507522 9.031042 116.507522 9.031042 C 116.503607 9.034957 116.499692 9.038872 116.499692 9.042787 C 116.495778 9.046702 116.491863 9.054531 116.487948 9.058446 C 116.484033 9.062361 116.480118 9.066275 116.476204 9.07019 C 116.472289 9.07802 116.468374 9.085849 116.464459 9.089764 C 116.460544 9.093679 116.452715 9.105423 116.444885 9.109338 C 116.44097 9.117168 116.433141 9.124997 116.429226 9.132827 C 116.421397 9.140656 116.413567 9.152401 116.405737 9.16023 C 116.397908 9.16806 116.390078 9.183719 116.382249 9.195464 C 116.374419 9.203293 116.35876 9.218952 116.35093 9.230697 C 116.343101 9.242441 116.327442 9.262015 116.315697 9.273759 C 116.307868 9.289418 116.288294 9.312907 116.276549 9.324652 C 116.264805 9.340311 116.245231 9.367714 116.229572 9.387288 C 116.213913 9.402947 116.190424 9.434266 116.174765 9.45384 C 116.159106 9.477328 116.131702 9.512561 116.112128 9.53605 C 116.092554 9.559539 116.061236 9.602602 116.037747 9.630005 C 116.014258 9.657409 115.979025 9.708301 115.951622 9.739619 C 115.928133 9.774852 115.881156 9.829659 115.853752 9.868807 C 115.822434 9.90404 115.771541 9.970592 115.736308 10.017569 C 115.701075 10.060632 115.642353 10.135013 115.599291 10.18982 C 115.560143 10.240712 115.489677 10.330752 115.442699 10.389474 C 115.395722 10.448196 115.317426 10.553895 115.262619 10.620447 C 115.207812 10.690913 115.113857 10.812272 115.05122 10.890567 C 114.988584 10.972778 114.878969 11.11371 114.804588 11.207665 C 114.730207 11.30162 114.604934 11.462127 114.522724 11.571741 C 114.436598 11.67744 114.291751 11.86535 114.193881 11.990623 C 114.096012 12.115896 113.927676 12.335125 113.814147 12.479972 C 113.700618 12.624819 113.504878 12.875366 113.37569 13.043702 C 113.246502 13.212038 113.023359 13.497817 112.870682 13.693557 C 112.72192 13.885381 112.463544 14.218138 112.291294 14.441281 C 112.119043 14.664424 111.825434 15.044159 111.625779 15.302535 C 111.43004 15.556996 111.093368 15.995453 110.86631 16.289062 C 110.643167 16.582671 110.259518 17.083764 110.001142 17.416521 C 109.746681 17.753193 109.312139 18.324753 109.022444 18.704487 C 108.728835 19.088136 108.239487 19.734077 107.910644 20.168618 C 107.581802 20.599245 107.029817 21.331311 106.661826 21.82066 C 106.297751 22.310008 105.675299 23.136029 105.268161 23.680185 C 104.861023 24.228255 104.17202 25.152145 103.72182 25.762853 C 103.271619 26.37356 102.516064 27.403149 102.022801 28.076493 C 101.529537 28.753752 100.703517 29.889041 100.171105 30.628936 C 99.634779 31.372746 98.746122 32.613734 98.174563 33.420181 C 97.606918 34.226627 96.659539 35.573315 96.060577 36.442398 C 95.457699 37.307567 94.467257 38.752124 93.848721 39.672099 C 93.226269 40.592075 92.208424 42.118843 91.578143 43.081881 C 90.951776 44.048834 89.930016 45.630409 89.307565 46.624766 C 88.685113 47.619122 87.690757 49.24376 87.095709 50.249861 C 86.496746 51.255961 85.561111 52.880599 85.009126 53.87887 C 84.457141 54.877142 83.607631 56.474376 83.118283 57.441329 C 82.632849 58.412197 81.904698 59.942879 81.49756 60.85894 C 81.090422 61.778916 80.507118 63.211728 80.19785 64.061238 C 79.884666 64.910747 79.465784 66.214372 79.250471 66.981671 C 79.039072 67.748969 78.780696 68.911662 78.667167 69.588921 C 78.549723 70.262264 78.444024 71.27228 78.412706 71.855584 C 78.381387 72.438887 78.404876 73.300141 78.440109 73.797319 C 78.475342 74.290583 78.584956 75.010904 78.663252 75.425872 C 78.745463 75.840839 78.909884 76.435887 79.007754 76.776474 C 79.109538 77.117061 79.289618 77.602495 79.395318 77.87653 C 79.497102 78.150565 79.665438 78.538129 79.759393 78.753443 C 79.853348 78.968756 79.994281 79.26628 80.072576 79.426786 C 80.146957 79.587293 80.252657 79.802606 80.311379 79.92005 C 80.366186 80.033579 80.4758 80.256722 80.4758 80.256722 " transform="matrix(0.997819,0,0,-0.997819,12.133339,182.15978)"/> +</g> +<path style="fill:none;stroke-width:0.79701;stroke-linecap:butt;stroke-linejoin:miter;stroke:rgb(0%,65.098572%,83.921814%);stroke-opacity:1;stroke-miterlimit:10;" d="M 94.377217 38.877397 L 92.666454 41.449414 " transform="matrix(0.997819,0,0,-0.997819,12.133339,182.15978)"/> +<path style="fill-rule:nonzero;fill:rgb(0%,65.098572%,83.921814%);fill-opacity:1;stroke-width:0.79701;stroke-linecap:butt;stroke-linejoin:miter;stroke:rgb(0%,65.098572%,83.921814%);stroke-opacity:1;stroke-miterlimit:10;" d="M 7.36855 -0.00139464 L 1.287329 2.293257 L 3.293436 0.000226148 L 1.287411 -2.295452 Z M 7.36855 -0.00139464 " transform="matrix(-0.552462,-0.830854,-0.830854,0.552462,106.304062,143.369051)"/> +<g clip-path="url(#clip5)" clip-rule="nonzero"> +<path style="fill:none;stroke-width:0.79701;stroke-linecap:butt;stroke-linejoin:miter;stroke:rgb(0%,65.098572%,83.921814%);stroke-opacity:1;stroke-miterlimit:10;" d="M 152.425715 8.964491 C 152.425715 8.964491 152.425715 8.968406 152.425715 8.968406 C 152.425715 8.968406 152.4218 8.968406 152.4218 8.968406 C 152.4218 8.968406 152.417886 8.972321 152.417886 8.972321 C 152.417886 8.972321 152.413971 8.976235 152.413971 8.976235 C 152.410056 8.98015 152.410056 8.98015 152.410056 8.98015 C 152.406141 8.984065 152.406141 8.984065 152.406141 8.984065 C 152.406141 8.984065 152.402226 8.98798 152.402226 8.98798 C 152.402226 8.98798 152.398312 8.991894 152.398312 8.991894 C 152.398312 8.991894 152.394397 8.995809 152.394397 8.995809 C 152.394397 8.995809 152.390482 8.999724 152.390482 8.999724 C 152.390482 9.003639 152.386567 9.003639 152.382653 9.007554 C 152.382653 9.007554 152.378738 9.011468 152.378738 9.011468 C 152.374823 9.015383 152.370908 9.019298 152.370908 9.019298 C 152.366993 9.023213 152.363079 9.027128 152.359164 9.031042 C 152.359164 9.031042 152.355249 9.034957 152.351334 9.038872 C 152.347419 9.042787 152.343505 9.046702 152.33959 9.050616 C 152.335675 9.054531 152.327845 9.062361 152.323931 9.066275 C 152.320016 9.07019 152.312186 9.07802 152.308272 9.081935 C 152.304357 9.085849 152.292612 9.097594 152.288698 9.101509 C 152.280868 9.109338 152.273038 9.117168 152.265209 9.124997 C 152.257379 9.132827 152.245635 9.144571 152.237805 9.152401 C 152.229976 9.16023 152.218231 9.171975 152.210402 9.179804 C 152.198657 9.191549 152.182998 9.207208 152.171254 9.218952 C 152.163424 9.226782 152.14385 9.246356 152.132106 9.2581 C 152.120362 9.269845 152.096873 9.293333 152.081214 9.308992 C 152.069469 9.320737 152.042066 9.34814 152.026407 9.363799 C 152.010748 9.379459 151.979429 9.410777 151.959855 9.430351 C 151.940281 9.449925 151.908963 9.481243 151.885474 9.504732 C 151.861986 9.528221 151.822838 9.567369 151.795434 9.594772 C 151.768031 9.622176 151.721053 9.669153 151.689735 9.700471 C 151.658416 9.73179 151.607524 9.782682 151.572291 9.82183 C 151.533143 9.857063 151.470507 9.9197 151.431359 9.958847 C 151.388296 10.00191 151.313915 10.076291 151.266938 10.123269 C 151.216045 10.174161 151.133835 10.256371 151.075113 10.315093 C 151.020306 10.3699 150.922436 10.46777 150.855885 10.534322 C 150.789333 10.600873 150.675804 10.714402 150.597509 10.792698 C 150.519213 10.870993 150.38611 11.004096 150.299985 11.090222 C 150.209944 11.180262 150.057268 11.332939 149.951568 11.438638 C 149.845869 11.544337 149.669703 11.720503 149.548345 11.841861 C 149.430901 11.959305 149.223417 12.166789 149.082485 12.307721 C 148.945467 12.444739 148.706665 12.683541 148.546159 12.844047 C 148.381738 13.008468 148.107702 13.282504 147.919793 13.470414 C 147.735797 13.654409 147.414785 13.975421 147.203386 14.18682 C 146.988073 14.402134 146.620082 14.770124 146.373451 15.016755 C 146.126819 15.263387 145.704022 15.686184 145.418242 15.971964 C 145.136377 16.257744 144.650943 16.739263 144.322101 17.068105 C 143.997173 17.393033 143.445188 17.945018 143.069368 18.320838 C 142.697463 18.692743 142.067182 19.326939 141.64047 19.749736 C 141.217673 20.172533 140.497352 20.892854 140.015833 21.374374 C 139.534314 21.855893 138.716123 22.674084 138.175882 23.214325 C 137.631726 23.75848 136.71175 24.678456 136.101043 25.289163 C 135.490336 25.89987 134.456832 26.933375 133.775658 27.614548 C 133.094485 28.295721 131.943537 29.446669 131.187982 30.202224 C 130.432428 30.957778 129.160121 32.230085 128.330186 33.06002 C 127.500251 33.889955 126.106586 35.28362 125.202269 36.187937 C 124.297953 37.092253 122.786844 38.603362 121.812062 39.578145 C 120.841194 40.552927 119.220471 42.169735 118.186967 43.20324 C 117.149547 44.240659 115.438784 45.951422 114.358302 47.031904 C 113.277821 48.112386 111.496591 49.893615 110.384791 51.005415 C 109.272991 52.117215 107.460443 53.929763 106.340814 55.049392 C 105.225099 56.165107 103.416466 57.97374 102.31641 59.073796 C 101.216354 60.173852 99.466443 61.923763 98.41728 62.972926 C 97.364201 64.026005 95.716075 65.674131 94.745207 66.644999 C 93.77434 67.615867 92.27889 69.111316 91.413721 69.976485 C 90.552468 70.837738 89.252758 72.137448 88.512862 72.877344 C 87.776882 73.613324 86.70423 74.685976 86.109182 75.281024 C 85.514134 75.876072 84.676369 76.713837 84.222253 77.171868 C 83.764223 77.625983 83.15743 78.232776 82.832503 78.557703 C 82.51149 78.878716 82.100437 79.289769 81.889039 79.501167 C 81.67764 79.712566 81.427094 79.963113 81.297905 80.092301 C 81.172632 80.217574 81.039529 80.350677 80.969063 80.421143 C 80.898597 80.491609 80.83596 80.554246 80.804642 80.585564 C 80.769409 80.620797 80.74592 80.644286 80.730261 80.659945 C 80.718517 80.671689 80.710687 80.679519 80.706772 80.683434 C 80.698943 80.691263 80.698943 80.691263 80.698943 80.691263 C 80.695028 80.695178 80.695028 80.695178 80.695028 80.695178 " transform="matrix(0.997819,0,0,-0.997819,12.133339,182.15978)"/> +</g> +<path style="fill:none;stroke-width:0.79701;stroke-linecap:butt;stroke-linejoin:miter;stroke:rgb(0%,65.098572%,83.921814%);stroke-opacity:1;stroke-miterlimit:10;" d="M 119.564972 41.825234 L 117.38052 44.009686 " transform="matrix(0.997819,0,0,-0.997819,12.133339,182.15978)"/> +<path style="fill-rule:nonzero;fill:rgb(0%,65.098572%,83.921814%);fill-opacity:1;stroke-width:0.79701;stroke-linecap:butt;stroke-linejoin:miter;stroke:rgb(0%,65.098572%,83.921814%);stroke-opacity:1;stroke-miterlimit:10;" d="M 7.371186 0.0000239403 L 1.28668 2.292094 L 3.290858 0.0000239403 L 1.28668 -2.292046 Z M 7.371186 0.0000239403 " transform="matrix(-0.705558,-0.705558,-0.705558,0.705558,131.439094,140.427342)"/> +<g clip-path="url(#clip6)" clip-rule="nonzero"> +<path style="fill:none;stroke-width:0.79701;stroke-linecap:butt;stroke-linejoin:miter;stroke:rgb(0%,65.098572%,83.921814%);stroke-opacity:1;stroke-miterlimit:10;" d="M 8.964341 44.831792 C 8.964341 44.831792 8.968255 44.831792 8.968255 44.831792 C 8.968255 44.827877 8.968255 44.827877 8.968255 44.827877 C 8.968255 44.827877 8.968255 44.827877 8.97217 44.827877 C 8.976085 44.827877 8.976085 44.827877 8.976085 44.827877 C 8.976085 44.827877 8.976085 44.827877 8.98 44.827877 C 8.98 44.827877 8.983915 44.827877 8.983915 44.827877 C 8.983915 44.827877 8.983915 44.827877 8.983915 44.823962 C 8.987829 44.823962 8.987829 44.823962 8.987829 44.823962 C 8.991744 44.823962 8.991744 44.823962 8.991744 44.823962 C 8.995659 44.823962 8.995659 44.823962 8.995659 44.823962 C 8.999574 44.823962 8.999574 44.820048 9.003489 44.820048 C 9.003489 44.820048 9.007403 44.820048 9.007403 44.820048 C 9.011318 44.820048 9.011318 44.820048 9.015233 44.820048 C 9.019148 44.816133 9.019148 44.816133 9.023062 44.816133 C 9.026977 44.816133 9.030892 44.816133 9.030892 44.812218 C 9.034807 44.812218 9.038722 44.812218 9.042636 44.812218 C 9.046551 44.812218 9.054381 44.808303 9.058296 44.808303 C 9.06221 44.808303 9.066125 44.804388 9.07004 44.804388 C 9.07787 44.804388 9.085699 44.800474 9.089614 44.800474 C 9.093529 44.800474 9.105273 44.796559 9.109188 44.796559 C 9.117017 44.792644 9.124847 44.788729 9.132677 44.788729 C 9.140506 44.788729 9.152251 44.784815 9.16008 44.7809 C 9.16791 44.7809 9.183569 44.776985 9.195313 44.77307 C 9.203143 44.77307 9.218802 44.769155 9.230546 44.765241 C 9.242291 44.761326 9.261865 44.757411 9.273609 44.753496 C 9.289268 44.749581 9.312757 44.745667 9.324501 44.741752 C 9.34016 44.737837 9.367564 44.730007 9.387138 44.726093 C 9.402797 44.722178 9.434115 44.714348 9.453689 44.710434 C 9.477178 44.702604 9.512411 44.694774 9.5359 44.69086 C 9.559389 44.68303 9.602451 44.6752 9.629855 44.667371 C 9.657258 44.659541 9.708151 44.647797 9.739469 44.639967 C 9.770787 44.632138 9.829509 44.616479 9.864742 44.608649 C 9.90389 44.600819 9.970442 44.58516 10.013504 44.573416 C 10.060482 44.561672 10.134863 44.542098 10.185755 44.530353 C 10.236647 44.518609 10.326687 44.499035 10.385409 44.483376 C 10.448046 44.467717 10.54983 44.444228 10.620297 44.428569 C 10.690763 44.41291 10.808206 44.381591 10.890417 44.365932 C 10.968713 44.346358 11.109645 44.31504 11.2036 44.291551 C 11.297555 44.268062 11.454147 44.232829 11.563761 44.20934 C 11.673375 44.181937 11.85737 44.142789 11.982643 44.111471 C 12.111831 44.084067 12.32323 44.03709 12.468077 44.005771 C 12.616839 43.970538 12.863471 43.919646 13.031807 43.880498 C 13.196228 43.845265 13.482008 43.782628 13.677747 43.743481 C 13.869572 43.704333 14.198414 43.633866 14.421557 43.590804 C 14.640785 43.543826 15.02052 43.469445 15.274981 43.418553 C 15.529443 43.367661 15.963984 43.28545 16.253679 43.230643 C 16.543373 43.175836 17.040551 43.085796 17.369394 43.027074 C 17.702151 42.968352 18.26588 42.870482 18.6417 42.811761 C 19.021435 42.749124 19.659545 42.647339 20.086257 42.584703 C 20.51297 42.522066 21.233291 42.416367 21.71481 42.357645 C 22.196329 42.295008 23.00669 42.193224 23.543017 42.134502 C 24.083258 42.07578 24.987574 41.981825 25.586537 41.930933 C 26.185499 41.880041 27.1916 41.80566 27.8532 41.770427 C 28.510884 41.731279 29.622685 41.684301 30.343006 41.668642 C 31.067242 41.652983 32.276912 41.645153 33.05987 41.660813 C 33.842828 41.676472 35.150367 41.727364 35.992047 41.786086 C 36.833727 41.844808 38.231307 41.970081 39.119964 42.08361 C 40.012536 42.197139 41.484497 42.424196 42.416217 42.608192 C 43.347936 42.792187 44.874704 43.140603 45.837743 43.410723 C 46.796866 43.680844 48.358867 44.178022 49.329735 44.546012 C 50.304517 44.914003 51.874348 45.583432 52.841301 46.061036 C 53.808254 46.53864 55.358511 47.395979 56.301975 47.991027 C 57.249354 48.58216 58.744803 49.631324 59.653035 50.339901 C 60.557351 51.048478 61.982334 52.277722 62.831844 53.088083 C 63.685268 53.902359 65.008467 55.292109 65.795339 56.184681 C 66.582212 57.077253 67.791882 58.580533 68.504374 59.523997 C 69.22078 60.467461 70.305177 62.025547 70.943287 62.980756 C 71.577483 63.935965 72.536607 65.478392 73.092507 66.398367 C 73.648407 67.322257 74.478342 68.774644 74.952032 69.624154 C 75.429636 70.469748 76.126469 71.773373 76.521862 72.513268 C 76.917256 73.253163 77.484901 74.349305 77.801999 74.963926 C 78.115182 75.574634 78.557553 76.443717 78.796355 76.917406 C 79.039072 77.391096 79.360085 78.033121 79.532335 78.373708 C 79.704586 78.71821 80.037343 79.379809 80.037343 79.379809 " transform="matrix(0.997819,0,0,-0.997819,12.133339,182.15978)"/> +</g> +<path style="fill:none;stroke-width:0.79701;stroke-linecap:butt;stroke-linejoin:miter;stroke:rgb(0%,65.098572%,83.921814%);stroke-opacity:1;stroke-miterlimit:10;" d="M 48.495885 44.185852 L 51.338022 45.415096 " transform="matrix(0.997819,0,0,-0.997819,12.133339,182.15978)"/> +<path style="fill-rule:nonzero;fill:rgb(0%,65.098572%,83.921814%);fill-opacity:1;stroke-width:0.79701;stroke-linecap:butt;stroke-linejoin:miter;stroke:rgb(0%,65.098572%,83.921814%);stroke-opacity:1;stroke-miterlimit:10;" d="M 7.371372 0.00107541 L 1.287303 2.294917 L 3.290737 0.00154312 L 1.2855 -2.292581 Z M 7.371372 0.00107541 " transform="matrix(0.916057,-0.395455,-0.395455,-0.916057,60.525169,138.068378)"/> +<g clip-path="url(#clip7)" clip-rule="nonzero"> +<path style="fill:none;stroke-width:0.79701;stroke-linecap:butt;stroke-linejoin:miter;stroke:rgb(0%,65.098572%,83.921814%);stroke-opacity:1;stroke-miterlimit:10;" d="M 152.425715 44.831792 C 152.425715 44.831792 152.4218 44.831792 152.4218 44.831792 C 152.4218 44.831792 152.4218 44.835707 152.4218 44.835707 C 152.4218 44.835707 152.417886 44.835707 152.417886 44.835707 C 152.417886 44.835707 152.413971 44.835707 152.413971 44.839622 C 152.410056 44.839622 152.410056 44.843536 152.410056 44.843536 C 152.410056 44.843536 152.410056 44.843536 152.406141 44.843536 C 152.406141 44.843536 152.406141 44.847451 152.406141 44.847451 C 152.406141 44.847451 152.402226 44.847451 152.402226 44.847451 C 152.402226 44.851366 152.398312 44.851366 152.398312 44.851366 C 152.398312 44.851366 152.394397 44.855281 152.394397 44.855281 C 152.394397 44.855281 152.390482 44.859196 152.390482 44.859196 C 152.386567 44.859196 152.386567 44.86311 152.382653 44.86311 C 152.382653 44.867025 152.378738 44.867025 152.374823 44.87094 C 152.374823 44.87094 152.370908 44.874855 152.366993 44.874855 C 152.366993 44.878769 152.363079 44.882684 152.359164 44.882684 C 152.355249 44.886599 152.351334 44.890514 152.347419 44.894429 C 152.343505 44.894429 152.33959 44.898343 152.335675 44.902258 C 152.33176 44.906173 152.323931 44.910088 152.320016 44.914003 C 152.316101 44.917917 152.308272 44.925747 152.304357 44.929662 C 152.296527 44.933577 152.288698 44.941406 152.284783 44.945321 C 152.276953 44.949236 152.265209 44.957065 152.261294 44.964895 C 152.253464 44.96881 152.24172 44.980554 152.233891 44.984469 C 152.226061 44.992298 152.210402 45.004043 152.202572 45.011872 C 152.190828 45.019702 152.175169 45.031446 152.163424 45.043191 C 152.15168 45.05102 152.132106 45.066679 152.120362 45.078424 C 152.108617 45.086253 152.085129 45.105827 152.069469 45.117572 C 152.05381 45.129316 152.030321 45.14889 152.010748 45.164549 C 151.995088 45.180208 151.96377 45.203697 151.944196 45.219356 C 151.924622 45.235015 151.889389 45.266334 151.8659 45.285908 C 151.842412 45.305482 151.799349 45.3368 151.771945 45.360289 C 151.744542 45.383777 151.697564 45.41901 151.666246 45.446414 C 151.631013 45.473817 151.576206 45.51688 151.540973 45.548198 C 151.501825 45.579517 151.439188 45.630409 151.396126 45.665642 C 151.349148 45.700875 151.274767 45.763512 151.223875 45.80266 C 151.172983 45.845722 151.086857 45.916189 151.028135 45.963166 C 150.969414 46.010144 150.867629 46.092354 150.797163 46.147161 C 150.730611 46.205883 150.613168 46.299838 150.534872 46.362475 C 150.452661 46.429026 150.315644 46.53864 150.225604 46.613021 C 150.131649 46.687402 149.975057 46.81659 149.865443 46.902716 C 149.759744 46.988841 149.575748 47.137603 149.450475 47.235473 C 149.329117 47.337257 149.113803 47.509508 148.972871 47.623037 C 148.828024 47.740481 148.581392 47.940135 148.416971 48.073238 C 148.248635 48.20634 147.96677 48.433398 147.774945 48.586075 C 147.583121 48.742667 147.254278 49.004958 147.03505 49.181123 C 146.815822 49.357289 146.436087 49.658727 146.185541 49.862296 C 145.931079 50.065865 145.496538 50.414282 145.206843 50.645254 C 144.913234 50.876227 144.419971 51.271621 144.087214 51.537826 C 143.754457 51.800117 143.186812 52.250318 142.807077 52.551757 C 142.427343 52.853196 141.781403 53.366033 141.350776 53.702705 C 140.920149 54.043292 140.188083 54.62268 139.698735 55.002415 C 139.209386 55.386064 138.383365 56.035919 137.835295 56.462631 C 137.287224 56.889344 136.355504 57.61358 135.740883 58.087269 C 135.126261 58.560959 134.088841 59.36349 133.407668 59.888072 C 132.726495 60.408739 131.575547 61.289567 130.819992 61.857211 C 130.068353 62.428771 128.803876 63.383979 127.98177 63.998601 C 127.159664 64.613223 125.781658 65.638898 124.889086 66.292668 C 124.000429 66.946438 122.516724 68.02692 121.56543 68.712008 C 120.614136 69.397096 119.040391 70.52064 118.038205 71.221388 C 117.036018 71.92605 115.383977 73.069168 114.346558 73.769916 C 113.309139 74.474578 111.61012 75.605952 110.553127 76.29104 C 109.496134 76.976128 107.781456 78.06444 106.728378 78.706465 C 105.675299 79.352405 103.988025 80.354592 102.96235 80.930066 C 101.94059 81.509454 100.315953 82.382452 99.349 82.871801 C 98.378132 83.36115 96.863108 84.069727 95.974451 84.449461 C 95.081879 84.829196 93.715618 85.345948 92.920915 85.600409 C 92.130128 85.854871 90.940032 86.160224 90.258859 86.289412 C 89.577685 86.414686 88.575499 86.508641 88.011769 86.51647 C 87.44804 86.520385 86.637678 86.42643 86.183563 86.32856 C 85.729447 86.226776 85.095251 85.980144 84.74292 85.803978 C 84.386674 85.627813 83.90124 85.279397 83.63112 85.056254 C 83.361 84.837025 82.996924 84.441632 82.78944 84.20283 C 82.585871 83.967942 82.311836 83.576463 82.159159 83.349405 C 82.006482 83.126262 81.798999 82.777846 81.68547 82.582107 C 81.571941 82.386367 81.419264 82.100588 81.333139 81.947911 C 81.250928 81.791319 81.141314 81.579921 81.082592 81.466392 C 81.02387 81.352863 80.914256 81.133635 80.914256 81.133635 " transform="matrix(0.997819,0,0,-0.997819,12.133339,182.15978)"/> +</g> +<path style="fill:none;stroke-width:0.79701;stroke-linecap:butt;stroke-linejoin:miter;stroke:rgb(0%,65.098572%,83.921814%);stroke-opacity:1;stroke-miterlimit:10;" d="M 121.455816 68.86077 L 118.911203 70.61851 " transform="matrix(0.997819,0,0,-0.997819,12.133339,182.15978)"/> +<path style="fill-rule:nonzero;fill:rgb(0%,65.098572%,83.921814%);fill-opacity:1;stroke-width:0.79701;stroke-linecap:butt;stroke-linejoin:miter;stroke:rgb(0%,65.098572%,83.921814%);stroke-opacity:1;stroke-miterlimit:10;" d="M 7.370761 0.000637613 L 1.286706 2.293703 L 3.289746 -0.000815843 L 1.28556 -2.293412 Z M 7.370761 0.000637613 " transform="matrix(-0.821055,-0.566941,-0.566941,0.821055,133.3256,113.447792)"/> +<g clip-path="url(#clip8)" clip-rule="nonzero"> +<path style="fill:none;stroke-width:0.79701;stroke-linecap:butt;stroke-linejoin:miter;stroke:rgb(0%,65.098572%,83.921814%);stroke-opacity:1;stroke-miterlimit:10;" d="M 8.964341 80.695178 C 8.964341 80.695178 8.964341 80.695178 8.968255 80.695178 C 8.968255 80.695178 8.968255 80.691263 8.968255 80.691263 C 8.968255 80.691263 8.968255 80.691263 8.97217 80.691263 C 8.976085 80.691263 8.976085 80.691263 8.976085 80.691263 C 8.976085 80.691263 8.976085 80.691263 8.976085 80.687349 C 8.976085 80.687349 8.976085 80.687349 8.98 80.687349 C 8.98 80.687349 8.983915 80.687349 8.983915 80.687349 C 8.983915 80.683434 8.983915 80.683434 8.983915 80.683434 C 8.987829 80.683434 8.987829 80.683434 8.987829 80.683434 C 8.991744 80.683434 8.991744 80.679519 8.991744 80.679519 C 8.995659 80.679519 8.995659 80.679519 8.995659 80.675604 C 8.999574 80.675604 8.999574 80.675604 9.003489 80.675604 C 9.003489 80.671689 9.007403 80.671689 9.007403 80.671689 C 9.011318 80.671689 9.011318 80.667775 9.015233 80.667775 C 9.019148 80.667775 9.019148 80.66386 9.023062 80.66386 C 9.026977 80.659945 9.030892 80.659945 9.030892 80.65603 C 9.034807 80.65603 9.038722 80.652116 9.042636 80.652116 C 9.046551 80.648201 9.054381 80.644286 9.058296 80.644286 C 9.06221 80.640371 9.066125 80.636456 9.07004 80.636456 C 9.07787 80.632542 9.085699 80.628627 9.089614 80.624712 C 9.093529 80.620797 9.105273 80.616882 9.109188 80.612968 C 9.117017 80.609053 9.124847 80.605138 9.132677 80.601223 C 9.140506 80.597308 9.152251 80.589479 9.16008 80.585564 C 9.16791 80.577735 9.183569 80.569905 9.195313 80.56599 C 9.203143 80.558161 9.218802 80.550331 9.230546 80.542501 C 9.242291 80.538587 9.261865 80.526842 9.273609 80.519013 C 9.289268 80.511183 9.312757 80.499439 9.328416 80.487694 C 9.34016 80.479865 9.367564 80.464206 9.387138 80.456376 C 9.402797 80.444632 9.434115 80.428973 9.453689 80.417228 C 9.477178 80.405484 9.512411 80.381995 9.5359 80.370251 C 9.559389 80.354592 9.602451 80.331103 9.629855 80.315444 C 9.657258 80.299784 9.708151 80.272381 9.739469 80.252807 C 9.774702 80.237148 9.829509 80.201915 9.868657 80.182341 C 9.907805 80.158852 9.970442 80.123619 10.017419 80.096215 C 10.060482 80.072727 10.134863 80.029664 10.18967 79.998346 C 10.240562 79.970942 10.330602 79.92005 10.389324 79.884817 C 10.448046 79.853498 10.553745 79.794777 10.620297 79.755629 C 10.690763 79.716481 10.812121 79.649929 10.894332 79.602952 C 10.972628 79.555974 11.11356 79.477679 11.207515 79.426786 C 11.30147 79.371979 11.461976 79.281939 11.57159 79.223217 C 11.67729 79.160581 11.8652 79.058796 11.990473 78.98833 C 12.119661 78.917864 12.334974 78.796505 12.479822 78.714295 C 12.624669 78.635999 12.875215 78.495067 13.043551 78.405026 C 13.211887 78.311071 13.497667 78.150565 13.693406 78.044866 C 13.885231 77.939166 14.217988 77.755171 14.441131 77.633813 C 14.664274 77.512454 15.047923 77.304971 15.302385 77.167953 C 15.556846 77.027021 15.995302 76.792133 16.288912 76.635542 C 16.582521 76.47895 17.083614 76.212744 17.420286 76.032664 C 17.753043 75.856498 18.324602 75.55506 18.704337 75.355405 C 19.087986 75.155751 19.733926 74.819079 20.168468 74.599851 C 20.599095 74.376708 21.331161 74.000888 21.820509 73.758171 C 22.309858 73.51154 23.135878 73.096572 23.680034 72.830366 C 24.228105 72.560246 25.151995 72.110045 25.762702 71.820351 C 26.373409 71.526741 27.402999 71.041307 28.076343 70.732039 C 28.753601 70.422771 29.88889 69.906018 30.628785 69.581091 C 31.372595 69.256163 32.613584 68.715922 33.42003 68.383165 C 34.226477 68.050408 35.573165 67.502338 36.442248 67.169581 C 37.307416 66.836824 38.751974 66.296583 39.671949 65.97557 C 40.591925 65.654557 42.118693 65.145634 43.081731 64.852025 C 44.048684 64.558416 45.630259 64.1043 46.624615 63.853754 C 47.618972 63.603207 49.243609 63.235217 50.24971 63.047307 C 51.255811 62.859397 52.880449 62.608851 53.87872 62.503152 C 54.876991 62.397452 56.474226 62.295668 57.441179 62.291753 C 58.412046 62.283923 59.942729 62.358304 60.85879 62.464004 C 61.778765 62.573618 63.211578 62.839824 64.061087 63.062967 C 64.910597 63.290024 66.214222 63.755884 66.98152 64.096471 C 67.748819 64.437058 68.911512 65.086913 69.58877 65.529284 C 70.262114 65.971655 71.27213 66.774187 71.855433 67.294854 C 72.438737 67.815521 73.299991 68.719837 73.797169 69.283567 C 74.290432 69.847297 75.010754 70.794676 75.425721 71.366235 C 75.840689 71.937794 76.435737 72.861685 76.776324 73.40584 C 77.11691 73.946081 77.602344 74.791676 77.87638 75.27711 C 78.150415 75.758629 78.537979 76.482865 78.753292 76.886088 C 78.968606 77.289311 79.26613 77.864785 79.426636 78.177969 C 79.587142 78.495067 79.806371 78.921779 79.9199 79.148836 C 80.033428 79.375894 80.256571 79.818265 80.256571 79.818265 " transform="matrix(0.997819,0,0,-0.997819,12.133339,182.15978)"/> +</g> +<path style="fill:none;stroke-width:0.79701;stroke-linecap:butt;stroke-linejoin:miter;stroke:rgb(0%,65.098572%,83.921814%);stroke-opacity:1;stroke-miterlimit:10;" d="M 42.658934 64.734582 L 45.677236 64.065153 " transform="matrix(0.997819,0,0,-0.997819,12.133339,182.15978)"/> +<path style="fill-rule:nonzero;fill:rgb(0%,65.098572%,83.921814%);fill-opacity:1;stroke-width:0.79701;stroke-linecap:butt;stroke-linejoin:miter;stroke:rgb(0%,65.098572%,83.921814%);stroke-opacity:1;stroke-miterlimit:10;" d="M 7.371108 -0.00115623 L 1.285387 2.294853 L 3.291508 0.00176728 L 1.287247 -2.293051 Z M 7.371108 -0.00115623 " transform="matrix(0.973941,0.216656,0.216656,-0.973941,54.700133,117.565939)"/> +<g clip-path="url(#clip9)" clip-rule="nonzero"> +<path style="fill:none;stroke-width:0.79701;stroke-linecap:butt;stroke-linejoin:miter;stroke:rgb(0%,65.098572%,83.921814%);stroke-opacity:1;stroke-miterlimit:10;" d="M 152.425715 80.695178 C 152.425715 80.695178 152.4218 80.695178 152.4218 80.695178 C 152.4218 80.695178 152.4218 80.695178 152.4218 80.699093 C 152.417886 80.699093 152.417886 80.699093 152.417886 80.699093 C 152.417886 80.699093 152.413971 80.699093 152.413971 80.699093 C 152.413971 80.699093 152.413971 80.699093 152.413971 80.703008 C 152.413971 80.703008 152.413971 80.703008 152.410056 80.703008 C 152.410056 80.703008 152.410056 80.703008 152.406141 80.703008 C 152.406141 80.706923 152.406141 80.706923 152.406141 80.706923 C 152.402226 80.706923 152.402226 80.706923 152.402226 80.706923 C 152.402226 80.706923 152.398312 80.710837 152.398312 80.710837 C 152.398312 80.710837 152.394397 80.710837 152.394397 80.714752 C 152.390482 80.714752 152.390482 80.714752 152.386567 80.714752 C 152.386567 80.714752 152.382653 80.718667 152.382653 80.718667 C 152.378738 80.718667 152.378738 80.722582 152.374823 80.722582 C 152.374823 80.722582 152.370908 80.726497 152.366993 80.726497 C 152.363079 80.730411 152.359164 80.730411 152.359164 80.734326 C 152.355249 80.734326 152.351334 80.738241 152.347419 80.738241 C 152.343505 80.742156 152.335675 80.74607 152.33176 80.74607 C 152.327845 80.749985 152.323931 80.7539 152.320016 80.7539 C 152.312186 80.757815 152.304357 80.76173 152.300442 80.765644 C 152.296527 80.769559 152.284783 80.773474 152.280868 80.777389 C 152.273038 80.781304 152.265209 80.785218 152.257379 80.789133 C 152.24955 80.793048 152.237805 80.800878 152.229976 80.804792 C 152.222146 80.812622 152.206487 80.820451 152.194743 80.824366 C 152.186913 80.832196 152.171254 80.840025 152.15951 80.847855 C 152.147765 80.85177 152.128191 80.863514 152.116447 80.871344 C 152.100788 80.879173 152.077299 80.890918 152.065555 80.902662 C 152.049895 80.910492 152.022492 80.926151 152.002918 80.93398 C 151.987259 80.945725 151.95594 80.961384 151.936367 80.973128 C 151.912878 80.984873 151.877645 81.008361 151.854156 81.020106 C 151.830667 81.035765 151.787605 81.059254 151.760201 81.074913 C 151.732797 81.090572 151.681905 81.117975 151.650587 81.137549 C 151.615354 81.153209 151.560547 81.188442 151.521399 81.208016 C 151.486166 81.231504 151.419614 81.266737 151.372637 81.294141 C 151.329574 81.31763 151.255193 81.360692 151.200386 81.392011 C 151.149494 81.419414 151.059454 81.470307 151.000732 81.50554 C 150.94201 81.536858 150.836311 81.59558 150.769759 81.634728 C 150.699293 81.673876 150.577935 81.740427 150.499639 81.787404 C 150.417428 81.834382 150.276496 81.912678 150.182541 81.96357 C 150.088586 82.018377 149.92808 82.108417 149.818465 82.167139 C 149.712766 82.229776 149.524856 82.33156 149.399583 82.402026 C 149.27431 82.472493 149.055081 82.593851 148.910234 82.676062 C 148.765387 82.754357 148.514841 82.89529 148.346505 82.98533 C 148.178169 83.079285 147.892389 83.239791 147.69665 83.345491 C 147.504825 83.45119 147.172068 83.635185 146.948925 83.756544 C 146.725782 83.877902 146.346047 84.085386 146.087671 84.222404 C 145.83321 84.363336 145.394753 84.598223 145.101144 84.754815 C 144.807535 84.911406 144.306442 85.177612 143.973685 85.357692 C 143.637013 85.533858 143.065454 85.835297 142.685719 86.034951 C 142.30207 86.234605 141.656129 86.571277 141.221588 86.790505 C 140.790961 87.013648 140.058895 87.389468 139.569547 87.632185 C 139.080198 87.878817 138.254177 88.293785 137.710022 88.55999 C 137.161951 88.830111 136.238061 89.280312 135.627354 89.570006 C 135.016646 89.863615 133.987057 90.349049 133.313713 90.658317 C 132.636454 90.967586 131.501166 91.484338 130.76127 91.809266 C 130.01746 92.134193 128.776472 92.670519 127.970025 93.007191 C 127.163579 93.339948 125.816891 93.888019 124.947808 94.220776 C 124.08264 94.553533 122.638082 95.093774 121.718107 95.414787 C 120.798131 95.735799 119.271363 96.244722 118.308325 96.538331 C 117.341372 96.83194 115.759797 97.286056 114.765441 97.536602 C 113.771084 97.787149 112.150361 98.155139 111.140346 98.343049 C 110.134245 98.530959 108.509607 98.781506 107.511336 98.887205 C 106.513064 98.992904 104.91583 99.094689 103.948877 99.098603 C 102.97801 99.106433 101.447327 99.032052 100.531266 98.926353 C 99.611291 98.816739 98.178478 98.550533 97.328968 98.32739 C 96.479459 98.100332 95.175834 97.634472 94.408535 97.293886 C 93.641237 96.953299 92.478544 96.303444 91.801286 95.861073 C 91.127942 95.418701 90.117926 94.61617 89.534623 94.095503 C 88.951319 93.574836 88.090065 92.670519 87.592887 92.10679 C 87.099623 91.54306 86.379302 90.595681 85.964335 90.024122 C 85.549367 89.452562 84.954319 88.528672 84.613732 87.984516 C 84.273145 87.444275 83.787712 86.598681 83.513676 86.113247 C 83.239641 85.631728 82.852077 84.907492 82.636763 84.504268 C 82.42145 84.101045 82.123926 83.525571 81.96342 83.208473 C 81.802913 82.89529 81.5876 82.468578 81.470156 82.24152 C 81.356627 82.014462 81.133484 81.572091 81.133484 81.572091 " transform="matrix(0.997819,0,0,-0.997819,12.133339,182.15978)"/> +</g> +<path style="fill:none;stroke-width:0.79701;stroke-linecap:butt;stroke-linejoin:miter;stroke:rgb(0%,65.098572%,83.921814%);stroke-opacity:1;stroke-miterlimit:10;" d="M 118.731122 96.655775 L 115.71282 97.325204 " transform="matrix(0.997819,0,0,-0.997819,12.133339,182.15978)"/> +<path style="fill-rule:nonzero;fill:rgb(0%,65.098572%,83.921814%);fill-opacity:1;stroke-width:0.79701;stroke-linecap:butt;stroke-linejoin:miter;stroke:rgb(0%,65.098572%,83.921814%);stroke-opacity:1;stroke-miterlimit:10;" d="M 7.371331 -0.00121582 L 1.285609 2.294793 L 3.29173 0.00170769 L 1.287469 -2.29311 Z M 7.371331 -0.00121582 " transform="matrix(-0.973941,-0.216656,-0.216656,0.973941,130.604758,85.715417)"/> +<g clip-path="url(#clip10)" clip-rule="nonzero"> +<path style="fill:none;stroke-width:0.79701;stroke-linecap:butt;stroke-linejoin:miter;stroke:rgb(0%,65.098572%,83.921814%);stroke-opacity:1;stroke-miterlimit:10;" d="M 8.964341 116.558564 C 8.964341 116.558564 8.968255 116.558564 8.968255 116.558564 C 8.968255 116.558564 8.968255 116.55465 8.97217 116.55465 C 8.97217 116.55465 8.976085 116.55465 8.976085 116.550735 C 8.976085 116.550735 8.976085 116.550735 8.98 116.550735 C 8.98 116.550735 8.98 116.54682 8.98 116.54682 C 8.98 116.54682 8.98 116.54682 8.983915 116.54682 C 8.983915 116.54682 8.983915 116.542905 8.983915 116.542905 C 8.987829 116.542905 8.987829 116.542905 8.987829 116.542905 C 8.987829 116.538991 8.991744 116.538991 8.991744 116.538991 C 8.991744 116.538991 8.995659 116.535076 8.995659 116.535076 C 8.999574 116.535076 8.999574 116.531161 8.999574 116.531161 C 9.003489 116.531161 9.007403 116.527246 9.007403 116.527246 C 9.007403 116.523331 9.011318 116.523331 9.015233 116.519417 C 9.015233 116.519417 9.019148 116.515502 9.023062 116.515502 C 9.023062 116.511587 9.026977 116.507672 9.030892 116.507672 C 9.034807 116.503757 9.038722 116.499843 9.042636 116.495928 C 9.046551 116.495928 9.050466 116.492013 9.054381 116.488098 C 9.058296 116.484183 9.066125 116.480269 9.07004 116.476354 C 9.073955 116.472439 9.081784 116.46461 9.085699 116.460695 C 9.093529 116.45678 9.101358 116.44895 9.105273 116.445036 C 9.113103 116.441121 9.124847 116.433291 9.128762 116.425462 C 9.136591 116.421547 9.148336 116.409802 9.156165 116.405888 C 9.163995 116.398058 9.179654 116.386314 9.187484 116.378484 C 9.199228 116.370655 9.214887 116.35891 9.226632 116.347166 C 9.238376 116.339336 9.25795 116.323677 9.269694 116.311933 C 9.281439 116.304103 9.304927 116.284529 9.320586 116.272785 C 9.336246 116.26104 9.359734 116.237552 9.379308 116.225807 C 9.394967 116.210148 9.426286 116.186659 9.44586 116.171 C 9.465434 116.151426 9.500667 116.124023 9.524156 116.104449 C 9.547644 116.084875 9.590707 116.053557 9.61811 116.030068 C 9.645514 116.006579 9.692491 115.971346 9.72381 115.943943 C 9.759043 115.916539 9.81385 115.873476 9.849083 115.842158 C 9.888231 115.81084 9.950868 115.759947 9.997845 115.724714 C 10.040908 115.689481 10.115289 115.626845 10.166181 115.587697 C 10.217073 115.544634 10.303199 115.474168 10.36192 115.42719 C 10.420642 115.380213 10.522427 115.298002 10.592893 115.243195 C 10.659444 115.184473 10.776888 115.090518 10.855184 115.027882 C 10.937395 114.96133 11.074412 114.851716 11.164452 114.777335 C 11.258407 114.702954 11.414999 114.573766 11.524613 114.487641 C 11.630312 114.401515 11.814307 114.252753 11.939581 114.154884 C 12.060939 114.053099 12.276253 113.880848 12.417185 113.76732 C 12.562032 113.649876 12.808664 113.450222 12.973085 113.317119 C 13.141421 113.184016 13.423286 112.956958 13.615111 112.804281 C 13.806935 112.64769 14.135778 112.385399 14.355006 112.209233 C 14.574234 112.033068 14.953968 111.731629 15.20843 111.52806 C 15.458976 111.324491 15.893518 110.976075 16.183212 110.745102 C 16.476822 110.51413 16.970085 110.118736 17.302842 109.85253 C 17.635599 109.590239 18.203244 109.140038 18.582978 108.8386 C 18.962713 108.537161 19.608653 108.024323 20.03928 107.687652 C 20.469907 107.347065 21.201972 106.767676 21.691321 106.387941 C 22.18067 106.004292 23.00669 105.354437 23.554761 104.927725 C 24.102831 104.501013 25.034551 103.776777 25.649173 103.303087 C 26.263795 102.825483 27.301214 102.026866 27.982388 101.502284 C 28.663561 100.981617 29.814509 100.10079 30.570064 99.533145 C 31.321703 98.961586 32.58618 98.006377 33.408286 97.391755 C 34.230392 96.777133 35.608398 95.751458 36.50097 95.097689 C 37.389627 94.443919 38.873332 93.363437 39.824626 92.678349 C 40.77592 91.993261 42.349665 90.869716 43.351851 90.168969 C 44.354037 89.464307 46.006079 88.321188 47.043498 87.620441 C 48.080917 86.915779 49.779936 85.784405 50.836929 85.099316 C 51.893922 84.414228 53.6086 83.325917 54.661678 82.683891 C 55.714756 82.037951 57.402031 81.035765 58.427705 80.460291 C 59.449466 79.880902 61.074103 79.007904 62.044971 78.518555 C 63.011924 78.029207 64.526947 77.316715 65.415605 76.940895 C 66.308177 76.561161 67.674438 76.044408 68.46914 75.789947 C 69.259928 75.535486 70.450024 75.230132 71.131197 75.100944 C 71.812371 74.975671 72.814557 74.881716 73.378286 74.873886 C 73.942016 74.869972 74.752378 74.963926 75.206493 75.061796 C 75.660609 75.163581 76.294805 75.410212 76.647136 75.586378 C 77.003381 75.762544 77.488815 76.11096 77.758936 76.334103 C 78.029056 76.553331 78.393132 76.948725 78.600616 77.187527 C 78.804185 77.422414 79.07822 77.813893 79.230897 78.040951 C 79.383573 78.264094 79.591057 78.61251 79.704586 78.80825 C 79.82203 79.003989 79.970792 79.289769 80.056917 79.442446 C 80.139128 79.599037 80.248742 79.810436 80.307464 79.923965 C 80.366186 80.037494 80.4758 80.256722 80.4758 80.256722 " transform="matrix(0.997819,0,0,-0.997819,12.133339,182.15978)"/> +</g> +<path style="fill:none;stroke-width:0.79701;stroke-linecap:butt;stroke-linejoin:miter;stroke:rgb(0%,65.098572%,83.921814%);stroke-opacity:1;stroke-miterlimit:10;" d="M 39.93424 92.529587 L 42.478853 90.771846 " transform="matrix(0.997819,0,0,-0.997819,12.133339,182.15978)"/> +<path style="fill-rule:nonzero;fill:rgb(0%,65.098572%,83.921814%);fill-opacity:1;stroke-width:0.79701;stroke-linecap:butt;stroke-linejoin:miter;stroke:rgb(0%,65.098572%,83.921814%);stroke-opacity:1;stroke-miterlimit:10;" d="M 7.370549 0.000620569 L 1.286494 2.293686 L 3.289534 -0.000832887 L 1.285348 -2.293429 Z M 7.370549 0.000620569 " transform="matrix(0.821055,0.566941,0.566941,-0.821055,51.979271,89.833565)"/> +<g clip-path="url(#clip11)" clip-rule="nonzero"> +<path style="fill:none;stroke-width:0.79701;stroke-linecap:butt;stroke-linejoin:miter;stroke:rgb(0%,65.098572%,83.921814%);stroke-opacity:1;stroke-miterlimit:10;" d="M 152.425715 116.558564 C 152.425715 116.558564 152.4218 116.558564 152.4218 116.558564 C 152.4218 116.558564 152.4218 116.558564 152.4218 116.562479 C 152.417886 116.562479 152.417886 116.562479 152.417886 116.562479 C 152.417886 116.562479 152.413971 116.562479 152.413971 116.562479 C 152.413971 116.562479 152.413971 116.562479 152.410056 116.562479 C 152.410056 116.562479 152.410056 116.562479 152.406141 116.562479 C 152.406141 116.562479 152.406141 116.562479 152.406141 116.566394 C 152.402226 116.566394 152.402226 116.566394 152.402226 116.566394 C 152.402226 116.566394 152.398312 116.566394 152.398312 116.566394 C 152.398312 116.566394 152.394397 116.566394 152.394397 116.566394 C 152.390482 116.566394 152.390482 116.566394 152.386567 116.570309 C 152.386567 116.570309 152.382653 116.570309 152.382653 116.570309 C 152.378738 116.570309 152.378738 116.570309 152.374823 116.570309 C 152.374823 116.574224 152.370908 116.574224 152.366993 116.574224 C 152.363079 116.574224 152.359164 116.574224 152.359164 116.578138 C 152.355249 116.578138 152.351334 116.578138 152.347419 116.578138 C 152.343505 116.578138 152.335675 116.582053 152.33176 116.582053 C 152.327845 116.582053 152.323931 116.585968 152.320016 116.585968 C 152.312186 116.585968 152.304357 116.589883 152.300442 116.589883 C 152.296527 116.589883 152.284783 116.593798 152.280868 116.593798 C 152.273038 116.597712 152.265209 116.597712 152.257379 116.601627 C 152.24955 116.601627 152.237805 116.605542 152.229976 116.609457 C 152.222146 116.609457 152.206487 116.613372 152.198657 116.617286 C 152.186913 116.617286 152.171254 116.621201 152.15951 116.625116 C 152.147765 116.629031 152.128191 116.632945 152.116447 116.63686 C 152.100788 116.640775 152.081214 116.64469 152.065555 116.648605 C 152.049895 116.652519 152.022492 116.660349 152.002918 116.664264 C 151.987259 116.668179 151.95594 116.676008 151.936367 116.679923 C 151.912878 116.687753 151.877645 116.695582 151.854156 116.699497 C 151.830667 116.707326 151.787605 116.715156 151.760201 116.722986 C 151.732797 116.730815 151.681905 116.74256 151.650587 116.750389 C 151.619269 116.758219 151.560547 116.773878 151.525314 116.781707 C 151.486166 116.789537 151.419614 116.805196 151.376552 116.816941 C 151.329574 116.828685 151.255193 116.848259 151.204301 116.860003 C 151.153409 116.871748 151.063368 116.891322 151.004647 116.906981 C 150.94201 116.92264 150.840225 116.946129 150.769759 116.961788 C 150.699293 116.977447 150.581849 117.00485 150.499639 117.024424 C 150.421343 117.043998 150.280411 117.075317 150.186456 117.098805 C 150.096415 117.122294 149.935909 117.157527 149.826295 117.181016 C 149.716681 117.20842 149.532686 117.247567 149.407413 117.278886 C 149.282139 117.306289 149.066826 117.353267 148.921979 117.384585 C 148.777131 117.419818 148.526585 117.47071 148.358249 117.509858 C 148.193828 117.545091 147.908048 117.607728 147.712309 117.646876 C 147.520484 117.686024 147.191642 117.75649 146.968499 117.799553 C 146.74927 117.84653 146.369536 117.920911 146.115075 117.971803 C 145.860613 118.022696 145.426072 118.104906 145.136377 118.159713 C 144.846683 118.21452 144.349505 118.304561 144.020662 118.363282 C 143.687905 118.422004 143.124175 118.519874 142.748356 118.578596 C 142.368621 118.641232 141.73051 118.743017 141.303798 118.805654 C 140.877086 118.86829 140.156765 118.970075 139.675246 119.032711 C 139.193727 119.095348 138.383365 119.197133 137.847039 119.255854 C 137.306798 119.314576 136.402482 119.408531 135.803519 119.459423 C 135.204556 119.510316 134.198455 119.584697 133.536856 119.61993 C 132.879171 119.659078 131.771286 119.706055 131.04705 119.721714 C 130.322814 119.737374 129.113144 119.745203 128.330186 119.729544 C 127.547228 119.713885 126.239688 119.662993 125.398009 119.604271 C 124.556329 119.545549 123.158749 119.420276 122.270092 119.306747 C 121.37752 119.193218 119.905559 118.96616 118.973839 118.782165 C 118.042119 118.59817 116.515351 118.249754 115.552313 117.979633 C 114.59319 117.709513 113.031189 117.212334 112.060321 116.844344 C 111.089453 116.476354 109.515708 115.806925 108.548755 115.329321 C 107.581802 114.851716 106.031545 113.994377 105.088081 113.399329 C 104.144617 112.808196 102.645252 111.759033 101.737021 111.050456 C 100.832705 110.341879 99.411636 109.112635 98.558212 108.298359 C 97.704788 107.487997 96.381589 106.098247 95.594717 105.205675 C 94.807844 104.313103 93.598174 102.809824 92.885682 101.86636 C 92.169276 100.922895 91.084879 99.364809 90.446768 98.409601 C 89.812573 97.454392 88.853449 95.911965 88.297549 94.991989 C 87.741649 94.068099 86.911714 92.615712 86.438024 91.766203 C 85.96042 90.920608 85.263587 89.616983 84.868193 88.877088 C 84.4728 88.137193 83.905155 87.037137 83.588057 86.42643 C 83.274874 85.815723 82.832503 84.94664 82.593701 84.47295 C 82.350984 83.999261 82.029971 83.357235 81.85772 83.016648 C 81.68547 82.672147 81.352713 82.010547 81.352713 82.010547 " transform="matrix(0.997819,0,0,-0.997819,12.133339,182.15978)"/> +</g> +<path style="fill:none;stroke-width:0.79701;stroke-linecap:butt;stroke-linejoin:miter;stroke:rgb(0%,65.098572%,83.921814%);stroke-opacity:1;stroke-miterlimit:10;" d="M 112.894171 117.20059 L 110.055949 115.975261 " transform="matrix(0.997819,0,0,-0.997819,12.133339,182.15978)"/> +<path style="fill-rule:nonzero;fill:rgb(0%,65.098572%,83.921814%);fill-opacity:1;stroke-width:0.79701;stroke-linecap:butt;stroke-linejoin:miter;stroke:rgb(0%,65.098572%,83.921814%);stroke-opacity:1;stroke-miterlimit:10;" d="M 7.371513 0.000887557 L 1.287444 2.29473 L 3.290878 0.00135526 L 1.285642 -2.292769 Z M 7.371513 0.000887557 " transform="matrix(-0.916057,0.395455,0.395455,0.916057,124.779722,65.212988)"/> +<g clip-path="url(#clip12)" clip-rule="nonzero"> +<path style="fill:none;stroke-width:0.79701;stroke-linecap:butt;stroke-linejoin:miter;stroke:rgb(0%,65.098572%,83.921814%);stroke-opacity:1;stroke-miterlimit:10;" d="M 8.964341 152.425866 C 8.964341 152.425866 8.968255 152.425866 8.968255 152.425866 C 8.968255 152.421951 8.968255 152.421951 8.968255 152.421951 C 8.97217 152.421951 8.97217 152.418036 8.97217 152.418036 C 8.97217 152.418036 8.976085 152.414121 8.976085 152.414121 C 8.98 152.410206 8.98 152.410206 8.98 152.410206 C 8.98 152.410206 8.98 152.410206 8.983915 152.410206 C 8.983915 152.406292 8.983915 152.406292 8.983915 152.406292 C 8.983915 152.406292 8.987829 152.402377 8.987829 152.402377 C 8.987829 152.402377 8.991744 152.398462 8.991744 152.398462 C 8.991744 152.398462 8.995659 152.394547 8.995659 152.394547 C 8.995659 152.394547 8.999574 152.390632 8.999574 152.390632 C 9.003489 152.386718 9.003489 152.386718 9.007403 152.382803 C 9.007403 152.382803 9.011318 152.378888 9.011318 152.378888 C 9.015233 152.374973 9.019148 152.371058 9.019148 152.371058 C 9.023062 152.367144 9.026977 152.363229 9.030892 152.359314 C 9.030892 152.359314 9.034807 152.355399 9.038722 152.351485 C 9.042636 152.34757 9.046551 152.343655 9.050466 152.33974 C 9.054381 152.335825 9.06221 152.327996 9.066125 152.324081 C 9.07004 152.320166 9.07787 152.312337 9.081784 152.308422 C 9.089614 152.304507 9.097443 152.292763 9.101358 152.288848 C 9.109188 152.281018 9.117017 152.273189 9.124847 152.265359 C 9.132677 152.25753 9.144421 152.245785 9.152251 152.237956 C 9.16008 152.230126 9.171824 152.218382 9.179654 152.210552 C 9.191398 152.198808 9.207058 152.183149 9.218802 152.171404 C 9.226632 152.163575 9.246205 152.144001 9.25795 152.132256 C 9.269694 152.120512 9.293183 152.097023 9.308842 152.081364 C 9.320586 152.06962 9.34799 152.042216 9.363649 152.026557 C 9.379308 152.010898 9.410627 151.97958 9.430201 151.960006 C 9.449775 151.940432 9.481093 151.909113 9.504582 151.885625 C 9.52807 151.862136 9.567218 151.822988 9.594622 151.795584 C 9.622025 151.768181 9.669003 151.721203 9.700321 151.689885 C 9.731639 151.658567 9.782532 151.607675 9.82168 151.568527 C 9.856913 151.533294 9.919549 151.470657 9.958697 151.431509 C 10.00176 151.388446 10.076141 151.314065 10.123118 151.267088 C 10.174011 151.216196 10.256221 151.133985 10.314943 151.075263 C 10.373665 151.016541 10.471535 150.918672 10.534171 150.856035 C 10.600723 150.789484 10.714252 150.675955 10.792547 150.597659 C 10.870843 150.519363 11.003946 150.38626 11.093986 150.300135 C 11.180111 150.210095 11.336703 150.053503 11.438488 149.951719 C 11.544187 149.846019 11.720352 149.669854 11.841711 149.548495 C 11.963069 149.427137 12.166638 149.223568 12.307571 149.082635 C 12.444588 148.945618 12.683391 148.706816 12.843897 148.546309 C 13.008318 148.381888 13.282353 148.107853 13.470263 147.919943 C 13.654258 147.735948 13.975271 147.414935 14.18667 147.203536 C 14.401983 146.988223 14.769973 146.620233 15.016605 146.373601 C 15.267152 146.126969 15.686034 145.704172 15.971814 145.418392 C 16.257593 145.132613 16.739112 144.651094 17.067955 144.322251 C 17.392882 143.997324 17.948782 143.441424 18.320687 143.069519 C 18.692592 142.697614 19.326788 142.063418 19.749586 141.640621 C 20.172383 141.217823 20.892704 140.497502 21.374223 140.015983 C 21.855742 139.534464 22.673933 138.716273 23.214174 138.176032 C 23.75833 137.631876 24.678306 136.711901 25.289013 136.101193 C 25.89972 135.490486 26.933224 134.456982 27.614398 133.775809 C 28.295571 133.094635 29.446519 131.943687 30.202073 131.188133 C 30.957628 130.432578 32.229934 129.160272 33.05987 128.330336 C 33.889805 127.500401 35.28347 126.106736 36.187787 125.20242 C 37.092103 124.298103 38.603212 122.786995 39.577994 121.812212 C 40.552777 120.837429 42.169585 119.220621 43.203089 118.187117 C 44.240508 117.149698 45.951271 115.438935 47.031753 114.358453 C 48.11615 113.274056 49.893464 111.496742 51.005265 110.384942 C 52.117065 109.273141 53.929612 107.460594 55.049242 106.340964 C 56.168872 105.221334 57.97359 103.416616 59.073646 102.31656 C 60.173702 101.216505 61.923612 99.466594 62.972776 98.41743 C 64.025854 97.364352 65.673981 95.716225 66.644849 94.745358 C 67.615716 93.77449 69.111166 92.27904 69.976334 91.413872 C 70.841503 90.548703 72.137298 89.252908 72.877193 88.513013 C 73.613174 87.777032 74.685826 86.70438 75.280874 86.109332 C 75.879837 85.514284 76.713687 84.676519 77.171717 84.218489 C 77.625833 83.764373 78.232625 83.157581 78.557553 82.832653 C 78.88248 82.507726 79.289618 82.100588 79.501017 81.889189 C 79.716331 81.673876 79.962962 81.427244 80.09215 81.298056 C 80.217424 81.172783 80.354441 81.035765 80.420993 80.969213 C 80.491459 80.898747 80.554095 80.836111 80.585414 80.804792 C 80.620647 80.769559 80.644136 80.74607 80.659795 80.730411 C 80.671539 80.718667 80.679369 80.710837 80.683284 80.706923 C 80.691113 80.699093 80.691113 80.699093 80.691113 80.699093 C 80.695028 80.695178 80.695028 80.695178 80.695028 80.695178 " transform="matrix(0.997819,0,0,-0.997819,12.133339,182.15978)"/> +</g> +<path style="fill:none;stroke-width:0.79701;stroke-linecap:butt;stroke-linejoin:miter;stroke:rgb(0%,65.098572%,83.921814%);stroke-opacity:1;stroke-miterlimit:10;" d="M 41.825083 119.565123 L 44.009536 117.38067 " transform="matrix(0.997819,0,0,-0.997819,12.133339,182.15978)"/> +<path style="fill-rule:nonzero;fill:rgb(0%,65.098572%,83.921814%);fill-opacity:1;stroke-width:0.79701;stroke-linecap:butt;stroke-linejoin:miter;stroke:rgb(0%,65.098572%,83.921814%);stroke-opacity:1;stroke-miterlimit:10;" d="M 7.370973 -0.0000239403 L 1.286468 2.292046 L 3.290645 -0.0000239403 L 1.286468 -2.292094 Z M 7.370973 -0.0000239403 " transform="matrix(0.705558,0.705558,0.705558,-0.705558,53.865777,62.854025)"/> +<g clip-path="url(#clip13)" clip-rule="nonzero"> +<path style="fill:none;stroke-width:0.79701;stroke-linecap:butt;stroke-linejoin:miter;stroke:rgb(0%,65.098572%,83.921814%);stroke-opacity:1;stroke-miterlimit:10;" d="M 44.831642 152.425866 C 44.831642 152.425866 44.831642 152.421951 44.831642 152.421951 C 44.831642 152.421951 44.835556 152.421951 44.835556 152.418036 C 44.835556 152.414121 44.835556 152.414121 44.839471 152.414121 C 44.839471 152.414121 44.839471 152.414121 44.839471 152.410206 C 44.839471 152.410206 44.843386 152.410206 44.843386 152.410206 C 44.843386 152.410206 44.843386 152.406292 44.843386 152.406292 C 44.843386 152.406292 44.843386 152.406292 44.847301 152.406292 C 44.847301 152.402377 44.847301 152.402377 44.847301 152.402377 C 44.851216 152.398462 44.851216 152.398462 44.851216 152.398462 C 44.851216 152.394547 44.85513 152.394547 44.85513 152.394547 C 44.85513 152.390632 44.859045 152.390632 44.859045 152.386718 C 44.859045 152.386718 44.86296 152.382803 44.86296 152.382803 C 44.866875 152.378888 44.866875 152.378888 44.87079 152.374973 C 44.87079 152.371058 44.874704 152.371058 44.874704 152.367144 C 44.878619 152.363229 44.882534 152.359314 44.882534 152.359314 C 44.886449 152.355399 44.890364 152.351485 44.890364 152.34757 C 44.894278 152.343655 44.898193 152.335825 44.902108 152.331911 C 44.906023 152.327996 44.909937 152.324081 44.913852 152.320166 C 44.917767 152.312337 44.921682 152.304507 44.925597 152.300592 C 44.933426 152.296677 44.937341 152.284933 44.945171 152.281018 C 44.949085 152.273189 44.956915 152.265359 44.96083 152.25753 C 44.968659 152.2497 44.976489 152.237956 44.984318 152.230126 C 44.992148 152.222296 44.999978 152.206637 45.007807 152.194893 C 45.015637 152.187063 45.031296 152.171404 45.039126 152.15966 C 45.046955 152.147915 45.062614 152.128342 45.074359 152.116597 C 45.082188 152.100938 45.101762 152.077449 45.113507 152.065705 C 45.125251 152.050046 45.144825 152.022642 45.160484 152.003068 C 45.176143 151.987409 45.199632 151.956091 45.215291 151.936517 C 45.23095 151.913028 45.258354 151.877795 45.277928 151.854306 C 45.297502 151.830818 45.32882 151.787755 45.352309 151.760351 C 45.375797 151.732948 45.411031 151.682056 45.438434 151.650737 C 45.465838 151.615504 45.5089 151.560697 45.536304 151.521549 C 45.567622 151.486316 45.618514 151.419765 45.653747 151.372787 C 45.688981 151.329724 45.747702 151.255343 45.790765 151.200536 C 45.829913 151.149644 45.900379 151.059604 45.947357 151.000882 C 45.994334 150.94216 46.07263 150.836461 46.127437 150.76991 C 46.182244 150.699443 46.276199 150.578085 46.338836 150.495874 C 46.401472 150.417579 46.511086 150.276646 46.585467 150.182691 C 46.659848 150.088736 46.785122 149.92823 46.867332 149.818616 C 46.953458 149.712916 47.098305 149.525007 47.196174 149.399733 C 47.294044 149.270545 47.46238 149.055232 47.575909 148.910385 C 47.689438 148.765537 47.885177 148.514991 48.014365 148.346655 C 48.143554 148.178319 48.366697 147.892539 48.519373 147.6968 C 48.668135 147.504975 48.926511 147.172218 49.098762 146.949075 C 49.271013 146.725932 49.564622 146.346197 49.764276 146.087821 C 49.960016 145.83336 50.296688 145.394904 50.523746 145.101294 C 50.746889 144.807685 51.130538 144.306592 51.388914 143.973835 C 51.643375 143.637163 52.077917 143.065604 52.371526 142.685869 C 52.661221 142.30222 53.150569 141.65628 53.479412 141.221738 C 53.808254 140.791111 54.360239 140.059046 54.728229 139.569697 C 55.092305 139.080348 55.714756 138.254328 56.121894 137.710172 C 56.529033 137.162101 57.218036 136.238211 57.668236 135.627504 C 58.118437 135.016797 58.873991 133.987207 59.367255 133.313863 C 59.860518 132.636605 60.686539 131.501316 61.21895 130.761421 C 61.755277 130.017611 62.643934 128.776622 63.215493 127.970176 C 63.783137 127.163729 64.730516 125.817042 65.329479 124.947958 C 65.932357 124.08279 66.922799 122.638233 67.54525 121.718257 C 68.163787 120.798281 69.181632 119.271514 69.811913 118.308475 C 70.442194 117.341522 71.46004 115.759947 72.082491 114.765591 C 72.704943 113.771234 73.699299 112.146597 74.294347 111.140496 C 74.89331 110.134395 75.832859 108.509757 76.38093 107.511486 C 76.932915 106.513215 77.782425 104.915981 78.271773 103.949028 C 78.757207 102.97816 79.485358 101.447477 79.892496 100.531416 C 80.299634 99.611441 80.882938 98.178628 81.192206 97.329119 C 81.505389 96.479609 81.924272 95.175984 82.139585 94.408686 C 82.350984 93.641387 82.60936 92.478695 82.722889 91.801436 C 82.840333 91.128092 82.946032 90.118076 82.97735 89.534773 C 83.008668 88.951469 82.98518 88.090216 82.949947 87.593037 C 82.914714 87.099774 82.805099 86.379453 82.726804 85.964485 C 82.644593 85.549517 82.480172 84.954469 82.382302 84.613882 C 82.280518 84.273296 82.100437 83.787862 81.994738 83.513827 C 81.892953 83.239791 81.724618 82.852227 81.630663 82.636914 C 81.536708 82.4216 81.395775 82.124076 81.317479 81.96357 C 81.243098 81.803064 81.137399 81.583835 81.078677 81.470307 C 81.02387 81.356778 80.914256 81.133635 80.914256 81.133635 " transform="matrix(0.997819,0,0,-0.997819,12.133339,182.15978)"/> +</g> +<path style="fill:none;stroke-width:0.79701;stroke-linecap:butt;stroke-linejoin:miter;stroke:rgb(0%,65.098572%,83.921814%);stroke-opacity:1;stroke-miterlimit:10;" d="M 67.012839 122.512959 L 68.723602 119.940943 " transform="matrix(0.997819,0,0,-0.997819,12.133339,182.15978)"/> +<path style="fill-rule:nonzero;fill:rgb(0%,65.098572%,83.921814%);fill-opacity:1;stroke-width:0.79701;stroke-linecap:butt;stroke-linejoin:miter;stroke:rgb(0%,65.098572%,83.921814%);stroke-opacity:1;stroke-miterlimit:10;" d="M 7.368339 -0.00150018 L 1.287119 2.293151 L 3.293226 0.000120607 L 1.287201 -2.295557 Z M 7.368339 -0.00150018 " transform="matrix(0.552462,0.830854,0.830854,-0.552462,79.000829,59.912316)"/> +<g clip-path="url(#clip14)" clip-rule="nonzero"> +<path style="fill:none;stroke-width:0.79701;stroke-linecap:butt;stroke-linejoin:miter;stroke:rgb(0%,65.098572%,83.921814%);stroke-opacity:1;stroke-miterlimit:10;" d="M 80.695028 152.425866 C 80.695028 152.425866 80.695028 152.421951 80.695028 152.421951 C 80.695028 152.418036 80.695028 152.418036 80.698943 152.418036 C 80.698943 152.418036 80.698943 152.414121 80.698943 152.414121 C 80.698943 152.410206 80.698943 152.410206 80.698943 152.410206 C 80.702857 152.410206 80.702857 152.410206 80.702857 152.406292 C 80.702857 152.406292 80.702857 152.402377 80.702857 152.402377 C 80.702857 152.402377 80.706772 152.398462 80.706772 152.398462 C 80.706772 152.398462 80.706772 152.394547 80.706772 152.394547 C 80.706772 152.394547 80.706772 152.390632 80.710687 152.390632 C 80.710687 152.386718 80.710687 152.386718 80.710687 152.382803 C 80.710687 152.382803 80.714602 152.378888 80.714602 152.374973 C 80.714602 152.374973 80.714602 152.371058 80.718517 152.367144 C 80.718517 152.367144 80.718517 152.363229 80.722431 152.359314 C 80.722431 152.355399 80.722431 152.351485 80.726346 152.34757 C 80.726346 152.343655 80.730261 152.33974 80.730261 152.335825 C 80.730261 152.331911 80.734176 152.324081 80.738091 152.320166 C 80.738091 152.316251 80.742005 152.308422 80.742005 152.304507 C 80.74592 152.300592 80.749835 152.288848 80.749835 152.284933 C 80.75375 152.277104 80.757665 152.269274 80.761579 152.261444 C 80.761579 152.253615 80.769409 152.24187 80.769409 152.234041 C 80.773324 152.226211 80.781153 152.214467 80.785068 152.202723 C 80.788983 152.194893 80.792898 152.179234 80.796812 152.167489 C 80.800727 152.155745 80.808557 152.136171 80.816386 152.124427 C 80.820301 152.112682 80.828131 152.089194 80.83596 152.073534 C 80.839875 152.057875 80.851619 152.034387 80.859449 152.014813 C 80.863364 151.999153 80.875108 151.967835 80.882938 151.948261 C 80.890767 151.928687 80.906427 151.893454 80.914256 151.869965 C 80.926 151.846477 80.94166 151.807329 80.953404 151.779925 C 80.961234 151.752522 80.980808 151.705544 80.992552 151.674226 C 81.008211 151.642908 81.027785 151.588101 81.043444 151.548953 C 81.059103 151.51372 81.082592 151.447168 81.098251 151.404105 C 81.117825 151.361043 81.145229 151.286662 81.164803 151.239684 C 81.184377 151.188792 81.21961 151.102667 81.243098 151.043945 C 81.262672 150.985223 81.30182 150.887353 81.329224 150.816887 C 81.356627 150.750336 81.39969 150.636807 81.431008 150.554596 C 81.462327 150.4763 81.513219 150.343198 81.548452 150.253157 C 81.583685 150.163117 81.646322 150.006526 81.68547 149.900826 C 81.724618 149.795127 81.795084 149.615047 81.842061 149.493688 C 81.889039 149.37233 81.967334 149.164846 82.018227 149.023913 C 82.073034 148.882981 82.163074 148.640264 82.225711 148.479758 C 82.284432 148.315337 82.390132 148.037387 82.460598 147.853391 C 82.527149 147.665482 82.644593 147.344469 82.722889 147.129155 C 82.805099 146.913842 82.938202 146.549767 83.024328 146.303135 C 83.114368 146.056503 83.26313 145.637621 83.364914 145.355756 C 83.462784 145.073891 83.63112 144.592372 83.744649 144.271359 C 83.854263 143.950346 84.042173 143.402276 84.163531 143.0382 C 84.288805 142.674125 84.492374 142.055588 84.629391 141.640621 C 84.762494 141.229568 84.989552 140.52882 85.134399 140.066875 C 85.279246 139.601015 85.521963 138.814143 85.678555 138.293476 C 85.831232 137.772809 86.089608 136.895896 86.254029 136.316507 C 86.414535 135.737118 86.684656 134.762335 86.849077 134.124225 C 87.017413 133.486114 87.291448 132.409547 87.459784 131.712714 C 87.624205 131.011967 87.894326 129.83753 88.054832 129.078061 C 88.215338 128.318592 88.4698 127.046285 88.618562 126.232009 C 88.763409 125.413818 88.990467 124.055386 89.11574 123.186303 C 89.241013 122.31722 89.425008 120.880492 89.518963 119.964431 C 89.612918 119.052285 89.738192 117.552921 89.789084 116.605542 C 89.843891 115.662078 89.894783 114.115736 89.898698 113.148783 C 89.898698 112.185745 89.863465 110.615914 89.808658 109.645046 C 89.757766 108.674179 89.624663 107.108263 89.511134 106.145225 C 89.397605 105.182186 89.166632 103.643674 88.994382 102.708039 C 88.822131 101.76849 88.501118 100.284785 88.277975 99.384383 C 88.054832 98.487896 87.655524 97.078572 87.397147 96.232978 C 87.134857 95.391298 86.684656 94.079843 86.402791 93.3008 C 86.117011 92.521757 85.647237 91.327746 85.361457 90.630914 C 85.075677 89.930167 84.609817 88.869259 84.339697 88.258551 C 84.069576 87.647844 83.646779 86.739613 83.404062 86.222861 C 83.161345 85.706109 82.801185 84.958384 82.60153 84.543416 C 82.397961 84.124534 82.108267 83.54123 81.951675 83.220217 C 81.795084 82.903119 81.583685 82.472493 81.470156 82.245435 C 81.352713 82.014462 81.133484 81.572091 81.133484 81.572091 " transform="matrix(0.997819,0,0,-0.997819,12.133339,182.15978)"/> +</g> +<path style="fill:none;stroke-width:0.79701;stroke-linecap:butt;stroke-linejoin:miter;stroke:rgb(0%,65.098572%,83.921814%);stroke-opacity:1;stroke-miterlimit:10;" d="M 89.428923 121.10755 L 89.675555 118.022696 " transform="matrix(0.997819,0,0,-0.997819,12.133339,182.15978)"/> +<path style="fill-rule:nonzero;fill:rgb(0%,65.098572%,83.921814%);fill-opacity:1;stroke-width:0.79701;stroke-linecap:butt;stroke-linejoin:miter;stroke:rgb(0%,65.098572%,83.921814%);stroke-opacity:1;stroke-miterlimit:10;" d="M 7.370594 -0.00127251 L 1.287526 2.293751 L 3.28964 -0.00102585 L 1.285573 -2.29375 Z M 7.370594 -0.00127251 " transform="matrix(0.0804641,0.994516,0.994516,-0.0804641,101.365229,61.318162)"/> +<g clip-path="url(#clip15)" clip-rule="nonzero"> +<path style="fill:none;stroke-width:0.79701;stroke-linecap:butt;stroke-linejoin:miter;stroke:rgb(0%,65.098572%,83.921814%);stroke-opacity:1;stroke-miterlimit:10;" d="M 116.558414 152.425866 C 116.558414 152.425866 116.558414 152.421951 116.558414 152.421951 C 116.558414 152.421951 116.558414 152.418036 116.558414 152.418036 C 116.554499 152.418036 116.554499 152.418036 116.554499 152.418036 C 116.554499 152.418036 116.554499 152.418036 116.554499 152.414121 C 116.554499 152.414121 116.554499 152.410206 116.554499 152.410206 C 116.554499 152.410206 116.550585 152.410206 116.550585 152.410206 C 116.550585 152.406292 116.550585 152.406292 116.550585 152.406292 C 116.550585 152.406292 116.550585 152.402377 116.550585 152.402377 C 116.550585 152.402377 116.54667 152.402377 116.54667 152.398462 C 116.54667 152.398462 116.54667 152.398462 116.54667 152.394547 C 116.54667 152.394547 116.542755 152.390632 116.542755 152.390632 C 116.542755 152.390632 116.542755 152.386718 116.53884 152.386718 C 116.53884 152.382803 116.53884 152.378888 116.53884 152.378888 C 116.534925 152.374973 116.534925 152.374973 116.534925 152.371058 C 116.531011 152.367144 116.531011 152.363229 116.527096 152.363229 C 116.527096 152.359314 116.527096 152.355399 116.523181 152.351485 C 116.523181 152.34757 116.519266 152.343655 116.519266 152.33974 C 116.515351 152.335825 116.511437 152.331911 116.511437 152.327996 C 116.507522 152.324081 116.503607 152.316251 116.503607 152.308422 C 116.499692 152.304507 116.495778 152.296677 116.491863 152.292763 C 116.491863 152.284933 116.484033 152.277104 116.484033 152.269274 C 116.480118 152.261444 116.472289 152.2497 116.468374 152.24187 C 116.464459 152.237956 116.460544 152.222296 116.452715 152.214467 C 116.4488 152.206637 116.44097 152.190978 116.437056 152.179234 C 116.433141 152.167489 116.421397 152.15183 116.417482 152.140086 C 116.409652 152.124427 116.401823 152.104853 116.393993 152.089194 C 116.386163 152.077449 116.374419 152.053961 116.366589 152.034387 C 116.35876 152.018727 116.343101 151.991324 116.335271 151.97175 C 116.323527 151.952176 116.307868 151.920858 116.296123 151.897369 C 116.284379 151.87388 116.264805 151.834732 116.253061 151.811244 C 116.241316 151.78384 116.217827 151.740777 116.202168 151.709459 C 116.186509 151.678141 116.159106 151.627248 116.143446 151.592015 C 116.123873 151.552867 116.096469 151.494146 116.07298 151.451083 C 116.053406 151.411935 116.018173 151.341469 115.994684 151.294491 C 115.971196 151.243599 115.928133 151.161389 115.90073 151.106581 C 115.873326 151.051774 115.826349 150.953905 115.791115 150.891268 C 115.759797 150.824717 115.70499 150.715103 115.665842 150.640722 C 115.630609 150.562426 115.564058 150.433238 115.520995 150.347112 C 115.477932 150.260987 115.403551 150.10831 115.352659 150.01044 C 115.301767 149.908656 115.215641 149.73249 115.15692 149.615047 C 115.098198 149.497603 114.996413 149.297949 114.925947 149.160931 C 114.859396 149.023913 114.741952 148.789026 114.663656 148.632435 C 114.58536 148.475843 114.452257 148.205722 114.358302 148.021727 C 114.268262 147.841647 114.111671 147.528464 114.005971 147.32098 C 113.904187 147.109581 113.724107 146.749421 113.602748 146.506704 C 113.48139 146.267902 113.273906 145.852934 113.136888 145.574984 C 112.995956 145.297034 112.757154 144.823344 112.600562 144.502332 C 112.440056 144.185234 112.16602 143.641078 111.98594 143.277003 C 111.801945 142.912927 111.492677 142.290476 111.285193 141.875508 C 111.077709 141.46054 110.725378 140.751963 110.486576 140.282189 C 110.251688 139.808499 109.85238 139.005967 109.586174 138.473556 C 109.316054 137.941145 108.865853 137.036828 108.564414 136.437865 C 108.26689 135.838903 107.757967 134.821057 107.42521 134.151628 C 107.088538 133.482199 106.520894 132.350825 106.148989 131.607015 C 105.777084 130.863205 105.150718 129.610473 104.74358 128.792282 C 104.332527 127.970176 103.647439 126.596085 103.197238 125.703513 C 102.750952 124.810941 102.007142 123.315491 101.525623 122.352453 C 101.044104 121.389415 100.241572 119.784351 99.728734 118.758676 C 99.215897 117.733001 98.366388 116.037897 97.826147 114.96133 C 97.28982 113.884763 96.405078 112.115278 95.849178 111.007393 C 95.297193 109.899508 94.392876 108.08696 93.833061 106.96733 C 93.273246 105.847701 92.36893 104.039068 91.816945 102.935097 C 91.261045 101.831127 90.380217 100.065556 89.85172 99.008563 C 89.319309 97.947655 88.485459 96.279955 87.99611 95.293428 C 87.502847 94.306901 86.739463 92.787963 86.301006 91.90322 C 85.858635 91.022393 85.193121 89.68745 84.813386 88.931895 C 84.433652 88.176341 83.881667 87.064541 83.572398 86.446004 C 83.26313 85.827467 82.824673 84.954469 82.585871 84.476865 C 82.347069 84.003175 82.026056 83.36115 81.85772 83.016648 C 81.68547 82.676062 81.352713 82.010547 81.352713 82.010547 " transform="matrix(0.997819,0,0,-0.997819,12.133339,182.15978)"/> +</g> +<path style="fill:none;stroke-width:0.79701;stroke-linecap:butt;stroke-linejoin:miter;stroke:rgb(0%,65.098572%,83.921814%);stroke-opacity:1;stroke-miterlimit:10;" d="M 100.856194 121.021424 L 99.474273 118.253668 " transform="matrix(0.997819,0,0,-0.997819,12.133339,182.15978)"/> +<path style="fill-rule:nonzero;fill:rgb(0%,65.098572%,83.921814%);fill-opacity:1;stroke-width:0.79701;stroke-linecap:butt;stroke-linejoin:miter;stroke:rgb(0%,65.098572%,83.921814%);stroke-opacity:1;stroke-miterlimit:10;" d="M 7.368217 0.00160007 L 1.285787 2.291827 L 3.290475 -0.00182869 L 1.285705 -2.295413 Z M 7.368217 0.00160007 " transform="matrix(-0.446195,0.892429,0.892429,0.446195,112.770605,61.404144)"/> +<g clip-path="url(#clip16)" clip-rule="nonzero"> +<path style="fill:none;stroke-width:0.79701;stroke-linecap:butt;stroke-linejoin:miter;stroke:rgb(0%,65.098572%,83.921814%);stroke-opacity:1;stroke-miterlimit:10;" d="M 152.425715 152.425866 C 152.425715 152.425866 152.4218 152.425866 152.4218 152.425866 C 152.4218 152.425866 152.4218 152.421951 152.4218 152.421951 C 152.4218 152.421951 152.417886 152.421951 152.417886 152.421951 C 152.417886 152.421951 152.413971 152.421951 152.413971 152.421951 C 152.410056 152.421951 152.410056 152.421951 152.410056 152.421951 C 152.410056 152.421951 152.410056 152.421951 152.406141 152.421951 C 152.406141 152.421951 152.402226 152.418036 152.402226 152.418036 C 152.402226 152.418036 152.398312 152.418036 152.398312 152.418036 C 152.398312 152.418036 152.394397 152.418036 152.394397 152.418036 C 152.394397 152.418036 152.390482 152.418036 152.390482 152.418036 C 152.386567 152.418036 152.386567 152.418036 152.382653 152.414121 C 152.382653 152.414121 152.378738 152.414121 152.374823 152.414121 C 152.374823 152.414121 152.370908 152.414121 152.366993 152.414121 C 152.366993 152.414121 152.363079 152.410206 152.359164 152.410206 C 152.355249 152.410206 152.351334 152.410206 152.347419 152.410206 C 152.343505 152.410206 152.33959 152.406292 152.335675 152.406292 C 152.33176 152.406292 152.323931 152.406292 152.320016 152.402377 C 152.316101 152.402377 152.308272 152.402377 152.304357 152.398462 C 152.300442 152.398462 152.288698 152.398462 152.284783 152.394547 C 152.276953 152.394547 152.269124 152.394547 152.261294 152.390632 C 152.253464 152.390632 152.24172 152.386718 152.233891 152.386718 C 152.226061 152.382803 152.214317 152.382803 152.202572 152.378888 C 152.194743 152.378888 152.179083 152.374973 152.167339 152.371058 C 152.155595 152.371058 152.136021 152.367144 152.124276 152.363229 C 152.112532 152.359314 152.089043 152.355399 152.073384 152.351485 C 152.057725 152.351485 152.034236 152.343655 152.014662 152.33974 C 151.999003 152.33974 151.967685 152.331911 151.948111 152.327996 C 151.928537 152.324081 151.893304 152.316251 151.869815 152.312337 C 151.846326 152.308422 151.807178 152.296677 151.779775 152.292763 C 151.752371 152.288848 151.705394 152.277104 151.674076 152.269274 C 151.642757 152.265359 151.58795 152.253615 151.548802 152.245785 C 151.513569 152.237956 151.447018 152.222296 151.403955 152.214467 C 151.360892 152.206637 151.290426 152.190978 151.239534 152.179234 C 151.188642 152.167489 151.102516 152.147915 151.043795 152.136171 C 150.985073 152.124427 150.887203 152.100938 150.816737 152.089194 C 150.750185 152.073534 150.636656 152.046131 150.558361 152.030472 C 150.47615 152.010898 150.343047 151.983494 150.253007 151.960006 C 150.162967 151.940432 150.006375 151.905199 149.900676 151.88171 C 149.794977 151.854306 149.614896 151.815158 149.493538 151.78384 C 149.372179 151.756437 149.164696 151.705544 149.023763 151.674226 C 148.882831 151.638993 148.640114 151.580271 148.479607 151.537208 C 148.315186 151.49806 148.037236 151.427594 147.853241 151.380617 C 147.665331 151.329724 147.344318 151.247514 147.129005 151.188792 C 146.913692 151.133985 146.549616 151.0322 146.302984 150.961734 C 146.056353 150.895183 145.63747 150.773824 145.355605 150.691614 C 145.073741 150.609403 144.592221 150.468471 144.271209 150.366686 C 143.950196 150.268817 143.402125 150.096566 143.03805 149.979122 C 142.673975 149.857764 142.055438 149.65028 141.64047 149.509347 C 141.229417 149.3645 140.52867 149.113954 140.066725 148.941703 C 139.600865 148.769452 138.813992 148.468013 138.293325 148.256615 C 137.772658 148.049131 136.895745 147.685055 136.316357 147.430594 C 135.736968 147.180048 134.762185 146.741591 134.124074 146.436238 C 133.485964 146.130884 132.413311 145.602387 131.712564 145.238312 C 131.011817 144.870322 129.83738 144.236126 129.077911 143.79767 C 128.318442 143.359213 127.046135 142.595829 126.231859 142.075162 C 125.413668 141.55058 124.055236 140.646264 123.186153 140.027727 C 122.317069 139.409191 120.880342 138.340453 119.968196 137.616217 C 119.052135 136.888066 117.552771 135.639248 116.609306 134.797569 C 115.661927 133.959804 114.115586 132.515246 113.152547 131.556123 C 112.185594 130.593085 110.615764 128.956703 109.644896 127.876221 C 108.674028 126.795739 107.108112 124.963617 106.145074 123.777436 C 105.182036 122.58734 103.643524 120.586883 102.707889 119.306747 C 101.76834 118.026611 100.284634 115.89305 99.384233 114.550277 C 98.487746 113.211419 97.078422 110.999563 96.232827 109.637217 C 95.391148 108.270955 94.079693 106.055184 93.30065 104.712412 C 92.521607 103.369639 91.327596 101.228249 90.630764 99.959857 C 89.930016 98.687551 88.869108 96.702752 88.258401 95.547889 C 87.647694 94.396941 86.739463 92.639201 86.222711 91.64093 C 85.705958 90.642658 84.958234 89.170697 84.543266 88.352506 C 84.124383 87.530401 83.54108 86.367708 83.220067 85.737427 C 82.902969 85.103231 82.472342 84.245892 82.245285 83.791777 C 82.014312 83.333746 81.571941 82.445089 81.571941 82.445089 " transform="matrix(0.997819,0,0,-0.997819,12.133339,182.15978)"/> +</g> +<path style="fill:none;stroke-width:0.79701;stroke-linecap:butt;stroke-linejoin:miter;stroke:rgb(0%,65.098572%,83.921814%);stroke-opacity:1;stroke-miterlimit:10;" d="M 111.320426 129.83753 L 109.312139 127.484742 " transform="matrix(0.997819,0,0,-0.997819,12.133339,182.15978)"/> +<path style="fill-rule:nonzero;fill:rgb(0%,65.098572%,83.921814%);fill-opacity:1;stroke-width:0.79701;stroke-linecap:butt;stroke-linejoin:miter;stroke:rgb(0%,65.098572%,83.921814%);stroke-opacity:1;stroke-miterlimit:10;" d="M 7.369465 0.00169568 L 1.28832 2.29467 L 3.289895 -0.0014417 L 1.287501 -2.292769 Z M 7.369465 0.00169568 " transform="matrix(-0.647864,0.758811,0.758811,0.647864,123.210622,52.606088)"/> +<g style="fill:rgb(0%,0%,0%);fill-opacity:1;"> + <use xlink:href="#glyph0-2" x="177.2853" y="104.198212"/> +</g> +<g style="fill:rgb(0%,0%,0%);fill-opacity:1;"> + <use xlink:href="#glyph0-3" x="89.602982" y="14.685895"/> +</g> +<path style="fill:none;stroke-width:0.3985;stroke-linecap:butt;stroke-linejoin:miter;stroke:rgb(0%,0%,0%);stroke-opacity:1;stroke-miterlimit:10;" d="M 0.00155003 80.695178 L 159.396118 80.695178 " transform="matrix(0.997819,0,0,-0.997819,199.943766,182.15978)"/> +<path style=" stroke:none;fill-rule:nonzero;fill:rgb(0%,0%,0%);fill-opacity:1;" d="M 360.980469 101.640625 L 357.800781 100.050781 L 358.992188 101.640625 L 357.800781 103.230469 "/> +<path style="fill:none;stroke-width:0.3985;stroke-linecap:butt;stroke-linejoin:miter;stroke:rgb(0%,0%,0%);stroke-opacity:1;stroke-miterlimit:10;" d="M 80.69319 -0.000376923 L 80.69319 159.398106 " transform="matrix(0.997819,0,0,-0.997819,199.943766,182.15978)"/> +<path style=" stroke:none;fill-rule:nonzero;fill:rgb(0%,0%,0%);fill-opacity:1;" d="M 280.460938 21.121094 L 278.871094 24.300781 L 280.460938 23.109375 L 282.054688 24.300781 "/> +<g style="fill:rgb(0%,0%,0%);fill-opacity:1;"> + <use xlink:href="#glyph0-1" x="267.118914" y="113.885036"/> +</g> +<g clip-path="url(#clip17)" clip-rule="nonzero"> +<path style="fill:none;stroke-width:0.79701;stroke-linecap:butt;stroke-linejoin:miter;stroke:rgb(0%,65.098572%,83.921814%);stroke-opacity:1;stroke-miterlimit:10;" d="M 8.966418 8.964491 C 8.966418 8.964491 8.966418 8.968406 8.966418 8.968406 C 8.970333 8.968406 8.970333 8.968406 8.970333 8.968406 C 8.970333 8.968406 8.974247 8.968406 8.974247 8.968406 C 8.974247 8.968406 8.974247 8.968406 8.978162 8.968406 C 8.982077 8.968406 8.982077 8.968406 8.982077 8.968406 C 8.982077 8.968406 8.985992 8.968406 8.985992 8.968406 C 8.985992 8.968406 8.985992 8.972321 8.989907 8.972321 C 8.989907 8.972321 8.989907 8.972321 8.993821 8.972321 C 8.993821 8.972321 8.993821 8.972321 8.997736 8.972321 C 8.997736 8.972321 8.997736 8.972321 9.001651 8.972321 C 9.001651 8.972321 9.005566 8.972321 9.005566 8.976235 C 9.009481 8.976235 9.013395 8.976235 9.013395 8.976235 C 9.01731 8.976235 9.021225 8.976235 9.021225 8.976235 C 9.02514 8.976235 9.029055 8.98015 9.029055 8.98015 C 9.032969 8.98015 9.036884 8.98015 9.040799 8.98015 C 9.044714 8.98015 9.048628 8.984065 9.052543 8.984065 C 9.056458 8.984065 9.064288 8.984065 9.068202 8.98798 C 9.072117 8.98798 9.079947 8.98798 9.083862 8.991894 C 9.091691 8.991894 9.099521 8.991894 9.10735 8.995809 C 9.111265 8.995809 9.123009 8.995809 9.126924 8.999724 C 9.134754 8.999724 9.146498 9.003639 9.154328 9.003639 C 9.162157 9.007554 9.177817 9.007554 9.185646 9.011468 C 9.19739 9.011468 9.21305 9.015383 9.224794 9.019298 C 9.236538 9.019298 9.252198 9.023213 9.267857 9.027128 C 9.279601 9.031042 9.299175 9.034957 9.314834 9.034957 C 9.330493 9.038872 9.357897 9.046702 9.373556 9.050616 C 9.39313 9.050616 9.420533 9.058446 9.440107 9.062361 C 9.459681 9.066275 9.494914 9.074105 9.518403 9.07802 C 9.541892 9.081935 9.584955 9.093679 9.612358 9.097594 C 9.639762 9.101509 9.686739 9.113253 9.718057 9.121083 C 9.749376 9.124997 9.804183 9.136742 9.839416 9.144571 C 9.878564 9.152401 9.9412 9.16806 9.984263 9.17589 C 10.027326 9.183719 10.101707 9.199378 10.152599 9.211123 C 10.203491 9.222867 10.289617 9.242441 10.344424 9.254185 C 10.403146 9.26593 10.50493 9.289418 10.571482 9.301163 C 10.638033 9.316822 10.755477 9.344226 10.833772 9.359885 C 10.912068 9.379459 11.045171 9.406862 11.139126 9.430351 C 11.229166 9.449925 11.385758 9.485158 11.487542 9.508647 C 11.593242 9.53605 11.773322 9.575198 11.898595 9.606516 C 12.019954 9.63392 12.227438 9.684812 12.36837 9.716131 C 12.509302 9.751364 12.748105 9.810085 12.912526 9.853148 C 13.073032 9.892296 13.350982 9.962762 13.538892 10.00974 C 13.726802 10.060632 14.0439 10.142843 14.259213 10.201564 C 14.474527 10.256371 14.842517 10.358156 15.089149 10.428622 C 15.33578 10.495174 15.754663 10.616532 16.036528 10.698743 C 16.318393 10.780953 16.795997 10.921886 17.11701 11.02367 C 17.441937 11.12154 17.986093 11.293791 18.350168 11.411234 C 18.714244 11.532593 19.336695 11.740077 19.747748 11.881009 C 20.162716 12.025856 20.859548 12.276403 21.325408 12.448654 C 21.791268 12.620904 22.574226 12.922343 23.094893 13.133742 C 23.61556 13.341226 24.496388 13.705301 25.071862 13.959762 C 25.651251 14.210309 26.626033 14.648765 27.264144 14.954119 C 27.906169 15.259472 28.978822 15.787969 29.679569 16.152044 C 30.380316 16.520035 31.550838 17.15423 32.314222 17.592687 C 33.073691 18.031143 34.342083 18.794527 35.160274 19.315194 C 35.978465 19.839776 37.336897 20.744092 38.20598 21.362629 C 39.075064 21.981166 40.511791 23.049903 41.423937 23.774139 C 42.336083 24.50229 43.835448 25.751108 44.782827 26.592788 C 45.730206 27.430553 47.272633 28.87511 48.239586 29.834234 C 49.206539 30.797272 50.772455 32.433654 51.743322 33.514136 C 52.718105 34.594618 54.284021 36.426739 55.243144 37.61292 C 56.206182 38.803016 57.744695 40.803474 58.684244 42.08361 C 59.619879 43.363746 61.107499 45.497306 62.003986 46.840079 C 62.900472 48.178937 64.309797 50.390793 65.155391 51.75314 C 66.000986 53.119401 67.31244 55.335172 68.091483 56.677945 C 68.866611 58.020718 70.060622 60.162108 70.76137 61.430499 C 71.462117 62.702806 72.51911 64.687604 73.129817 65.842467 C 73.744439 66.993415 74.65267 68.751156 75.169422 69.749427 C 75.68226 70.747698 76.433899 72.219659 76.848867 73.03785 C 77.263835 73.859956 77.851053 75.022648 78.168151 75.652929 C 78.489164 76.287125 78.915876 77.144464 79.146849 77.59858 C 79.373906 78.05661 79.820192 78.945267 79.820192 78.945267 " transform="matrix(0.997819,0,0,-0.997819,199.943766,182.15978)"/> +</g> +<path style="fill:none;stroke-width:0.79701;stroke-linecap:butt;stroke-linejoin:miter;stroke:rgb(0%,65.098572%,83.921814%);stroke-opacity:1;stroke-miterlimit:10;" d="M 55.59156 38.020058 L 53.583273 35.66727 " transform="matrix(0.997819,0,0,-0.997819,199.943766,182.15978)"/> +<path style="fill-rule:nonzero;fill:rgb(0%,65.098572%,83.921814%);fill-opacity:1;stroke-width:0.79701;stroke-linecap:butt;stroke-linejoin:miter;stroke:rgb(0%,65.098572%,83.921814%);stroke-opacity:1;stroke-miterlimit:10;" d="M 7.367435 -0.000689495 L 1.28629 2.292284 L 3.290842 -0.00128477 L 1.28547 -2.295154 Z M 7.367435 -0.000689495 " transform="matrix(-0.647864,0.758811,0.758811,0.647864,255.414242,144.222455)"/> +<g clip-path="url(#clip18)" clip-rule="nonzero"> +<path style="fill:none;stroke-width:0.79701;stroke-linecap:butt;stroke-linejoin:miter;stroke:rgb(0%,65.098572%,83.921814%);stroke-opacity:1;stroke-miterlimit:10;" d="M 44.829804 8.964491 C 44.829804 8.964491 44.829804 8.968406 44.829804 8.968406 C 44.829804 8.968406 44.833719 8.968406 44.833719 8.968406 C 44.833719 8.968406 44.833719 8.972321 44.833719 8.972321 C 44.833719 8.972321 44.833719 8.972321 44.833719 8.976235 C 44.837634 8.976235 44.837634 8.976235 44.837634 8.976235 C 44.837634 8.976235 44.837634 8.98015 44.837634 8.98015 C 44.837634 8.984065 44.837634 8.984065 44.841549 8.984065 C 44.841549 8.984065 44.841549 8.98798 44.841549 8.98798 C 44.841549 8.98798 44.841549 8.98798 44.841549 8.991894 C 44.841549 8.991894 44.845463 8.991894 44.845463 8.995809 C 44.845463 8.995809 44.845463 8.999724 44.845463 8.999724 C 44.849378 8.999724 44.849378 9.003639 44.849378 9.003639 C 44.849378 9.007554 44.853293 9.011468 44.853293 9.011468 C 44.853293 9.011468 44.857208 9.015383 44.857208 9.019298 C 44.857208 9.019298 44.861122 9.023213 44.861122 9.027128 C 44.861122 9.031042 44.865037 9.034957 44.865037 9.038872 C 44.868952 9.042787 44.868952 9.046702 44.872867 9.050616 C 44.872867 9.054531 44.876782 9.058446 44.880696 9.062361 C 44.880696 9.066275 44.884611 9.074105 44.888526 9.07802 C 44.888526 9.085849 44.892441 9.093679 44.896356 9.097594 C 44.90027 9.105423 44.904185 9.113253 44.9081 9.121083 C 44.912015 9.128912 44.91593 9.140656 44.919844 9.144571 C 44.923759 9.152401 44.931589 9.16806 44.935503 9.17589 C 44.939418 9.183719 44.947248 9.199378 44.955077 9.211123 C 44.958992 9.222867 44.966822 9.238526 44.974651 9.250271 C 44.978566 9.26593 44.990311 9.285504 44.99814 9.297248 C 45.00597 9.312907 45.017714 9.336396 45.025544 9.35597 C 45.033373 9.371629 45.049032 9.399033 45.056862 9.418607 C 45.064692 9.43818 45.084265 9.469499 45.09601 9.492988 C 45.103839 9.516476 45.123413 9.555624 45.139073 9.579113 C 45.150817 9.606516 45.174306 9.649579 45.189965 9.680897 C 45.205624 9.712216 45.229113 9.763108 45.248687 9.798341 C 45.264346 9.833574 45.295664 9.896211 45.315238 9.939274 C 45.338727 9.978421 45.37396 10.048888 45.397449 10.095865 C 45.420937 10.146757 45.460085 10.228968 45.487489 10.283775 C 45.518807 10.338582 45.565785 10.436452 45.597103 10.499088 C 45.628421 10.56564 45.687143 10.675254 45.722376 10.749635 C 45.761524 10.827931 45.824161 10.957119 45.867223 11.043244 C 45.914201 11.12937 45.988582 11.282046 46.039474 11.379916 C 46.090366 11.481701 46.176492 11.657866 46.235214 11.77531 C 46.293935 11.892753 46.39572 12.092408 46.462271 12.229425 C 46.528823 12.366443 46.646266 12.60133 46.724562 12.757922 C 46.806773 12.914514 46.939876 13.184634 47.029916 13.368629 C 47.123871 13.548709 47.276548 13.861893 47.382247 14.069376 C 47.487946 14.280775 47.668027 14.640936 47.789385 14.883653 C 47.910743 15.122455 48.114313 15.537422 48.255245 15.815372 C 48.396177 16.093323 48.631065 16.567012 48.791571 16.888025 C 48.952077 17.205123 49.222198 17.749278 49.406193 18.113354 C 49.586273 18.477429 49.899456 19.099881 50.10694 19.514849 C 50.314424 19.929816 50.666755 20.638393 50.901643 21.108168 C 51.13653 21.581857 51.539753 22.384389 51.805959 22.916801 C 52.072165 23.449212 52.52628 24.353528 52.823804 24.952491 C 53.125243 25.551454 53.630251 26.569299 53.966923 27.238728 C 54.303595 27.908157 54.867324 29.039531 55.239229 29.783341 C 55.611134 30.527151 56.237501 31.779884 56.648554 32.598075 C 57.055692 33.420181 57.744695 34.794272 58.190981 35.686844 C 58.637267 36.579416 59.384991 38.074865 59.86651 39.037904 C 60.34803 40.000942 61.150561 41.606005 61.663399 42.63168 C 62.176236 43.657355 63.025746 45.352459 63.562072 46.429026 C 64.098398 47.505593 64.98314 49.275078 65.53904 50.382963 C 66.09494 51.490849 66.999257 53.299482 67.559072 54.423026 C 68.118887 55.542656 69.023203 57.351289 69.575188 58.455259 C 70.127174 59.55923 71.008001 61.3248 71.540413 62.381793 C 72.068909 63.442701 72.902759 65.110401 73.396023 66.096928 C 73.889286 67.083455 74.648755 68.602394 75.091127 69.487136 C 75.533498 70.367964 76.199012 71.698992 76.574832 72.458461 C 76.954566 73.214016 77.510467 74.325816 77.819735 74.944353 C 78.129003 75.562889 78.56746 76.435887 78.802347 76.913492 C 79.041149 77.387181 79.362162 78.029207 79.534413 78.373708 C 79.706663 78.714295 80.039421 79.379809 80.039421 79.379809 " transform="matrix(0.997819,0,0,-0.997819,199.943766,182.15978)"/> +</g> +<path style="fill:none;stroke-width:0.79701;stroke-linecap:butt;stroke-linejoin:miter;stroke:rgb(0%,65.098572%,83.921814%);stroke-opacity:1;stroke-miterlimit:10;" d="M 64.3372 47.975368 L 62.951365 45.211527 " transform="matrix(0.997819,0,0,-0.997819,199.943766,182.15978)"/> +<path style="fill-rule:nonzero;fill:rgb(0%,65.098572%,83.921814%);fill-opacity:1;stroke-width:0.79701;stroke-linecap:butt;stroke-linejoin:miter;stroke:rgb(0%,65.098572%,83.921814%);stroke-opacity:1;stroke-miterlimit:10;" d="M 7.368052 -0.0000346046 L 1.287373 2.295445 L 3.292061 0.00178917 L 1.287291 -2.291795 Z M 7.368052 -0.0000346046 " transform="matrix(-0.446195,0.892429,0.892429,0.446195,264.139178,134.287833)"/> +<g clip-path="url(#clip19)" clip-rule="nonzero"> +<path style="fill:none;stroke-width:0.79701;stroke-linecap:butt;stroke-linejoin:miter;stroke:rgb(0%,65.098572%,83.921814%);stroke-opacity:1;stroke-miterlimit:10;" d="M 80.69319 8.964491 C 80.69319 8.964491 80.69319 8.968406 80.69319 8.968406 C 80.69319 8.972321 80.69319 8.972321 80.69319 8.972321 C 80.69319 8.972321 80.69319 8.976235 80.69319 8.976235 C 80.69319 8.976235 80.689276 8.976235 80.689276 8.976235 C 80.689276 8.98015 80.689276 8.98015 80.689276 8.98015 C 80.689276 8.98015 80.689276 8.98015 80.689276 8.984065 C 80.685361 8.984065 80.685361 8.98798 80.685361 8.98798 C 80.685361 8.98798 80.685361 8.991894 80.685361 8.991894 C 80.685361 8.991894 80.685361 8.995809 80.681446 8.995809 C 80.681446 8.995809 80.681446 8.999724 80.681446 8.999724 C 80.681446 9.003639 80.677531 9.003639 80.677531 9.007554 C 80.677531 9.007554 80.677531 9.011468 80.677531 9.015383 C 80.673616 9.015383 80.673616 9.019298 80.673616 9.023213 C 80.673616 9.023213 80.669702 9.027128 80.669702 9.031042 C 80.669702 9.034957 80.665787 9.038872 80.665787 9.042787 C 80.661872 9.046702 80.661872 9.050616 80.661872 9.054531 C 80.657957 9.058446 80.654043 9.066275 80.654043 9.07019 C 80.654043 9.074105 80.650128 9.081935 80.646213 9.085849 C 80.646213 9.089764 80.642298 9.101509 80.638383 9.105423 C 80.638383 9.113253 80.634469 9.121083 80.630554 9.128912 C 80.626639 9.136742 80.622724 9.148486 80.618809 9.156316 C 80.614895 9.164145 80.61098 9.17589 80.607065 9.187634 C 80.60315 9.195464 80.595321 9.211123 80.591406 9.222867 C 80.587491 9.234611 80.579662 9.254185 80.575747 9.26593 C 80.571832 9.277674 80.560088 9.301163 80.556173 9.316822 C 80.548343 9.332481 80.540514 9.35597 80.532684 9.375544 C 80.524854 9.391203 80.51311 9.422521 80.505281 9.442095 C 80.497451 9.461669 80.485707 9.496902 80.473962 9.520391 C 80.466133 9.54388 80.450473 9.583028 80.438729 9.610431 C 80.426985 9.637835 80.407411 9.684812 80.395666 9.716131 C 80.383922 9.747449 80.360433 9.802256 80.348689 9.841404 C 80.33303 9.876637 80.309541 9.943188 80.289967 9.986251 C 80.274308 10.029314 80.24299 10.103695 80.223416 10.150672 C 80.203842 10.201564 80.172523 10.28769 80.149035 10.346412 C 80.125546 10.405133 80.086398 10.503003 80.058995 10.573469 C 80.035506 10.640021 79.988528 10.75355 79.95721 10.831846 C 79.929806 10.914056 79.874999 11.047159 79.839766 11.137199 C 79.804533 11.227239 79.745811 11.383831 79.706663 11.48953 C 79.663601 11.595229 79.597049 11.77531 79.550072 11.896668 C 79.503094 12.018027 79.424799 12.225511 79.369992 12.366443 C 79.315185 12.507375 79.225144 12.750092 79.166423 12.910599 C 79.103786 13.07502 79.002001 13.35297 78.931535 13.536965 C 78.861069 13.724875 78.743625 14.045888 78.665329 14.261201 C 78.587034 14.476515 78.453931 14.84059 78.363891 15.087222 C 78.277765 15.333853 78.125089 15.752736 78.027219 16.034601 C 77.925434 16.316466 77.757098 16.797985 77.647484 17.118997 C 77.533955 17.44001 77.34996 17.988081 77.224687 18.352156 C 77.103328 18.716231 76.895845 19.334768 76.762742 19.749736 C 76.629639 20.160789 76.402581 20.861536 76.257734 21.323481 C 76.112887 21.789341 75.87017 22.576214 75.713578 23.096881 C 75.556987 23.617548 75.298611 24.494461 75.138104 25.07385 C 74.973683 25.653238 74.707477 26.628021 74.539141 27.266132 C 74.370805 27.904242 74.100685 28.976895 73.932349 29.677642 C 73.764013 30.378389 73.497807 31.552826 73.337301 32.312295 C 73.17288 33.071764 72.922333 34.344071 72.773571 35.158347 C 72.624809 35.976538 72.397752 37.33497 72.272478 38.204053 C 72.147205 39.073137 71.96321 40.509864 71.869255 41.425925 C 71.779215 42.338071 71.650027 43.837435 71.599134 44.7809 C 71.548242 45.728279 71.49735 47.274621 71.493435 48.237659 C 71.48952 49.204612 71.524753 50.774442 71.579561 51.74531 C 71.634368 52.716178 71.76747 54.282094 71.880999 55.245132 C 71.994528 56.20817 72.225501 57.746682 72.393837 58.682317 C 72.566087 59.621867 72.891015 61.105572 73.114158 62.005973 C 73.333386 62.90246 73.732695 64.311784 73.994986 65.157379 C 74.253362 65.999059 74.707477 67.310513 74.989342 68.089556 C 75.271207 68.868599 75.744897 70.06261 76.030676 70.759443 C 76.316456 71.46019 76.778401 72.521098 77.048521 73.131805 C 77.322557 73.742512 77.745354 74.650743 77.984156 75.167496 C 78.226873 75.684248 78.587034 76.431973 78.790603 76.84694 C 78.990257 77.265823 79.279951 77.849126 79.436543 78.170139 C 79.593135 78.487237 79.808448 78.917864 79.921977 79.144922 C 80.035506 79.375894 80.258649 79.818265 80.258649 79.818265 " transform="matrix(0.997819,0,0,-0.997819,199.943766,182.15978)"/> +</g> +<path style="fill:none;stroke-width:0.79701;stroke-linecap:butt;stroke-linejoin:miter;stroke:rgb(0%,65.098572%,83.921814%);stroke-opacity:1;stroke-miterlimit:10;" d="M 71.278122 48.762241 L 71.528668 45.677387 " transform="matrix(0.997819,0,0,-0.997819,199.943766,182.15978)"/> +<path style="fill-rule:nonzero;fill:rgb(0%,65.098572%,83.921814%);fill-opacity:1;stroke-width:0.79701;stroke-linecap:butt;stroke-linejoin:miter;stroke:rgb(0%,65.098572%,83.921814%);stroke-opacity:1;stroke-miterlimit:10;" d="M 7.37068 0.00129235 L 1.287296 2.292414 L 3.289726 0.00153901 L 1.285344 -2.295088 Z M 7.37068 0.00129235 " transform="matrix(0.0804641,0.994516,0.994516,-0.0804641,271.065796,133.505783)"/> +<g clip-path="url(#clip20)" clip-rule="nonzero"> +<path style="fill:none;stroke-width:0.79701;stroke-linecap:butt;stroke-linejoin:miter;stroke:rgb(0%,65.098572%,83.921814%);stroke-opacity:1;stroke-miterlimit:10;" d="M 116.560491 8.964491 C 116.560491 8.964491 116.560491 8.968406 116.560491 8.968406 C 116.560491 8.968406 116.560491 8.968406 116.556577 8.968406 C 116.556577 8.972321 116.556577 8.972321 116.556577 8.972321 C 116.556577 8.972321 116.552662 8.972321 116.552662 8.972321 C 116.552662 8.972321 116.552662 8.976235 116.552662 8.976235 C 116.552662 8.976235 116.548747 8.976235 116.548747 8.98015 C 116.548747 8.98015 116.548747 8.984065 116.544832 8.984065 C 116.544832 8.98798 116.540917 8.98798 116.540917 8.98798 C 116.540917 8.98798 116.540917 8.991894 116.537003 8.991894 C 116.537003 8.991894 116.537003 8.995809 116.537003 8.995809 C 116.533088 8.999724 116.533088 8.999724 116.533088 9.003639 C 116.529173 9.003639 116.529173 9.007554 116.525258 9.007554 C 116.525258 9.011468 116.521344 9.011468 116.521344 9.015383 C 116.521344 9.015383 116.517429 9.019298 116.513514 9.023213 C 116.513514 9.027128 116.509599 9.031042 116.505684 9.031042 C 116.505684 9.034957 116.50177 9.038872 116.497855 9.042787 C 116.497855 9.046702 116.490025 9.054531 116.490025 9.058446 C 116.48611 9.062361 116.478281 9.066275 116.478281 9.07019 C 116.474366 9.07802 116.466536 9.085849 116.462622 9.089764 C 116.458707 9.093679 116.450877 9.105423 116.446963 9.109338 C 116.443048 9.117168 116.435218 9.124997 116.427389 9.132827 C 116.423474 9.140656 116.411729 9.152401 116.407815 9.16023 C 116.399985 9.16806 116.388241 9.183719 116.380411 9.195464 C 116.372582 9.203293 116.360837 9.218952 116.353008 9.230697 C 116.341263 9.242441 116.325604 9.262015 116.317774 9.273759 C 116.30603 9.289418 116.290371 9.312907 116.274712 9.324652 C 116.262967 9.340311 116.243393 9.367714 116.231649 9.387288 C 116.21599 9.402947 116.192501 9.434266 116.176842 9.45384 C 116.157268 9.477328 116.129865 9.512561 116.110291 9.53605 C 116.094631 9.559539 116.059398 9.602602 116.039824 9.630005 C 116.016336 9.657409 115.977188 9.708301 115.953699 9.739619 C 115.926296 9.774852 115.883233 9.829659 115.851915 9.868807 C 115.820596 9.90404 115.769704 9.970592 115.734471 10.017569 C 115.699238 10.060632 115.640516 10.135013 115.601368 10.18982 C 115.56222 10.240712 115.491754 10.330752 115.444776 10.389474 C 115.397799 10.448196 115.315588 10.553895 115.260781 10.620447 C 115.205974 10.690913 115.112019 10.812272 115.049383 10.890567 C 114.986746 10.972778 114.877132 11.11371 114.806666 11.207665 C 114.732285 11.30162 114.607011 11.462127 114.520886 11.571741 C 114.434761 11.67744 114.289914 11.86535 114.192044 11.990623 C 114.094174 12.115896 113.925838 12.335125 113.812309 12.479972 C 113.69878 12.624819 113.506956 12.875366 113.373853 13.043702 C 113.244665 13.212038 113.021522 13.497817 112.87276 13.693557 C 112.720083 13.885381 112.465622 14.218138 112.293371 14.441281 C 112.12112 14.664424 111.823596 15.044159 111.627857 15.302535 C 111.428202 15.556996 111.095445 15.995453 110.868388 16.289062 C 110.64133 16.582671 110.25768 17.083764 110.003219 17.416521 C 109.744843 17.753193 109.310301 18.324753 109.020607 18.704487 C 108.730913 19.088136 108.237649 19.734077 107.908807 20.168618 C 107.583879 20.599245 107.027979 21.331311 106.663904 21.82066 C 106.295913 22.310008 105.677377 23.136029 105.270239 23.680185 C 104.859186 24.228255 104.174098 25.152145 103.723897 25.762853 C 103.273696 26.37356 102.514227 27.403149 102.020963 28.076493 C 101.5277 28.753752 100.701679 29.889041 100.169268 30.628936 C 99.636857 31.372746 98.748199 32.613734 98.17664 33.420181 C 97.605081 34.226627 96.657702 35.573315 96.058739 36.442398 C 95.459776 37.307567 94.469335 38.752124 93.846883 39.672099 C 93.224431 40.592075 92.210501 42.118843 91.58022 43.081881 C 90.949939 44.048834 89.932094 45.630409 89.309642 46.624766 C 88.68719 47.619122 87.692834 49.24376 87.093871 50.249861 C 86.498823 51.255961 85.559274 52.880599 85.007288 53.87887 C 84.455303 54.877142 83.605794 56.474376 83.12036 57.441329 C 82.631011 58.412197 81.90286 59.942879 81.495722 60.85894 C 81.092499 61.778916 80.509195 63.211728 80.196012 64.061238 C 79.886744 64.910747 79.463947 66.214372 79.252548 66.981671 C 79.041149 67.748969 78.782773 68.911662 78.665329 69.588921 C 78.551801 70.262264 78.446101 71.27228 78.414783 71.855584 C 78.383465 72.438887 78.403039 73.300141 78.438272 73.797319 C 78.473505 74.290583 78.587034 75.010904 78.665329 75.425872 C 78.743625 75.840839 78.908046 76.435887 79.009831 76.776474 C 79.111615 77.117061 79.291696 77.602495 79.39348 77.87653 C 79.49918 78.150565 79.667516 78.538129 79.761471 78.753443 C 79.855425 78.968756 79.996358 79.26628 80.070739 79.426786 C 80.149035 79.587293 80.254734 79.802606 80.309541 79.92005 C 80.364348 80.033579 80.477877 80.256722 80.477877 80.256722 " transform="matrix(0.997819,0,0,-0.997819,199.943766,182.15978)"/> +</g> +<path style="fill:none;stroke-width:0.79701;stroke-linecap:butt;stroke-linejoin:miter;stroke:rgb(0%,65.098572%,83.921814%);stroke-opacity:1;stroke-miterlimit:10;" d="M 89.669803 45.955337 L 91.380566 43.38332 " transform="matrix(0.997819,0,0,-0.997819,199.943766,182.15978)"/> +<path style="fill-rule:nonzero;fill:rgb(0%,65.098572%,83.921814%);fill-opacity:1;stroke-width:0.79701;stroke-linecap:butt;stroke-linejoin:miter;stroke:rgb(0%,65.098572%,83.921814%);stroke-opacity:1;stroke-miterlimit:10;" d="M 7.369357 0.000602437 L 1.288136 2.295254 L 3.292075 -0.00103687 L 1.288218 -2.293454 Z M 7.369357 0.000602437 " transform="matrix(0.552462,0.830854,0.830854,-0.552462,289.416489,136.303257)"/> +<g clip-path="url(#clip21)" clip-rule="nonzero"> +<path style="fill:none;stroke-width:0.79701;stroke-linecap:butt;stroke-linejoin:miter;stroke:rgb(0%,65.098572%,83.921814%);stroke-opacity:1;stroke-miterlimit:10;" d="M 152.423878 8.964491 C 152.423878 8.964491 152.423878 8.968406 152.423878 8.968406 C 152.419963 8.968406 152.419963 8.968406 152.419963 8.968406 C 152.419963 8.968406 152.419963 8.972321 152.419963 8.972321 C 152.419963 8.972321 152.419963 8.972321 152.416048 8.972321 C 152.416048 8.972321 152.416048 8.976235 152.416048 8.976235 C 152.412133 8.976235 152.412133 8.976235 152.412133 8.976235 C 152.412133 8.98015 152.412133 8.98015 152.412133 8.98015 C 152.408219 8.98015 152.408219 8.98015 152.408219 8.98015 C 152.408219 8.984065 152.408219 8.984065 152.404304 8.984065 C 152.404304 8.984065 152.404304 8.98798 152.404304 8.98798 C 152.400389 8.98798 152.400389 8.991894 152.400389 8.991894 C 152.396474 8.991894 152.396474 8.995809 152.396474 8.995809 C 152.392559 8.995809 152.392559 8.999724 152.388645 8.999724 C 152.388645 9.003639 152.38473 9.003639 152.38473 9.007554 C 152.380815 9.007554 152.380815 9.011468 152.3769 9.011468 C 152.3769 9.015383 152.372985 9.019298 152.369071 9.019298 C 152.369071 9.023213 152.365156 9.027128 152.361241 9.031042 C 152.357326 9.031042 152.353411 9.034957 152.349497 9.038872 C 152.345582 9.042787 152.341667 9.046702 152.337752 9.050616 C 152.333838 9.054531 152.329923 9.062361 152.326008 9.066275 C 152.318178 9.07019 152.314264 9.07802 152.306434 9.081935 C 152.302519 9.085849 152.29469 9.097594 152.28686 9.101509 C 152.282945 9.109338 152.271201 9.117168 152.267286 9.124997 C 152.259457 9.132827 152.247712 9.144571 152.239883 9.152401 C 152.232053 9.16023 152.216394 9.171975 152.208564 9.179804 C 152.200735 9.191549 152.185076 9.207208 152.173331 9.218952 C 152.161587 9.226782 152.145928 9.246356 152.130268 9.2581 C 152.118524 9.269845 152.09895 9.293333 152.083291 9.308992 C 152.067632 9.320737 152.044143 9.34814 152.028484 9.363799 C 152.00891 9.379459 151.981506 9.410777 151.961933 9.430351 C 151.942359 9.449925 151.907125 9.481243 151.883637 9.504732 C 151.860148 9.528221 151.821 9.567369 151.793597 9.594772 C 151.770108 9.622176 151.72313 9.669153 151.691812 9.700471 C 151.660494 9.73179 151.605687 9.782682 151.570454 9.82183 C 151.53522 9.857063 151.472584 9.9197 151.429521 9.958847 C 151.386458 10.00191 151.315992 10.076291 151.2651 10.123269 C 151.218123 10.174161 151.131997 10.256371 151.07719 10.315093 C 151.018468 10.3699 150.920599 10.46777 150.854047 10.534322 C 150.787496 10.600873 150.673967 10.714402 150.595671 10.792698 C 150.52129 10.870993 150.388187 11.004096 150.298147 11.090222 C 150.208107 11.180262 150.05543 11.332939 149.949731 11.438638 C 149.847946 11.544337 149.671781 11.720503 149.550422 11.841861 C 149.429064 11.959305 149.22158 12.166789 149.084562 12.307721 C 148.94363 12.444739 148.704828 12.683541 148.544321 12.844047 C 148.383815 13.008468 148.105865 13.282504 147.92187 13.470414 C 147.73396 13.654409 147.416862 13.975421 147.201549 14.18682 C 146.986235 14.402134 146.618245 14.770124 146.371613 15.016755 C 146.124981 15.263387 145.702184 15.686184 145.420319 15.971964 C 145.13454 16.257744 144.649106 16.739263 144.324178 17.068105 C 143.999251 17.393033 143.443351 17.945018 143.071446 18.320838 C 142.699541 18.692743 142.065345 19.326939 141.642548 19.749736 C 141.215835 20.172533 140.495514 20.892854 140.013995 21.374374 C 139.536391 21.855893 138.7182 22.674084 138.174044 23.214325 C 137.629888 23.75848 136.709913 24.678456 136.099206 25.289163 C 135.488498 25.89987 134.458909 26.933375 133.777735 27.614548 C 133.092647 28.295721 131.945614 29.446669 131.19006 30.202224 C 130.434505 30.957778 129.162199 32.230085 128.332263 33.06002 C 127.498413 33.889955 126.104748 35.28362 125.200432 36.187937 C 124.296115 37.092253 122.785007 38.603362 121.814139 39.578145 C 120.839356 40.552927 119.218633 42.169735 118.185129 43.20324 C 117.151625 44.240659 115.440862 45.951422 114.356465 47.031904 C 113.275983 48.112386 111.498669 49.893615 110.386868 51.005415 C 109.275068 52.117215 107.462521 53.929763 106.342891 55.049392 C 105.223261 56.165107 103.418543 57.97374 102.318487 59.073796 C 101.218432 60.173852 99.464606 61.923763 98.415442 62.972926 C 97.366279 64.026005 95.718152 65.674131 94.747285 66.644999 C 93.776417 67.615867 92.280967 69.111316 91.415799 69.976485 C 90.55063 70.837738 89.25092 72.137448 88.51494 72.877344 C 87.778959 73.613324 86.702392 74.685976 86.107344 75.281024 C 85.512296 75.876072 84.674531 76.713837 84.220416 77.171868 C 83.7663 77.625983 83.155593 78.232776 82.83458 78.557703 C 82.509653 78.878716 82.102515 79.289769 81.887201 79.501167 C 81.675803 79.712566 81.429171 79.963113 81.299983 80.092301 C 81.170795 80.217574 81.037692 80.350677 80.967226 80.421143 C 80.900674 80.491609 80.838038 80.554246 80.802805 80.585564 C 80.771486 80.620797 80.744083 80.644286 80.732338 80.659945 C 80.716679 80.671689 80.70885 80.679519 80.704935 80.683434 C 80.70102 80.691263 80.697105 80.691263 80.697105 80.691263 C 80.697105 80.695178 80.697105 80.695178 80.697105 80.695178 " transform="matrix(0.997819,0,0,-0.997819,199.943766,182.15978)"/> +</g> +<path style="fill:none;stroke-width:0.79701;stroke-linecap:butt;stroke-linejoin:miter;stroke:rgb(0%,65.098572%,83.921814%);stroke-opacity:1;stroke-miterlimit:10;" d="M 113.553933 47.83835 L 115.738386 45.649983 " transform="matrix(0.997819,0,0,-0.997819,199.943766,182.15978)"/> +<path style="fill-rule:nonzero;fill:rgb(0%,65.098572%,83.921814%);fill-opacity:1;stroke-width:0.79701;stroke-linecap:butt;stroke-linejoin:miter;stroke:rgb(0%,65.098572%,83.921814%);stroke-opacity:1;stroke-miterlimit:10;" d="M 7.368443 0.00143079 L 1.286706 2.296269 L 3.290884 -0.00133742 L 1.286706 -2.293408 Z M 7.368443 0.00143079 " transform="matrix(0.705558,0.705558,0.705558,-0.705558,313.249348,134.427149)"/> +<g clip-path="url(#clip22)" clip-rule="nonzero"> +<path style="fill:none;stroke-width:0.79701;stroke-linecap:butt;stroke-linejoin:miter;stroke:rgb(0%,65.098572%,83.921814%);stroke-opacity:1;stroke-miterlimit:10;" d="M 8.966418 44.831792 C 8.966418 44.831792 8.966418 44.831792 8.970333 44.831792 C 8.970333 44.827877 8.970333 44.827877 8.970333 44.827877 C 8.970333 44.827877 8.974247 44.827877 8.974247 44.827877 C 8.974247 44.827877 8.978162 44.827877 8.978162 44.827877 C 8.978162 44.827877 8.978162 44.827877 8.982077 44.827877 C 8.982077 44.827877 8.985992 44.827877 8.985992 44.823962 C 8.985992 44.823962 8.985992 44.823962 8.989907 44.823962 C 8.989907 44.823962 8.989907 44.823962 8.993821 44.823962 C 8.993821 44.823962 8.993821 44.823962 8.997736 44.823962 C 8.997736 44.823962 9.001651 44.820048 9.001651 44.820048 C 9.005566 44.820048 9.005566 44.820048 9.009481 44.820048 C 9.009481 44.820048 9.013395 44.820048 9.013395 44.820048 C 9.01731 44.816133 9.021225 44.816133 9.02514 44.816133 C 9.02514 44.816133 9.029055 44.816133 9.032969 44.812218 C 9.036884 44.812218 9.040799 44.812218 9.044714 44.812218 C 9.048628 44.812218 9.052543 44.808303 9.056458 44.808303 C 9.060373 44.808303 9.068202 44.804388 9.072117 44.804388 C 9.076032 44.804388 9.083862 44.800474 9.087776 44.800474 C 9.095606 44.800474 9.103436 44.796559 9.111265 44.796559 C 9.11518 44.792644 9.126924 44.788729 9.134754 44.788729 C 9.142583 44.788729 9.154328 44.784815 9.162157 44.7809 C 9.169987 44.7809 9.185646 44.776985 9.193476 44.77307 C 9.201305 44.77307 9.220879 44.769155 9.232624 44.765241 C 9.244368 44.761326 9.260027 44.757411 9.275686 44.753496 C 9.287431 44.749581 9.310919 44.745667 9.326579 44.741752 C 9.342238 44.737837 9.369641 44.730007 9.3853 44.726093 C 9.404874 44.722178 9.436193 44.714348 9.455767 44.710434 C 9.475341 44.702604 9.510574 44.694774 9.534062 44.69086 C 9.561466 44.68303 9.600614 44.6752 9.628017 44.667371 C 9.659336 44.659541 9.706313 44.647797 9.737631 44.639967 C 9.772865 44.632138 9.827672 44.616479 9.866819 44.608649 C 9.905967 44.600819 9.968604 44.58516 10.015581 44.573416 C 10.058644 44.561672 10.13694 44.542098 10.187832 44.530353 C 10.238724 44.518609 10.328765 44.499035 10.387486 44.483376 C 10.446208 44.467717 10.547993 44.444228 10.618459 44.428569 C 10.688925 44.41291 10.806369 44.381591 10.88858 44.365932 C 10.97079 44.346358 11.107808 44.31504 11.201763 44.291551 C 11.295718 44.268062 11.456224 44.232829 11.565838 44.20934 C 11.671537 44.181937 11.859447 44.142789 11.984721 44.111471 C 12.109994 44.084067 12.325307 44.03709 12.470154 44.005771 C 12.615002 43.970538 12.861633 43.919646 13.029969 43.880498 C 13.198305 43.845265 13.484085 43.782628 13.67591 43.743481 C 13.867734 43.704333 14.200491 43.633866 14.41972 43.590804 C 14.642863 43.543826 15.018682 43.469445 15.273144 43.418553 C 15.527605 43.367661 15.962147 43.28545 16.251841 43.230643 C 16.54545 43.175836 17.038714 43.085796 17.371471 43.027074 C 17.704228 42.968352 18.267958 42.870482 18.643777 42.811761 C 19.019597 42.749124 19.661623 42.647339 20.08442 42.584703 C 20.511132 42.522066 21.235368 42.416367 21.712972 42.357645 C 22.194491 42.295008 23.008768 42.193224 23.545094 42.134502 C 24.08142 42.07578 24.989651 41.981825 25.588614 41.930933 C 26.183662 41.880041 27.193678 41.80566 27.851362 41.770427 C 28.512962 41.731279 29.620847 41.684301 30.345083 41.668642 C 31.065404 41.652983 32.275074 41.645153 33.061947 41.660813 C 33.844905 41.676472 35.152445 41.727364 35.994124 41.786086 C 36.831889 41.844808 38.229469 41.970081 39.122041 42.08361 C 40.010698 42.197139 41.482659 42.424196 42.414379 42.608192 C 43.346099 42.792187 44.876782 43.140603 45.835905 43.410723 C 46.795028 43.680844 48.357029 44.178022 49.331812 44.546012 C 50.30268 44.914003 51.87251 45.583432 52.839463 46.061036 C 53.806416 46.53864 55.356673 47.395979 56.304052 47.991027 C 57.247516 48.58216 58.746881 49.631324 59.651197 50.339901 C 60.559428 51.048478 61.980497 52.277722 62.833921 53.088083 C 63.68343 53.902359 65.006629 55.292109 65.797416 56.184681 C 66.584289 57.077253 67.793959 58.580533 68.506451 59.523997 C 69.218942 60.467461 70.307254 62.025547 70.94145 62.980756 C 71.579561 63.935965 72.538684 65.478392 73.094584 66.398367 C 73.650484 67.322257 74.476505 68.774644 74.954109 69.624154 C 75.427799 70.469748 76.128546 71.773373 76.52394 72.513268 C 76.915419 73.253163 77.486978 74.349305 77.800161 74.963926 C 78.117259 75.574634 78.55963 76.443717 78.798432 76.917406 C 79.037234 77.391096 79.362162 78.033121 79.534413 78.373708 C 79.706663 78.71821 80.039421 79.379809 80.039421 79.379809 " transform="matrix(0.997819,0,0,-0.997819,199.943766,182.15978)"/> +</g> +<path style="fill:none;stroke-width:0.79701;stroke-linecap:butt;stroke-linejoin:miter;stroke:rgb(0%,65.098572%,83.921814%);stroke-opacity:1;stroke-miterlimit:10;" d="M 56.304052 47.556485 L 53.46583 46.331156 " transform="matrix(0.997819,0,0,-0.997819,199.943766,182.15978)"/> +<path style="fill-rule:nonzero;fill:rgb(0%,65.098572%,83.921814%);fill-opacity:1;stroke-width:0.79701;stroke-linecap:butt;stroke-linejoin:miter;stroke:rgb(0%,65.098572%,83.921814%);stroke-opacity:1;stroke-miterlimit:10;" d="M 7.370049 0.00121949 L 1.28598 2.295061 L 3.293008 0.000135533 L 1.287772 -2.293989 Z M 7.370049 0.00121949 " transform="matrix(-0.916057,0.395455,0.395455,0.916057,256.125906,134.70545)"/> +<g clip-path="url(#clip23)" clip-rule="nonzero"> +<path style="fill:none;stroke-width:0.79701;stroke-linecap:butt;stroke-linejoin:miter;stroke:rgb(0%,65.098572%,83.921814%);stroke-opacity:1;stroke-miterlimit:10;" d="M 152.423878 44.831792 C 152.423878 44.831792 152.423878 44.831792 152.419963 44.831792 C 152.419963 44.831792 152.419963 44.835707 152.419963 44.835707 C 152.419963 44.835707 152.416048 44.835707 152.416048 44.835707 C 152.416048 44.835707 152.416048 44.835707 152.416048 44.839622 C 152.416048 44.839622 152.416048 44.839622 152.412133 44.839622 C 152.412133 44.839622 152.412133 44.843536 152.408219 44.843536 C 152.408219 44.843536 152.404304 44.847451 152.404304 44.847451 C 152.404304 44.847451 152.404304 44.847451 152.400389 44.847451 C 152.400389 44.851366 152.400389 44.851366 152.396474 44.851366 C 152.396474 44.851366 152.396474 44.855281 152.392559 44.855281 C 152.392559 44.855281 152.388645 44.859196 152.388645 44.859196 C 152.388645 44.859196 152.38473 44.86311 152.38473 44.86311 C 152.380815 44.867025 152.3769 44.867025 152.3769 44.87094 C 152.372985 44.87094 152.369071 44.874855 152.369071 44.874855 C 152.365156 44.878769 152.361241 44.882684 152.357326 44.882684 C 152.357326 44.886599 152.349497 44.890514 152.349497 44.894429 C 152.345582 44.894429 152.337752 44.898343 152.333838 44.902258 C 152.329923 44.906173 152.326008 44.910088 152.322093 44.914003 C 152.314264 44.917917 152.310349 44.925747 152.302519 44.929662 C 152.298604 44.933577 152.290775 44.941406 152.282945 44.945321 C 152.27903 44.949236 152.267286 44.957065 152.259457 44.964895 C 152.251627 44.96881 152.239883 44.980554 152.232053 44.984469 C 152.224223 44.992298 152.212479 45.004043 152.200735 45.011872 C 152.192905 45.019702 152.173331 45.031446 152.165502 45.043191 C 152.153757 45.05102 152.134183 45.066679 152.122439 45.078424 C 152.10678 45.086253 152.087206 45.105827 152.071547 45.117572 C 152.055887 45.129316 152.028484 45.14889 152.012825 45.164549 C 151.993251 45.180208 151.965847 45.203697 151.942359 45.219356 C 151.922785 45.235015 151.887552 45.266334 151.864063 45.285908 C 151.840574 45.305482 151.801426 45.3368 151.774023 45.360289 C 151.746619 45.383777 151.695727 45.41901 151.664409 45.446414 C 151.63309 45.473817 151.578283 45.51688 151.539135 45.548198 C 151.503902 45.579517 151.437351 45.630409 151.394288 45.665642 C 151.351225 45.700875 151.276844 45.763512 151.225952 45.80266 C 151.17506 45.845722 151.088934 45.916189 151.026298 45.963166 C 150.967576 46.010144 150.865791 46.092354 150.79924 46.147161 C 150.728774 46.205883 150.61133 46.299838 150.533034 46.362475 C 150.454739 46.429026 150.317721 46.53864 150.223766 46.613021 C 150.133726 46.687402 149.973219 46.81659 149.86752 46.902716 C 149.757906 46.988841 149.577826 47.137603 149.452552 47.235473 C 149.327279 47.337257 149.115881 47.509508 148.971033 47.623037 C 148.826186 47.740481 148.583469 47.940135 148.415133 48.073238 C 148.250712 48.20634 147.964932 48.433398 147.773108 48.586075 C 147.581283 48.742667 147.256356 49.004958 147.033213 49.181123 C 146.813984 49.357289 146.438165 49.658727 146.183703 49.862296 C 145.929242 50.065865 145.498615 50.414282 145.205006 50.645254 C 144.915311 50.876227 144.418133 51.271621 144.085376 51.537826 C 143.752619 51.800117 143.184975 52.250318 142.80524 52.551757 C 142.425505 52.853196 141.779565 53.366033 141.348938 53.702705 C 140.918311 54.043292 140.186246 54.62268 139.696897 55.002415 C 139.211463 55.386064 138.385443 56.035919 137.833457 56.462631 C 137.285387 56.889344 136.357582 57.61358 135.74296 58.087269 C 135.128338 58.560959 134.090919 59.36349 133.40583 59.888072 C 132.724657 60.408739 131.573709 61.289567 130.822069 61.857211 C 130.07043 62.428771 128.802038 63.383979 127.979932 63.998601 C 127.157827 64.613223 125.779821 65.638898 124.891163 66.292668 C 124.002506 66.946438 122.518801 68.02692 121.567507 68.712008 C 120.616213 69.397096 119.038553 70.52064 118.036367 71.221388 C 117.038096 71.92605 115.386055 73.069168 114.348635 73.769916 C 113.307301 74.474578 111.608283 75.605952 110.555204 76.29104 C 109.498211 76.976128 107.783533 78.06444 106.730455 78.706465 C 105.677377 79.352405 103.986188 80.354592 102.964428 80.930066 C 101.938753 81.509454 100.31803 82.382452 99.347162 82.871801 C 98.376294 83.36115 96.865186 84.069727 95.972614 84.449461 C 95.080042 84.829196 93.71378 85.345948 92.922993 85.600409 C 92.12829 85.854871 90.938194 86.160224 90.257021 86.289412 C 89.575848 86.414686 88.577576 86.508641 88.009932 86.51647 C 87.446202 86.520385 86.635841 86.42643 86.181725 86.32856 C 85.731524 86.226776 85.097329 85.980144 84.741083 85.803978 C 84.388752 85.627813 83.903318 85.279397 83.633197 85.056254 C 83.363077 84.837025 82.995087 84.441632 82.791518 84.20283 C 82.587948 83.967942 82.313913 83.576463 82.157322 83.349405 C 82.004645 83.126262 81.797161 82.777846 81.683632 82.582107 C 81.570103 82.386367 81.417426 82.100588 81.335216 81.947911 C 81.253005 81.791319 81.143391 81.579921 81.084669 81.466392 C 81.025947 81.352863 80.916333 81.133635 80.916333 81.133635 " transform="matrix(0.997819,0,0,-0.997819,199.943766,182.15978)"/> +</g> +<path style="fill:none;stroke-width:0.79701;stroke-linecap:butt;stroke-linejoin:miter;stroke:rgb(0%,65.098572%,83.921814%);stroke-opacity:1;stroke-miterlimit:10;" d="M 114.458249 73.695535 L 117.002863 71.937794 " transform="matrix(0.997819,0,0,-0.997819,199.943766,182.15978)"/> +<path style="fill-rule:nonzero;fill:rgb(0%,65.098572%,83.921814%);fill-opacity:1;stroke-width:0.79701;stroke-linecap:butt;stroke-linejoin:miter;stroke:rgb(0%,65.098572%,83.921814%);stroke-opacity:1;stroke-miterlimit:10;" d="M 7.368394 -0.000870234 L 1.28756 2.29442 L 3.2906 -0.0000991862 L 1.286415 -2.292695 Z M 7.368394 -0.000870234 " transform="matrix(0.821055,0.566941,0.566941,-0.821055,314.153761,108.626531)"/> +<g clip-path="url(#clip24)" clip-rule="nonzero"> +<path style="fill:none;stroke-width:0.79701;stroke-linecap:butt;stroke-linejoin:miter;stroke:rgb(0%,65.098572%,83.921814%);stroke-opacity:1;stroke-miterlimit:10;" d="M 8.966418 80.695178 C 8.966418 80.695178 8.966418 80.695178 8.970333 80.695178 C 8.970333 80.695178 8.970333 80.691263 8.970333 80.691263 C 8.970333 80.691263 8.974247 80.691263 8.974247 80.691263 C 8.974247 80.691263 8.978162 80.691263 8.978162 80.687349 C 8.978162 80.687349 8.978162 80.687349 8.982077 80.687349 C 8.982077 80.683434 8.985992 80.683434 8.985992 80.683434 C 8.985992 80.683434 8.985992 80.683434 8.989907 80.683434 C 8.989907 80.683434 8.989907 80.679519 8.993821 80.679519 C 8.993821 80.679519 8.993821 80.679519 8.997736 80.675604 C 8.997736 80.675604 9.001651 80.675604 9.001651 80.675604 C 9.005566 80.671689 9.005566 80.671689 9.009481 80.671689 C 9.009481 80.671689 9.013395 80.667775 9.013395 80.667775 C 9.01731 80.667775 9.021225 80.66386 9.02514 80.66386 C 9.02514 80.659945 9.029055 80.659945 9.032969 80.65603 C 9.036884 80.65603 9.040799 80.652116 9.044714 80.652116 C 9.048628 80.648201 9.052543 80.644286 9.056458 80.644286 C 9.060373 80.640371 9.068202 80.636456 9.072117 80.636456 C 9.076032 80.632542 9.083862 80.628627 9.087776 80.624712 C 9.095606 80.620797 9.103436 80.616882 9.111265 80.612968 C 9.11518 80.609053 9.126924 80.605138 9.134754 80.601223 C 9.142583 80.597308 9.154328 80.589479 9.162157 80.585564 C 9.169987 80.577735 9.185646 80.569905 9.193476 80.56599 C 9.20522 80.558161 9.220879 80.550331 9.232624 80.542501 C 9.244368 80.538587 9.263942 80.526842 9.275686 80.519013 C 9.287431 80.511183 9.310919 80.499439 9.326579 80.487694 C 9.342238 80.479865 9.369641 80.464206 9.3853 80.456376 C 9.404874 80.444632 9.436193 80.428973 9.455767 80.417228 C 9.475341 80.405484 9.510574 80.381995 9.537977 80.370251 C 9.561466 80.354592 9.600614 80.331103 9.631932 80.315444 C 9.659336 80.299784 9.706313 80.272381 9.741546 80.252807 C 9.772865 80.237148 9.827672 80.201915 9.866819 80.182341 C 9.905967 80.158852 9.972519 80.123619 10.015581 80.096215 C 10.058644 80.072727 10.13694 80.029664 10.187832 79.998346 C 10.238724 79.970942 10.328765 79.92005 10.387486 79.884817 C 10.450123 79.853498 10.551908 79.794777 10.622374 79.755629 C 10.69284 79.716481 10.810284 79.649929 10.892494 79.602952 C 10.974705 79.555974 11.111723 79.477679 11.205677 79.426786 C 11.299632 79.371979 11.460139 79.281939 11.569753 79.223217 C 11.679367 79.160581 11.867277 79.058796 11.99255 78.98833 C 12.117823 78.917864 12.333137 78.796505 12.477984 78.714295 C 12.626746 78.635999 12.873378 78.495067 13.041714 78.405026 C 13.21005 78.311071 13.499744 78.150565 13.691569 78.044866 C 13.887308 77.939166 14.220065 77.755171 14.443208 77.633813 C 14.666351 77.512454 15.046086 77.304971 15.300547 77.167953 C 15.558923 77.027021 15.99738 76.792133 16.290989 76.635542 C 16.584598 76.47895 17.081776 76.212744 17.418448 76.032664 C 17.75512 75.856498 18.322765 75.55506 18.706414 75.355405 C 19.086149 75.155751 19.736004 74.819079 20.166631 74.599851 C 20.601172 74.376708 21.333238 74.000888 21.818672 73.758171 C 22.30802 73.51154 23.134041 73.096572 23.682111 72.830366 C 24.230182 72.560246 25.154072 72.110045 25.764779 71.820351 C 26.371572 71.526741 27.401161 71.041307 28.07842 70.732039 C 28.751764 70.422771 29.890968 69.906018 30.630863 69.581091 C 31.370758 69.256163 32.615661 68.715922 33.422108 68.383165 C 34.228554 68.050408 35.575242 67.502338 36.44041 67.169581 C 37.309494 66.836824 38.750136 66.296583 39.674026 65.97557 C 40.594002 65.654557 42.116855 65.145634 43.083808 64.852025 C 44.046846 64.558416 45.632336 64.1043 46.626693 63.853754 C 47.621049 63.603207 49.241772 63.235217 50.247873 63.047307 C 51.253974 62.859397 52.878611 62.608851 53.876883 62.503152 C 54.875154 62.397452 56.472388 62.295668 57.443256 62.291753 C 58.410209 62.283923 59.940891 62.358304 60.860867 62.464004 C 61.776928 62.573618 63.209741 62.839824 64.05925 63.062967 C 64.908759 63.290024 66.216299 63.755884 66.983598 64.096471 C 67.750896 64.437058 68.909674 65.086913 69.586933 65.529284 C 70.264191 65.971655 71.274207 66.774187 71.857511 67.294854 C 72.440814 67.815521 73.302068 68.719837 73.795331 69.283567 C 74.29251 69.847297 75.012831 70.794676 75.423884 71.366235 C 75.838851 71.937794 76.437814 72.861685 76.774486 73.40584 C 77.115073 73.946081 77.604422 74.791676 77.878457 75.27711 C 78.152492 75.758629 78.540056 76.482865 78.751455 76.886088 C 78.966768 77.289311 79.264292 77.864785 79.428713 78.177969 C 79.58922 78.495067 79.804533 78.921779 79.918062 79.148836 C 80.035506 79.375894 80.258649 79.818265 80.258649 79.818265 " transform="matrix(0.997819,0,0,-0.997819,199.943766,182.15978)"/> +</g> +<path style="fill:none;stroke-width:0.79701;stroke-linecap:butt;stroke-linejoin:miter;stroke:rgb(0%,65.098572%,83.921814%);stroke-opacity:1;stroke-miterlimit:10;" d="M 50.960364 62.886801 L 47.942062 63.560145 " transform="matrix(0.997819,0,0,-0.997819,199.943766,182.15978)"/> +<path style="fill-rule:nonzero;fill:rgb(0%,65.098572%,83.921814%);fill-opacity:1;stroke-width:0.79701;stroke-linecap:butt;stroke-linejoin:miter;stroke:rgb(0%,65.098572%,83.921814%);stroke-opacity:1;stroke-miterlimit:10;" d="M 7.367709 0.000615613 L 1.28666 2.293653 L 3.292781 0.000567611 L 1.28852 -2.294251 Z M 7.367709 0.000615613 " transform="matrix(-0.973941,-0.216656,-0.216656,0.973941,250.793034,119.408162)"/> +<g clip-path="url(#clip25)" clip-rule="nonzero"> +<path style="fill:none;stroke-width:0.79701;stroke-linecap:butt;stroke-linejoin:miter;stroke:rgb(0%,65.098572%,83.921814%);stroke-opacity:1;stroke-miterlimit:10;" d="M 152.423878 80.695178 C 152.423878 80.695178 152.423878 80.695178 152.419963 80.695178 C 152.419963 80.695178 152.419963 80.695178 152.419963 80.699093 C 152.419963 80.699093 152.416048 80.699093 152.416048 80.699093 C 152.416048 80.699093 152.412133 80.699093 152.412133 80.703008 C 152.412133 80.703008 152.412133 80.703008 152.408219 80.703008 C 152.408219 80.706923 152.404304 80.706923 152.404304 80.706923 C 152.404304 80.706923 152.400389 80.706923 152.400389 80.706923 C 152.400389 80.706923 152.400389 80.710837 152.396474 80.710837 C 152.396474 80.710837 152.392559 80.710837 152.392559 80.714752 C 152.392559 80.714752 152.388645 80.714752 152.388645 80.714752 C 152.38473 80.714752 152.38473 80.718667 152.380815 80.718667 C 152.380815 80.718667 152.3769 80.722582 152.3769 80.722582 C 152.372985 80.722582 152.369071 80.726497 152.365156 80.726497 C 152.365156 80.730411 152.361241 80.730411 152.357326 80.734326 C 152.353411 80.734326 152.349497 80.738241 152.345582 80.738241 C 152.341667 80.742156 152.337752 80.74607 152.333838 80.74607 C 152.329923 80.749985 152.322093 80.7539 152.318178 80.7539 C 152.314264 80.757815 152.306434 80.76173 152.302519 80.765644 C 152.29469 80.769559 152.28686 80.773474 152.27903 80.777389 C 152.275116 80.781304 152.263371 80.785218 152.255542 80.789133 C 152.247712 80.793048 152.235968 80.800878 152.228138 80.804792 C 152.220309 80.812622 152.204649 80.820451 152.19682 80.824366 C 152.185076 80.832196 152.169416 80.840025 152.157672 80.847855 C 152.145928 80.85177 152.126354 80.863514 152.114609 80.871344 C 152.102865 80.879173 152.079376 80.890918 152.063717 80.902662 C 152.048058 80.910492 152.020654 80.926151 152.004995 80.93398 C 151.985421 80.945725 151.954103 80.961384 151.934529 80.973128 C 151.914955 80.984873 151.879722 81.008361 151.852318 81.020106 C 151.82883 81.035765 151.789682 81.059254 151.758363 81.074913 C 151.73096 81.090572 151.683982 81.117975 151.648749 81.137549 C 151.617431 81.153209 151.562624 81.188442 151.523476 81.208016 C 151.484328 81.231504 151.417777 81.266737 151.374714 81.294141 C 151.331651 81.31763 151.253356 81.360692 151.202463 81.392011 C 151.151571 81.419414 151.061531 81.470307 151.002809 81.50554 C 150.940172 81.536858 150.838388 81.59558 150.767922 81.634728 C 150.697456 81.673876 150.580012 81.740427 150.497801 81.787404 C 150.415591 81.834382 150.278573 81.912678 150.184618 81.96357 C 150.090663 82.018377 149.930157 82.108417 149.820543 82.167139 C 149.710929 82.229776 149.523019 82.33156 149.397745 82.402026 C 149.272472 82.472493 149.057159 82.593851 148.912312 82.676062 C 148.76355 82.754357 148.516918 82.89529 148.348582 82.98533 C 148.180246 83.079285 147.890551 83.239791 147.698727 83.345491 C 147.502987 83.45119 147.17023 83.635185 146.947087 83.756544 C 146.723944 83.877902 146.34421 84.085386 146.089748 84.222404 C 145.831372 84.363336 145.392916 84.598223 145.099307 84.754815 C 144.805697 84.911406 144.308519 85.177612 143.971847 85.357692 C 143.635175 85.533858 143.067531 85.835297 142.683882 86.034951 C 142.304147 86.234605 141.654292 86.571277 141.223665 86.790505 C 140.789123 87.013648 140.057058 87.389468 139.567709 87.632185 C 139.082275 87.878817 138.256255 88.293785 137.708184 88.55999 C 137.160114 88.830111 136.236223 89.280312 135.625516 89.570006 C 135.018724 89.863615 133.989134 90.349049 133.311876 90.658317 C 132.638532 90.967586 131.499328 91.484338 130.759433 91.809266 C 130.019538 92.134193 128.774635 92.670519 127.968188 93.007191 C 127.161741 93.339948 125.815054 93.888019 124.949885 94.220776 C 124.080802 94.553533 122.640159 95.093774 121.716269 95.414787 C 120.796294 95.735799 119.273441 96.244722 118.306488 96.538331 C 117.343449 96.83194 115.75796 97.286056 114.763603 97.536602 C 113.769247 97.787149 112.148524 98.155139 111.142423 98.343049 C 110.136322 98.530959 108.511684 98.781506 107.513413 98.887205 C 106.515142 98.992904 104.917908 99.094689 103.94704 99.098603 C 102.980087 99.106433 101.449404 99.032052 100.529429 98.926353 C 99.613368 98.816739 98.180555 98.550533 97.331046 98.32739 C 96.481536 98.100332 95.173997 97.634472 94.406698 97.293886 C 93.639399 96.953299 92.480621 96.303444 91.803363 95.861073 C 91.126104 95.418701 90.116089 94.61617 89.532785 94.095503 C 88.949481 93.574836 88.088228 92.670519 87.594964 92.10679 C 87.097786 91.54306 86.377465 90.595681 85.966412 90.024122 C 85.551444 89.452562 84.952481 88.528672 84.615809 87.984516 C 84.275223 87.444275 83.785874 86.598681 83.511839 86.113247 C 83.237804 85.631728 82.850239 84.907492 82.638841 84.504268 C 82.423527 84.101045 82.126003 83.525571 81.961582 83.208473 C 81.801076 82.89529 81.585762 82.468578 81.472233 82.24152 C 81.35479 82.014462 81.131647 81.572091 81.131647 81.572091 " transform="matrix(0.997819,0,0,-0.997819,199.943766,182.15978)"/> +</g> +<path style="fill:none;stroke-width:0.79701;stroke-linecap:butt;stroke-linejoin:miter;stroke:rgb(0%,65.098572%,83.921814%);stroke-opacity:1;stroke-miterlimit:10;" d="M 110.429931 98.503555 L 113.448234 97.830212 " transform="matrix(0.997819,0,0,-0.997819,199.943766,182.15978)"/> +<path style="fill-rule:nonzero;fill:rgb(0%,65.098572%,83.921814%);fill-opacity:1;stroke-width:0.79701;stroke-linecap:butt;stroke-linejoin:miter;stroke:rgb(0%,65.098572%,83.921814%);stroke-opacity:1;stroke-miterlimit:10;" d="M 7.367731 0.000729441 L 1.286681 2.293767 L 3.292802 0.000681439 L 1.288541 -2.294137 Z M 7.367731 0.000729441 " transform="matrix(0.973941,0.216656,0.216656,-0.973941,310.132702,83.873195)"/> +<g clip-path="url(#clip26)" clip-rule="nonzero"> +<path style="fill:none;stroke-width:0.79701;stroke-linecap:butt;stroke-linejoin:miter;stroke:rgb(0%,65.098572%,83.921814%);stroke-opacity:1;stroke-miterlimit:10;" d="M 8.966418 116.558564 C 8.970333 116.558564 8.970333 116.558564 8.970333 116.558564 C 8.970333 116.558564 8.970333 116.55465 8.970333 116.55465 C 8.970333 116.55465 8.974247 116.55465 8.974247 116.55465 C 8.974247 116.55465 8.974247 116.55465 8.974247 116.550735 C 8.974247 116.550735 8.974247 116.550735 8.978162 116.550735 C 8.978162 116.550735 8.978162 116.54682 8.982077 116.54682 C 8.982077 116.54682 8.985992 116.542905 8.985992 116.542905 C 8.985992 116.542905 8.985992 116.542905 8.989907 116.542905 C 8.989907 116.538991 8.989907 116.538991 8.993821 116.538991 C 8.993821 116.538991 8.993821 116.535076 8.997736 116.535076 C 8.997736 116.535076 9.001651 116.531161 9.001651 116.531161 C 9.001651 116.531161 9.005566 116.527246 9.005566 116.527246 C 9.009481 116.523331 9.013395 116.523331 9.013395 116.519417 C 9.01731 116.519417 9.021225 116.515502 9.021225 116.515502 C 9.02514 116.511587 9.029055 116.507672 9.032969 116.507672 C 9.032969 116.503757 9.040799 116.499843 9.040799 116.495928 C 9.044714 116.495928 9.052543 116.492013 9.056458 116.488098 C 9.060373 116.484183 9.064288 116.480269 9.068202 116.476354 C 9.076032 116.472439 9.079947 116.46461 9.087776 116.460695 C 9.091691 116.45678 9.099521 116.44895 9.10735 116.445036 C 9.111265 116.441121 9.123009 116.433291 9.130839 116.425462 C 9.138669 116.421547 9.150413 116.409802 9.158243 116.405888 C 9.166072 116.398058 9.177817 116.386314 9.189561 116.378484 C 9.19739 116.370655 9.216964 116.35891 9.224794 116.347166 C 9.236538 116.339336 9.256112 116.323677 9.267857 116.311933 C 9.283516 116.304103 9.30309 116.284529 9.318749 116.272785 C 9.334408 116.26104 9.361812 116.237552 9.377471 116.225807 C 9.397045 116.210148 9.424448 116.186659 9.447937 116.171 C 9.467511 116.151426 9.502744 116.124023 9.526233 116.104449 C 9.549722 116.084875 9.588869 116.053557 9.616273 116.030068 C 9.643676 116.006579 9.694569 115.971346 9.725887 115.943943 C 9.757205 115.916539 9.812012 115.873476 9.85116 115.842158 C 9.886393 115.81084 9.952945 115.759947 9.996008 115.724714 C 10.03907 115.689481 10.113451 115.626845 10.164343 115.587697 C 10.215236 115.544634 10.301361 115.474168 10.363998 115.42719 C 10.42272 115.380213 10.520589 115.298002 10.591056 115.243195 C 10.661522 115.184473 10.778965 115.090518 10.857261 115.027882 C 10.935557 114.96133 11.072575 114.851716 11.16653 114.777335 C 11.25657 114.702954 11.417076 114.573766 11.522775 114.487641 C 11.63239 114.401515 11.81247 114.252753 11.937743 114.154884 C 12.063016 114.053099 12.274415 113.880848 12.419262 113.76732 C 12.564109 113.649876 12.806826 113.450222 12.975162 113.317119 C 13.139583 113.184016 13.425363 112.956958 13.617188 112.804281 C 13.809012 112.64769 14.13394 112.385399 14.357083 112.209233 C 14.576311 112.033068 14.952131 111.731629 15.206592 111.52806 C 15.461054 111.324491 15.89168 110.976075 16.18529 110.745102 C 16.474984 110.51413 16.972162 110.118736 17.304919 109.85253 C 17.637677 109.590239 18.205321 109.140038 18.585056 108.8386 C 18.96479 108.537161 19.61073 108.024323 20.041357 107.687652 C 20.471984 107.347065 21.20405 106.767676 21.689484 106.387941 C 22.178832 106.004292 23.004853 105.354437 23.556838 104.927725 C 24.104909 104.501013 25.032714 103.776777 25.647336 103.303087 C 26.261958 102.825483 27.299377 102.026866 27.984465 101.502284 C 28.665638 100.981617 29.816587 100.10079 30.568226 99.533145 C 31.319866 98.961586 32.588258 98.006377 33.410363 97.391755 C 34.232469 96.777133 35.610475 95.751458 36.499132 95.097689 C 37.387789 94.443919 38.871495 93.363437 39.822788 92.678349 C 40.774082 91.993261 42.351742 90.869716 43.353929 90.168969 C 44.3522 89.464307 46.004241 88.321188 47.04166 87.620441 C 48.082994 86.915779 49.782013 85.784405 50.835091 85.099316 C 51.892084 84.414228 53.606762 83.325917 54.65984 82.683891 C 55.712919 82.037951 57.400193 81.035765 58.425868 80.460291 C 59.451543 79.880902 61.072266 79.007904 62.043133 78.518555 C 63.014001 78.029207 64.52511 77.316715 65.417682 76.940895 C 66.310254 76.561161 67.676515 76.044408 68.467303 75.789947 C 69.262005 75.535486 70.452101 75.230132 71.133275 75.100944 C 71.814448 74.975671 72.812719 74.881716 73.380364 74.873886 C 73.944093 74.869972 74.754455 74.963926 75.20857 75.061796 C 75.658771 75.163581 76.292967 75.410212 76.649213 75.586378 C 77.001544 75.762544 77.486978 76.11096 77.757098 76.334103 C 78.027219 76.553331 78.395209 76.948725 78.598778 77.187527 C 78.802347 77.422414 79.076382 77.813893 79.232974 78.040951 C 79.385651 78.264094 79.593135 78.61251 79.706663 78.80825 C 79.820192 79.003989 79.972869 79.289769 80.05508 79.442446 C 80.13729 79.599037 80.246904 79.810436 80.305626 79.923965 C 80.364348 80.037494 80.473962 80.256722 80.473962 80.256722 " transform="matrix(0.997819,0,0,-0.997819,199.943766,182.15978)"/> +</g> +<path style="fill:none;stroke-width:0.79701;stroke-linecap:butt;stroke-linejoin:miter;stroke:rgb(0%,65.098572%,83.921814%);stroke-opacity:1;stroke-miterlimit:10;" d="M 46.932046 87.694822 L 44.387433 89.452562 " transform="matrix(0.997819,0,0,-0.997819,199.943766,182.15978)"/> +<path style="fill-rule:nonzero;fill:rgb(0%,65.098572%,83.921814%);fill-opacity:1;stroke-width:0.79701;stroke-linecap:butt;stroke-linejoin:miter;stroke:rgb(0%,65.098572%,83.921814%);stroke-opacity:1;stroke-miterlimit:10;" d="M 7.368419 -0.000969833 L 1.287586 2.29432 L 3.290625 -0.000198786 L 1.28644 -2.292795 Z M 7.368419 -0.000969833 " transform="matrix(-0.821055,-0.566941,-0.566941,0.821055,246.771985,94.654815)"/> +<g clip-path="url(#clip27)" clip-rule="nonzero"> +<path style="fill:none;stroke-width:0.79701;stroke-linecap:butt;stroke-linejoin:miter;stroke:rgb(0%,65.098572%,83.921814%);stroke-opacity:1;stroke-miterlimit:10;" d="M 152.423878 116.558564 C 152.423878 116.558564 152.423878 116.558564 152.419963 116.558564 C 152.419963 116.558564 152.419963 116.558564 152.419963 116.562479 C 152.419963 116.562479 152.416048 116.562479 152.416048 116.562479 C 152.416048 116.562479 152.412133 116.562479 152.412133 116.562479 C 152.412133 116.562479 152.412133 116.562479 152.408219 116.562479 C 152.408219 116.562479 152.404304 116.562479 152.404304 116.566394 C 152.404304 116.566394 152.400389 116.566394 152.400389 116.566394 C 152.400389 116.566394 152.400389 116.566394 152.396474 116.566394 C 152.396474 116.566394 152.392559 116.566394 152.392559 116.566394 C 152.392559 116.566394 152.388645 116.566394 152.388645 116.570309 C 152.38473 116.570309 152.38473 116.570309 152.380815 116.570309 C 152.380815 116.570309 152.3769 116.570309 152.3769 116.570309 C 152.372985 116.574224 152.369071 116.574224 152.365156 116.574224 C 152.365156 116.574224 152.361241 116.574224 152.357326 116.578138 C 152.353411 116.578138 152.349497 116.578138 152.345582 116.578138 C 152.341667 116.578138 152.337752 116.582053 152.333838 116.582053 C 152.329923 116.582053 152.322093 116.585968 152.318178 116.585968 C 152.314264 116.585968 152.306434 116.589883 152.302519 116.589883 C 152.29469 116.589883 152.28686 116.593798 152.27903 116.593798 C 152.275116 116.597712 152.263371 116.597712 152.255542 116.601627 C 152.247712 116.601627 152.235968 116.605542 152.228138 116.609457 C 152.220309 116.609457 152.204649 116.613372 152.19682 116.617286 C 152.185076 116.617286 152.169416 116.621201 152.157672 116.625116 C 152.145928 116.629031 152.130268 116.632945 152.114609 116.63686 C 152.102865 116.640775 152.079376 116.64469 152.063717 116.648605 C 152.048058 116.652519 152.020654 116.660349 152.004995 116.664264 C 151.985421 116.668179 151.954103 116.676008 151.934529 116.679923 C 151.914955 116.687753 151.879722 116.695582 151.856233 116.699497 C 151.82883 116.707326 151.789682 116.715156 151.762278 116.722986 C 151.73096 116.730815 151.683982 116.74256 151.652664 116.750389 C 151.617431 116.758219 151.562624 116.773878 151.523476 116.781707 C 151.484328 116.789537 151.421692 116.805196 151.374714 116.816941 C 151.331651 116.828685 151.253356 116.848259 151.202463 116.860003 C 151.151571 116.871748 151.061531 116.891322 151.002809 116.906981 C 150.944087 116.92264 150.842303 116.946129 150.771837 116.961788 C 150.70137 116.977447 150.580012 117.00485 150.501716 117.024424 C 150.419505 117.043998 150.282488 117.075317 150.188533 117.098805 C 150.094578 117.122294 149.934072 117.157527 149.824457 117.181016 C 149.718758 117.20842 149.530848 117.247567 149.405575 117.278886 C 149.280302 117.306289 149.064988 117.353267 148.920141 117.384585 C 148.775294 117.419818 148.528662 117.47071 148.360326 117.509858 C 148.19199 117.545091 147.906211 117.607728 147.714386 117.646876 C 147.522561 117.686024 147.189804 117.75649 146.970576 117.799553 C 146.747433 117.84653 146.371613 117.920911 146.117152 117.971803 C 145.862691 118.022696 145.428149 118.104906 145.138454 118.159713 C 144.844845 118.21452 144.351582 118.304561 144.018825 118.363282 C 143.686068 118.422004 143.122338 118.519874 142.746518 118.578596 C 142.370698 118.641232 141.728673 118.743017 141.305876 118.805654 C 140.879164 118.86829 140.154928 118.970075 139.677323 119.032711 C 139.195804 119.095348 138.381528 119.197133 137.845202 119.255854 C 137.308876 119.314576 136.400644 119.408531 135.801682 119.459423 C 135.206634 119.510316 134.196618 119.584697 133.538933 119.61993 C 132.877334 119.659078 131.769448 119.706055 131.045212 119.721714 C 130.324891 119.737374 129.115221 119.745203 128.328349 119.729544 C 127.545391 119.713885 126.237851 119.662993 125.396171 119.604271 C 124.558406 119.545549 123.160826 119.420276 122.268254 119.306747 C 121.379597 119.193218 119.907636 118.96616 118.975917 118.782165 C 118.044197 118.59817 116.513514 118.249754 115.554391 117.979633 C 114.595267 117.709513 113.033266 117.212334 112.058484 116.844344 C 111.087616 116.476354 109.517785 115.806925 108.550832 115.329321 C 107.583879 114.851716 106.033623 113.994377 105.086244 113.399329 C 104.142779 112.808196 102.643415 111.759033 101.739099 111.050456 C 100.830867 110.341879 99.409799 109.112635 98.556375 108.298359 C 97.706865 107.487997 96.383667 106.098247 95.592879 105.205675 C 94.806006 104.313103 93.596336 102.809824 92.883845 101.86636 C 92.171353 100.922895 91.083042 99.364809 90.448846 98.409601 C 89.810735 97.454392 88.851612 95.911965 88.295712 94.991989 C 87.739811 94.068099 86.913791 92.615712 86.436187 91.766203 C 85.962497 90.920608 85.26175 89.616983 84.866356 88.877088 C 84.470962 88.137193 83.903318 87.037137 83.590135 86.42643 C 83.273037 85.815723 82.830665 84.94664 82.591863 84.47295 C 82.353061 83.999261 82.028134 83.357235 81.855883 83.016648 C 81.683632 82.672147 81.350875 82.010547 81.350875 82.010547 " transform="matrix(0.997819,0,0,-0.997819,199.943766,182.15978)"/> +</g> +<path style="fill:none;stroke-width:0.79701;stroke-linecap:butt;stroke-linejoin:miter;stroke:rgb(0%,65.098572%,83.921814%);stroke-opacity:1;stroke-miterlimit:10;" d="M 105.086244 113.833871 L 107.924466 115.0592 " transform="matrix(0.997819,0,0,-0.997819,199.943766,182.15978)"/> +<path style="fill-rule:nonzero;fill:rgb(0%,65.098572%,83.921814%);fill-opacity:1;stroke-width:0.79701;stroke-linecap:butt;stroke-linejoin:miter;stroke:rgb(0%,65.098572%,83.921814%);stroke-opacity:1;stroke-miterlimit:10;" d="M 7.370124 0.00130313 L 1.286055 2.295145 L 3.293083 0.00021918 L 1.287847 -2.293905 Z M 7.370124 0.00130313 " transform="matrix(0.916057,-0.395455,-0.395455,-0.916057,304.79984,68.575906)"/> +<g clip-path="url(#clip28)" clip-rule="nonzero"> +<path style="fill:none;stroke-width:0.79701;stroke-linecap:butt;stroke-linejoin:miter;stroke:rgb(0%,65.098572%,83.921814%);stroke-opacity:1;stroke-miterlimit:10;" d="M 8.966418 152.425866 C 8.966418 152.421951 8.966418 152.421951 8.966418 152.421951 C 8.966418 152.421951 8.970333 152.421951 8.970333 152.421951 C 8.970333 152.421951 8.970333 152.418036 8.970333 152.418036 C 8.970333 152.418036 8.970333 152.418036 8.974247 152.418036 C 8.974247 152.418036 8.974247 152.414121 8.974247 152.414121 C 8.978162 152.414121 8.978162 152.414121 8.978162 152.414121 C 8.978162 152.410206 8.978162 152.410206 8.978162 152.410206 C 8.982077 152.410206 8.982077 152.410206 8.982077 152.410206 C 8.982077 152.406292 8.982077 152.406292 8.985992 152.406292 C 8.985992 152.406292 8.985992 152.402377 8.985992 152.402377 C 8.989907 152.402377 8.989907 152.398462 8.989907 152.398462 C 8.993821 152.398462 8.993821 152.394547 8.993821 152.394547 C 8.997736 152.394547 8.997736 152.390632 9.001651 152.390632 C 9.001651 152.386718 9.005566 152.386718 9.005566 152.382803 C 9.009481 152.382803 9.009481 152.378888 9.013395 152.378888 C 9.013395 152.374973 9.01731 152.371058 9.021225 152.371058 C 9.021225 152.367144 9.02514 152.363229 9.029055 152.359314 C 9.032969 152.359314 9.036884 152.355399 9.040799 152.351485 C 9.044714 152.34757 9.048628 152.343655 9.052543 152.33974 C 9.056458 152.335825 9.060373 152.327996 9.064288 152.324081 C 9.072117 152.320166 9.076032 152.312337 9.083862 152.308422 C 9.087776 152.304507 9.095606 152.292763 9.103436 152.288848 C 9.10735 152.281018 9.119095 152.273189 9.123009 152.265359 C 9.130839 152.25753 9.142583 152.245785 9.150413 152.237956 C 9.158243 152.230126 9.173902 152.218382 9.181731 152.210552 C 9.189561 152.198808 9.20522 152.183149 9.216964 152.171404 C 9.228709 152.163575 9.244368 152.144001 9.260027 152.132256 C 9.271771 152.120512 9.291345 152.097023 9.307005 152.081364 C 9.322664 152.06962 9.346152 152.042216 9.361812 152.026557 C 9.381386 152.010898 9.408789 151.97958 9.428363 151.960006 C 9.447937 151.940432 9.48317 151.909113 9.506659 151.885625 C 9.530148 151.862136 9.569295 151.822988 9.596699 151.795584 C 9.620188 151.768181 9.667165 151.721203 9.698484 151.689885 C 9.729802 151.658567 9.784609 151.607675 9.819842 151.568527 C 9.855075 151.533294 9.917712 151.470657 9.960774 151.431509 C 10.003837 151.388446 10.074303 151.314065 10.125196 151.267088 C 10.172173 151.216196 10.258298 151.133985 10.313105 151.075263 C 10.371827 151.016541 10.469697 150.918672 10.536248 150.856035 C 10.6028 150.789484 10.716329 150.675955 10.794625 150.597659 C 10.869006 150.519363 11.002108 150.38626 11.092149 150.300135 C 11.182189 150.210095 11.334866 150.053503 11.440565 149.951719 C 11.542349 149.846019 11.718515 149.669854 11.839873 149.548495 C 11.961232 149.427137 12.168716 149.223568 12.305733 149.082635 C 12.446666 148.945618 12.685468 148.706816 12.845974 148.546309 C 13.006481 148.381888 13.284431 148.107853 13.468426 147.919943 C 13.656336 147.735948 13.973434 147.414935 14.188747 147.203536 C 14.40406 146.988223 14.772051 146.620233 15.018682 146.373601 C 15.265314 146.126969 15.688111 145.704172 15.969976 145.418392 C 16.255756 145.132613 16.74119 144.651094 17.066117 144.322251 C 17.391045 143.997324 17.946945 143.441424 18.31885 143.069519 C 18.690755 142.697614 19.324951 142.063418 19.747748 141.640621 C 20.17446 141.217823 20.894781 140.497502 21.3763 140.015983 C 21.853905 139.534464 22.672096 138.716273 23.216252 138.176032 C 23.760407 137.631876 24.680383 136.711901 25.29109 136.101193 C 25.901797 135.490486 26.931387 134.456982 27.61256 133.775809 C 28.297648 133.094635 29.444682 131.943687 30.200236 131.188133 C 30.95579 130.432578 32.228097 129.160272 33.058032 128.330336 C 33.891882 127.500401 35.285547 126.106736 36.189864 125.20242 C 37.09418 124.298103 38.605289 122.786995 39.576157 121.812212 C 40.550939 120.837429 42.171662 119.220621 43.205167 118.187117 C 44.238671 117.149698 45.949434 115.438935 47.033831 114.358453 C 48.114313 113.274056 49.891627 111.496742 51.003427 110.384942 C 52.115227 109.273141 53.927775 107.460594 55.047405 106.340964 C 56.167034 105.221334 57.971752 103.416616 59.071808 102.31656 C 60.171864 101.216505 61.92569 99.466594 62.974853 98.41743 C 64.024017 97.364352 65.672143 95.716225 66.643011 94.745358 C 67.613879 93.77449 69.109328 92.27904 69.974497 91.413872 C 70.839665 90.548703 72.139375 89.252908 72.875356 88.513013 C 73.611336 87.777032 74.687903 86.70438 75.282951 86.109332 C 75.877999 85.514284 76.715764 84.676519 77.16988 84.218489 C 77.623995 83.764373 78.234703 83.157581 78.555715 82.832653 C 78.880643 82.507726 79.287781 82.100588 79.503094 81.889189 C 79.714493 81.673876 79.961125 81.427244 80.090313 81.298056 C 80.219501 81.172783 80.352604 81.035765 80.42307 80.969213 C 80.489621 80.898747 80.552258 80.836111 80.587491 80.804792 C 80.618809 80.769559 80.646213 80.74607 80.657957 80.730411 C 80.673616 80.718667 80.681446 80.710837 80.685361 80.706923 C 80.689276 80.699093 80.69319 80.699093 80.69319 80.699093 C 80.69319 80.695178 80.69319 80.695178 80.69319 80.695178 " transform="matrix(0.997819,0,0,-0.997819,199.943766,182.15978)"/> +</g> +<path style="fill:none;stroke-width:0.79701;stroke-linecap:butt;stroke-linejoin:miter;stroke:rgb(0%,65.098572%,83.921814%);stroke-opacity:1;stroke-miterlimit:10;" d="M 47.836362 113.552006 L 45.65191 115.740373 " transform="matrix(0.997819,0,0,-0.997819,199.943766,182.15978)"/> +<path style="fill-rule:nonzero;fill:rgb(0%,65.098572%,83.921814%);fill-opacity:1;stroke-width:0.79701;stroke-linecap:butt;stroke-linejoin:miter;stroke:rgb(0%,65.098572%,83.921814%);stroke-opacity:1;stroke-miterlimit:10;" d="M 7.368486 0.00133742 L 1.286749 2.296176 L 3.290927 -0.00143079 L 1.286749 -2.293501 Z M 7.368486 0.00133742 " transform="matrix(-0.705558,-0.705558,-0.705558,0.705558,247.676397,68.854198)"/> +<g clip-path="url(#clip29)" clip-rule="nonzero"> +<path style="fill:none;stroke-width:0.79701;stroke-linecap:butt;stroke-linejoin:miter;stroke:rgb(0%,65.098572%,83.921814%);stroke-opacity:1;stroke-miterlimit:10;" d="M 44.829804 152.425866 C 44.829804 152.425866 44.829804 152.421951 44.829804 152.421951 C 44.833719 152.421951 44.833719 152.421951 44.833719 152.421951 C 44.833719 152.421951 44.833719 152.421951 44.833719 152.418036 C 44.833719 152.418036 44.833719 152.418036 44.837634 152.418036 C 44.837634 152.414121 44.837634 152.414121 44.837634 152.414121 C 44.837634 152.414121 44.841549 152.414121 44.841549 152.410206 C 44.841549 152.410206 44.841549 152.406292 44.845463 152.406292 C 44.845463 152.402377 44.849378 152.402377 44.849378 152.402377 C 44.849378 152.398462 44.849378 152.398462 44.853293 152.398462 C 44.853293 152.394547 44.853293 152.394547 44.853293 152.394547 C 44.857208 152.390632 44.857208 152.390632 44.857208 152.386718 C 44.861122 152.386718 44.861122 152.382803 44.865037 152.382803 C 44.865037 152.378888 44.868952 152.378888 44.868952 152.374973 C 44.868952 152.371058 44.872867 152.371058 44.876782 152.367144 C 44.876782 152.363229 44.880696 152.359314 44.884611 152.359314 C 44.884611 152.355399 44.888526 152.351485 44.892441 152.34757 C 44.892441 152.343655 44.90027 152.335825 44.90027 152.331911 C 44.904185 152.327996 44.912015 152.324081 44.912015 152.320166 C 44.91593 152.312337 44.923759 152.304507 44.927674 152.300592 C 44.931589 152.296677 44.939418 152.284933 44.943333 152.281018 C 44.947248 152.273189 44.955077 152.265359 44.962907 152.25753 C 44.966822 152.2497 44.978566 152.237956 44.982481 152.230126 C 44.990311 152.222296 45.002055 152.206637 45.009884 152.194893 C 45.017714 152.187063 45.029458 152.171404 45.037288 152.15966 C 45.049032 152.147915 45.064692 152.128342 45.072521 152.116597 C 45.084265 152.100938 45.099925 152.077449 45.115584 152.065705 C 45.127328 152.050046 45.146902 152.022642 45.158646 152.003068 C 45.174306 151.987409 45.197794 151.956091 45.213454 151.936517 C 45.233027 151.913028 45.260431 151.877795 45.280005 151.854306 C 45.295664 151.830818 45.330897 151.787755 45.350471 151.760351 C 45.37396 151.732948 45.413108 151.682056 45.436597 151.650737 C 45.464 151.615504 45.507063 151.560697 45.538381 151.521549 C 45.569699 151.486316 45.620592 151.419765 45.655825 151.372787 C 45.691058 151.329724 45.74978 151.255343 45.788928 151.200536 C 45.828075 151.149644 45.898542 151.059604 45.945519 151.000882 C 45.992497 150.94216 46.074707 150.836461 46.129514 150.76991 C 46.184321 150.699443 46.278276 150.578085 46.340913 150.495874 C 46.40355 150.417579 46.513164 150.276646 46.58363 150.182691 C 46.658011 150.088736 46.783284 149.92823 46.869409 149.818616 C 46.955535 149.712916 47.100382 149.525007 47.198252 149.399733 C 47.296122 149.270545 47.464457 149.055232 47.577986 148.910385 C 47.691515 148.765537 47.88334 148.514991 48.016443 148.346655 C 48.145631 148.178319 48.368774 147.892539 48.517536 147.6968 C 48.670213 147.504975 48.924674 147.172218 49.096925 146.949075 C 49.269175 146.725932 49.566699 146.346197 49.762439 146.087821 C 49.958178 145.83336 50.29485 145.394904 50.521908 145.101294 C 50.748966 144.807685 51.132615 144.306592 51.387076 143.973835 C 51.645453 143.637163 52.079994 143.065604 52.369689 142.685869 C 52.659383 142.30222 53.152647 141.65628 53.477574 141.221738 C 53.806416 140.791111 54.362316 140.059046 54.726392 139.569697 C 55.094382 139.080348 55.712919 138.254328 56.120057 137.710172 C 56.53111 137.162101 57.216198 136.238211 57.666399 135.627504 C 58.1166 135.016797 58.876069 133.987207 59.369332 133.313863 C 59.862596 132.636605 60.688616 131.501316 61.221028 130.761421 C 61.753439 130.017611 62.642096 128.776622 63.213655 127.970176 C 63.785215 127.163729 64.732594 125.817042 65.331557 124.947958 C 65.930519 124.08279 66.920961 122.638233 67.543413 121.718257 C 68.165864 120.798281 69.179795 119.271514 69.810076 118.308475 C 70.440357 117.341522 71.458202 115.759947 72.080654 114.765591 C 72.703105 113.771234 73.697462 112.146597 74.296424 111.140496 C 74.891472 110.134395 75.831022 108.509757 76.383007 107.511486 C 76.934993 106.513215 77.784502 104.915981 78.269936 103.949028 C 78.759284 102.97816 79.487435 101.447477 79.894573 100.531416 C 80.297797 99.611441 80.8811 98.178628 81.194283 97.329119 C 81.503552 96.479609 81.926349 95.175984 82.137748 94.408686 C 82.349146 93.641387 82.607522 92.478695 82.724966 91.801436 C 82.838495 91.128092 82.944194 90.118076 82.975513 89.534773 C 83.006831 88.951469 82.987257 88.090216 82.952024 87.593037 C 82.916791 87.099774 82.803262 86.379453 82.724966 85.964485 C 82.64667 85.549517 82.482249 84.954469 82.380465 84.613882 C 82.27868 84.273296 82.0986 83.787862 81.996815 83.513827 C 81.891116 83.239791 81.72278 82.852227 81.628825 82.636914 C 81.53487 82.4216 81.393938 82.124076 81.319557 81.96357 C 81.241261 81.803064 81.135562 81.583835 81.080755 81.470307 C 81.025947 81.356778 80.912419 81.133635 80.912419 81.133635 " transform="matrix(0.997819,0,0,-0.997819,199.943766,182.15978)"/> +</g> +<path style="fill:none;stroke-width:0.79701;stroke-linecap:butt;stroke-linejoin:miter;stroke:rgb(0%,65.098572%,83.921814%);stroke-opacity:1;stroke-miterlimit:10;" d="M 71.720493 115.43502 L 70.00973 118.007037 " transform="matrix(0.997819,0,0,-0.997819,199.943766,182.15978)"/> +<path style="fill-rule:nonzero;fill:rgb(0%,65.098572%,83.921814%);fill-opacity:1;stroke-width:0.79701;stroke-linecap:butt;stroke-linejoin:miter;stroke:rgb(0%,65.098572%,83.921814%);stroke-opacity:1;stroke-miterlimit:10;" d="M 7.369434 0.000508319 L 1.288214 2.29516 L 3.292152 -0.00113098 L 1.288295 -2.293549 Z M 7.369434 0.000508319 " transform="matrix(-0.552462,-0.830854,-0.830854,0.552462,271.509256,66.978109)"/> +<g clip-path="url(#clip30)" clip-rule="nonzero"> +<path style="fill:none;stroke-width:0.79701;stroke-linecap:butt;stroke-linejoin:miter;stroke:rgb(0%,65.098572%,83.921814%);stroke-opacity:1;stroke-miterlimit:10;" d="M 80.69319 152.425866 C 80.69319 152.425866 80.697105 152.425866 80.697105 152.425866 C 80.697105 152.425866 80.697105 152.421951 80.697105 152.421951 C 80.697105 152.418036 80.697105 152.418036 80.697105 152.418036 C 80.697105 152.418036 80.697105 152.414121 80.697105 152.414121 C 80.697105 152.414121 80.697105 152.414121 80.70102 152.414121 C 80.70102 152.410206 80.70102 152.410206 80.70102 152.410206 C 80.70102 152.410206 80.70102 152.410206 80.70102 152.406292 C 80.704935 152.406292 80.704935 152.402377 80.704935 152.402377 C 80.704935 152.402377 80.704935 152.398462 80.704935 152.398462 C 80.704935 152.398462 80.704935 152.394547 80.70885 152.394547 C 80.70885 152.394547 80.70885 152.390632 80.70885 152.390632 C 80.70885 152.386718 80.70885 152.386718 80.712764 152.382803 C 80.712764 152.382803 80.712764 152.378888 80.712764 152.374973 C 80.716679 152.374973 80.716679 152.371058 80.716679 152.367144 C 80.716679 152.367144 80.720594 152.363229 80.720594 152.359314 C 80.720594 152.355399 80.724509 152.351485 80.724509 152.34757 C 80.728424 152.343655 80.728424 152.33974 80.728424 152.335825 C 80.732338 152.331911 80.736253 152.324081 80.736253 152.320166 C 80.736253 152.316251 80.740168 152.308422 80.744083 152.304507 C 80.744083 152.300592 80.747997 152.288848 80.751912 152.284933 C 80.751912 152.277104 80.755827 152.269274 80.759742 152.261444 C 80.763657 152.253615 80.767571 152.24187 80.771486 152.234041 C 80.775401 152.226211 80.779316 152.214467 80.783231 152.202723 C 80.787145 152.194893 80.794975 152.179234 80.79889 152.167489 C 80.802805 152.155745 80.810634 152.136171 80.814549 152.124427 C 80.818464 152.112682 80.830208 152.089194 80.834123 152.073534 C 80.841952 152.057875 80.849782 152.034387 80.857612 152.014813 C 80.865441 151.999153 80.877185 151.967835 80.885015 151.948261 C 80.892845 151.928687 80.904589 151.893454 80.916333 151.869965 C 80.924163 151.846477 80.939822 151.807329 80.951566 151.779925 C 80.963311 151.752522 80.982885 151.705544 80.994629 151.674226 C 81.006374 151.642908 81.029862 151.588101 81.041607 151.548953 C 81.057266 151.51372 81.080755 151.447168 81.100328 151.404105 C 81.115988 151.361043 81.147306 151.286662 81.16688 151.239684 C 81.186454 151.188792 81.217772 151.102667 81.241261 151.043945 C 81.26475 150.985223 81.303898 150.887353 81.331301 150.816887 C 81.35479 150.750336 81.401767 150.636807 81.433086 150.554596 C 81.460489 150.4763 81.515296 150.343198 81.550529 150.253157 C 81.585762 150.163117 81.644484 150.006526 81.683632 149.900826 C 81.726695 149.795127 81.793246 149.615047 81.840224 149.493688 C 81.887201 149.37233 81.965497 149.164846 82.020304 149.023913 C 82.075111 148.882981 82.165151 148.640264 82.223873 148.479758 C 82.28651 148.315337 82.388294 148.037387 82.45876 147.853391 C 82.529227 147.665482 82.64667 147.344469 82.724966 147.129155 C 82.803262 146.913842 82.936365 146.549767 83.026405 146.303135 C 83.11253 146.056503 83.265207 145.637621 83.363077 145.355756 C 83.464861 145.073891 83.633197 144.592372 83.742811 144.271359 C 83.85634 143.950346 84.040335 143.402276 84.165609 143.0382 C 84.286967 142.674125 84.494451 142.055588 84.627554 141.640621 C 84.760657 141.229568 84.987714 140.52882 85.132562 140.066875 C 85.277409 139.601015 85.520126 138.814143 85.676717 138.293476 C 85.833309 137.772809 86.08777 136.895896 86.252191 136.316507 C 86.416613 135.737118 86.682818 134.762335 86.851154 134.124225 C 87.01949 133.486114 87.289611 132.409547 87.457947 131.712714 C 87.626283 131.011967 87.892488 129.83753 88.052995 129.078061 C 88.217416 128.318592 88.467962 127.046285 88.616724 126.232009 C 88.765486 125.413818 88.992544 124.055386 89.117817 123.186303 C 89.243091 122.31722 89.427086 120.880492 89.521041 119.964431 C 89.611081 119.052285 89.740269 117.552921 89.791161 116.605542 C 89.842053 115.662078 89.892946 114.115736 89.89686 113.148783 C 89.900775 112.185745 89.865542 110.615914 89.810735 109.645046 C 89.755928 108.674179 89.622825 107.108263 89.509296 106.145225 C 89.395767 105.182186 89.164795 103.643674 88.996459 102.708039 C 88.824208 101.76849 88.499281 100.284785 88.276138 99.384383 C 88.056909 98.487896 87.657601 97.078572 87.39531 96.232978 C 87.136934 95.391298 86.682818 94.079843 86.400953 93.3008 C 86.119089 92.521757 85.645399 91.327746 85.359619 90.630914 C 85.07384 89.930167 84.611895 88.869259 84.341774 88.258551 C 84.067739 87.647844 83.644942 86.739613 83.406139 86.222861 C 83.163423 85.706109 82.803262 84.958384 82.599693 84.543416 C 82.400039 84.124534 82.110344 83.54123 81.953753 83.220217 C 81.797161 82.903119 81.581848 82.472493 81.468319 82.245435 C 81.35479 82.014462 81.131647 81.572091 81.131647 81.572091 " transform="matrix(0.997819,0,0,-0.997819,199.943766,182.15978)"/> +</g> +<path style="fill:none;stroke-width:0.79701;stroke-linecap:butt;stroke-linejoin:miter;stroke:rgb(0%,65.098572%,83.921814%);stroke-opacity:1;stroke-miterlimit:10;" d="M 90.112174 112.628116 L 89.861627 115.71297 " transform="matrix(0.997819,0,0,-0.997819,199.943766,182.15978)"/> +<path style="fill-rule:nonzero;fill:rgb(0%,65.098572%,83.921814%);fill-opacity:1;stroke-width:0.79701;stroke-linecap:butt;stroke-linejoin:miter;stroke:rgb(0%,65.098572%,83.921814%);stroke-opacity:1;stroke-miterlimit:10;" d="M 7.370774 0.00124911 L 1.28739 2.29237 L 3.289819 0.00149576 L 1.285437 -2.295131 Z M 7.370774 0.00124911 " transform="matrix(-0.0804641,-0.994516,-0.994516,0.0804641,289.85995,69.775564)"/> +<g clip-path="url(#clip31)" clip-rule="nonzero"> +<path style="fill:none;stroke-width:0.79701;stroke-linecap:butt;stroke-linejoin:miter;stroke:rgb(0%,65.098572%,83.921814%);stroke-opacity:1;stroke-miterlimit:10;" d="M 116.560491 152.425866 C 116.560491 152.425866 116.560491 152.421951 116.560491 152.421951 C 116.560491 152.421951 116.556577 152.421951 116.556577 152.421951 C 116.556577 152.421951 116.556577 152.418036 116.556577 152.418036 C 116.556577 152.418036 116.556577 152.418036 116.556577 152.414121 C 116.552662 152.414121 116.552662 152.414121 116.552662 152.414121 C 116.552662 152.414121 116.552662 152.410206 116.552662 152.410206 C 116.552662 152.406292 116.552662 152.406292 116.548747 152.406292 C 116.548747 152.406292 116.548747 152.402377 116.548747 152.402377 C 116.548747 152.402377 116.548747 152.402377 116.548747 152.398462 C 116.548747 152.398462 116.544832 152.398462 116.544832 152.394547 C 116.544832 152.394547 116.544832 152.390632 116.544832 152.390632 C 116.540917 152.390632 116.540917 152.386718 116.540917 152.386718 C 116.540917 152.382803 116.537003 152.378888 116.537003 152.378888 C 116.537003 152.374973 116.533088 152.374973 116.533088 152.371058 C 116.533088 152.367144 116.529173 152.363229 116.529173 152.363229 C 116.529173 152.359314 116.525258 152.355399 116.525258 152.351485 C 116.521344 152.34757 116.521344 152.343655 116.517429 152.33974 C 116.517429 152.335825 116.513514 152.331911 116.509599 152.327996 C 116.509599 152.324081 116.505684 152.316251 116.50177 152.308422 C 116.50177 152.304507 116.497855 152.296677 116.49394 152.292763 C 116.490025 152.284933 116.48611 152.277104 116.482196 152.269274 C 116.478281 152.261444 116.474366 152.2497 116.470451 152.24187 C 116.466536 152.237956 116.458707 152.222296 116.454792 152.214467 C 116.450877 152.206637 116.443048 152.190978 116.435218 152.179234 C 116.431303 152.167489 116.423474 152.15183 116.415644 152.140086 C 116.411729 152.124427 116.399985 152.104853 116.392155 152.089194 C 116.384326 152.077449 116.372582 152.053961 116.364752 152.034387 C 116.356922 152.018727 116.341263 151.991324 116.333434 151.97175 C 116.325604 151.952176 116.30603 151.920858 116.294286 151.897369 C 116.286456 151.87388 116.266882 151.834732 116.251223 151.811244 C 116.239479 151.78384 116.21599 151.740777 116.200331 151.709459 C 116.184672 151.678141 116.161183 151.627248 116.141609 151.592015 C 116.12595 151.552867 116.094631 151.494146 116.075058 151.451083 C 116.051569 151.411935 116.016336 151.341469 115.992847 151.294491 C 115.969358 151.243599 115.93021 151.161389 115.902807 151.106581 C 115.871488 151.051774 115.824511 150.953905 115.793193 150.891268 C 115.761874 150.824717 115.703153 150.715103 115.667919 150.640722 C 115.628772 150.562426 115.566135 150.433238 115.523072 150.347112 C 115.476095 150.260987 115.401714 150.10831 115.350821 150.01044 C 115.299929 149.908656 115.213804 149.73249 115.155082 149.615047 C 115.09636 149.497603 114.994576 149.297949 114.928024 149.160931 C 114.857558 149.023913 114.744029 148.789026 114.665733 148.632435 C 114.583523 148.475843 114.45042 148.205722 114.36038 148.021727 C 114.266425 147.841647 114.113748 147.528464 114.008049 147.32098 C 113.902349 147.109581 113.722269 146.749421 113.600911 146.506704 C 113.479552 146.267902 113.275983 145.852934 113.135051 145.574984 C 112.994118 145.297034 112.759231 144.823344 112.598725 144.502332 C 112.438218 144.185234 112.168098 143.641078 111.984103 143.277003 C 111.804022 142.912927 111.490839 142.290476 111.283355 141.875508 C 111.075871 141.46054 110.72354 140.751963 110.488653 140.282189 C 110.253766 139.808499 109.850542 139.005967 109.584337 138.473556 C 109.318131 137.941145 108.864015 137.036828 108.566491 136.437865 C 108.265053 135.838903 107.760045 134.821057 107.423373 134.151628 C 107.086701 133.482199 106.522971 132.350825 106.151066 131.607015 C 105.779161 130.863205 105.152795 129.610473 104.741742 128.792282 C 104.334604 127.970176 103.645601 126.596085 103.199315 125.703513 C 102.753029 124.810941 102.005304 123.315491 101.523785 122.352453 C 101.042266 121.389415 100.239734 119.784351 99.726897 118.758676 C 99.214059 117.733001 98.36455 116.037897 97.828224 114.96133 C 97.291898 113.884763 96.407155 112.115278 95.851255 111.007393 C 95.295355 109.899508 94.391039 108.08696 93.831224 106.96733 C 93.271409 105.847701 92.367093 104.039068 91.815107 102.935097 C 91.263122 101.831127 90.382294 100.065556 89.849883 99.008563 C 89.321386 97.947655 88.487536 96.279955 87.994273 95.293428 C 87.501009 94.306901 86.74154 92.787963 86.299169 91.90322 C 85.856798 91.022393 85.191283 89.68745 84.815464 88.931895 C 84.435729 88.176341 83.879829 87.064541 83.570561 86.446004 C 83.261292 85.827467 82.822836 84.954469 82.587948 84.476865 C 82.349146 84.003175 82.028134 83.36115 81.855883 83.016648 C 81.683632 82.676062 81.350875 82.010547 81.350875 82.010547 " transform="matrix(0.997819,0,0,-0.997819,199.943766,182.15978)"/> +</g> +<path style="fill:none;stroke-width:0.79701;stroke-linecap:butt;stroke-linejoin:miter;stroke:rgb(0%,65.098572%,83.921814%);stroke-opacity:1;stroke-miterlimit:10;" d="M 97.053096 113.414989 L 98.438931 116.17883 " transform="matrix(0.997819,0,0,-0.997819,199.943766,182.15978)"/> +<path style="fill-rule:nonzero;fill:rgb(0%,65.098572%,83.921814%);fill-opacity:1;stroke-width:0.79701;stroke-linecap:butt;stroke-linejoin:miter;stroke:rgb(0%,65.098572%,83.921814%);stroke-opacity:1;stroke-miterlimit:10;" d="M 7.368167 -0.0000277626 L 1.287489 2.295452 L 3.292177 0.00179601 L 1.287407 -2.291788 Z M 7.368167 -0.0000277626 " transform="matrix(0.446195,-0.892429,-0.892429,-0.446195,296.786558,68.993523)"/> +<g clip-path="url(#clip32)" clip-rule="nonzero"> +<path style="fill:none;stroke-width:0.79701;stroke-linecap:butt;stroke-linejoin:miter;stroke:rgb(0%,65.098572%,83.921814%);stroke-opacity:1;stroke-miterlimit:10;" d="M 152.423878 152.425866 C 152.423878 152.425866 152.423878 152.421951 152.423878 152.421951 C 152.419963 152.421951 152.419963 152.421951 152.419963 152.421951 C 152.419963 152.421951 152.416048 152.421951 152.416048 152.421951 C 152.416048 152.421951 152.416048 152.421951 152.412133 152.421951 C 152.408219 152.421951 152.408219 152.421951 152.408219 152.421951 C 152.408219 152.421951 152.404304 152.421951 152.404304 152.421951 C 152.404304 152.421951 152.404304 152.418036 152.400389 152.418036 C 152.400389 152.418036 152.400389 152.418036 152.396474 152.418036 C 152.396474 152.418036 152.396474 152.418036 152.392559 152.418036 C 152.392559 152.418036 152.388645 152.418036 152.388645 152.418036 C 152.388645 152.418036 152.38473 152.418036 152.38473 152.414121 C 152.380815 152.414121 152.3769 152.414121 152.3769 152.414121 C 152.372985 152.414121 152.369071 152.414121 152.369071 152.414121 C 152.365156 152.414121 152.361241 152.410206 152.361241 152.410206 C 152.357326 152.410206 152.353411 152.410206 152.349497 152.410206 C 152.345582 152.410206 152.341667 152.406292 152.337752 152.406292 C 152.333838 152.406292 152.326008 152.406292 152.322093 152.402377 C 152.318178 152.402377 152.310349 152.402377 152.302519 152.398462 C 152.298604 152.398462 152.290775 152.398462 152.282945 152.394547 C 152.27903 152.394547 152.267286 152.394547 152.263371 152.390632 C 152.255542 152.390632 152.243797 152.386718 152.235968 152.386718 C 152.228138 152.382803 152.212479 152.382803 152.204649 152.378888 C 152.192905 152.378888 152.177246 152.374973 152.165502 152.371058 C 152.153757 152.371058 152.138098 152.367144 152.122439 152.363229 C 152.110695 152.359314 152.091121 152.355399 152.075461 152.351485 C 152.059802 152.351485 152.032399 152.343655 152.01674 152.33974 C 151.997166 152.33974 151.969762 152.331911 151.950188 152.327996 C 151.930614 152.324081 151.895381 152.316251 151.871892 152.312337 C 151.848404 152.308422 151.805341 152.296677 151.777937 152.292763 C 151.750534 152.288848 151.703556 152.277104 151.672238 152.269274 C 151.64092 152.265359 151.586113 152.253615 151.55088 152.245785 C 151.511732 152.237956 151.449095 152.222296 151.406032 152.214467 C 151.36297 152.206637 151.288589 152.190978 151.237696 152.179234 C 151.186804 152.167489 151.100679 152.147915 151.045872 152.136171 C 150.98715 152.124427 150.885365 152.100938 150.818814 152.089194 C 150.752263 152.073534 150.634819 152.046131 150.556523 152.030472 C 150.478227 152.010898 150.345124 151.983494 150.25117 151.960006 C 150.161129 151.940432 150.004538 151.905199 149.898838 151.88171 C 149.797054 151.854306 149.616974 151.815158 149.4917 151.78384 C 149.370342 151.756437 149.162858 151.705544 149.021926 151.674226 C 148.880993 151.638993 148.642191 151.580271 148.47777 151.537208 C 148.317264 151.49806 148.039313 151.427594 147.851404 151.380617 C 147.663494 151.329724 147.346396 151.247514 147.131082 151.188792 C 146.915769 151.133985 146.547779 151.0322 146.301147 150.961734 C 146.054515 150.895183 145.635633 150.773824 145.353768 150.691614 C 145.071903 150.609403 144.594299 150.468471 144.273286 150.366686 C 143.948359 150.268817 143.404203 150.096566 143.040127 149.979122 C 142.676052 149.857764 142.0536 149.65028 141.642548 149.509347 C 141.22758 149.3645 140.530747 149.113954 140.064887 148.941703 C 139.599027 148.769452 138.81607 148.468013 138.295403 148.256615 C 137.774736 148.049131 136.893908 147.685055 136.318434 147.430594 C 135.739045 147.180048 134.764262 146.741591 134.126152 146.436238 C 133.484126 146.130884 132.411474 145.602387 131.710727 145.238312 C 131.009979 144.870322 129.839457 144.236126 129.076073 143.79767 C 128.316604 143.359213 127.048212 142.595829 126.230021 142.075162 C 125.41183 141.55058 124.053398 140.646264 123.184315 140.027727 C 122.315232 139.409191 120.878504 138.340453 119.966358 137.616217 C 119.054212 136.888066 117.554848 135.639248 116.607469 134.797569 C 115.66009 133.959804 114.117663 132.515246 113.15071 131.556123 C 112.183757 130.593085 110.617841 128.956703 109.646973 127.876221 C 108.672191 126.795739 107.106275 124.963617 106.147151 123.777436 C 105.184113 122.58734 103.645601 120.586883 102.706052 119.306747 C 101.770417 118.026611 100.282797 115.89305 99.38631 114.550277 C 98.489823 113.211419 97.080499 110.999563 96.234905 109.637217 C 95.38931 108.270955 94.077856 106.055184 93.298812 104.712412 C 92.523684 103.369639 91.329673 101.228249 90.628926 99.959857 C 89.928179 98.687551 88.871186 96.702752 88.260478 95.547889 C 87.645856 94.396941 86.737625 92.639201 86.220873 91.64093 C 85.708036 90.642658 84.956396 89.170697 84.541428 88.352506 C 84.126461 87.530401 83.539242 86.367708 83.222144 85.737427 C 82.901132 85.103231 82.47442 84.245892 82.243447 83.791777 C 82.016389 83.333746 81.570103 82.445089 81.570103 82.445089 " transform="matrix(0.997819,0,0,-0.997819,199.943766,182.15978)"/> +</g> +<path style="fill:none;stroke-width:0.79701;stroke-linecap:butt;stroke-linejoin:miter;stroke:rgb(0%,65.098572%,83.921814%);stroke-opacity:1;stroke-miterlimit:10;" d="M 105.798735 123.370298 L 107.807022 125.723087 " transform="matrix(0.997819,0,0,-0.997819,199.943766,182.15978)"/> +<path style="fill-rule:nonzero;fill:rgb(0%,65.098572%,83.921814%);fill-opacity:1;stroke-width:0.79701;stroke-linecap:butt;stroke-linejoin:miter;stroke:rgb(0%,65.098572%,83.921814%);stroke-opacity:1;stroke-miterlimit:10;" d="M 7.367538 -0.000661522 L 1.286392 2.292312 L 3.290945 -0.0012568 L 1.285573 -2.295126 Z M 7.367538 -0.000661522 " transform="matrix(0.647864,-0.758811,-0.758811,-0.647864,305.511494,59.058891)"/> +<g style="fill:rgb(0%,0%,0%);fill-opacity:1;"> + <use xlink:href="#glyph0-2" x="365.094729" y="104.198212"/> +</g> +<g style="fill:rgb(0%,0%,0%);fill-opacity:1;"> + <use xlink:href="#glyph0-3" x="277.413409" y="14.685895"/> +</g> +<path style="fill:none;stroke-width:0.3985;stroke-linecap:butt;stroke-linejoin:miter;stroke:rgb(0%,0%,0%);stroke-opacity:1;stroke-miterlimit:10;" d="M -0.000527242 80.69409 L 159.397955 80.69409 " transform="matrix(0.997819,0,0,-0.997819,12.133339,363.186038)"/> +<path style=" stroke:none;fill-rule:nonzero;fill:rgb(0%,0%,0%);fill-opacity:1;" d="M 173.171875 282.667969 L 169.992188 281.078125 L 171.183594 282.667969 L 169.992188 284.257813 "/> +<path style="fill:none;stroke-width:0.3985;stroke-linecap:butt;stroke-linejoin:miter;stroke:rgb(0%,0%,0%);stroke-opacity:1;stroke-miterlimit:10;" d="M 80.695028 -0.0014649 L 80.695028 159.397018 " transform="matrix(0.997819,0,0,-0.997819,12.133339,363.186038)"/> +<path style=" stroke:none;fill-rule:nonzero;fill:rgb(0%,0%,0%);fill-opacity:1;" d="M 92.652344 202.148438 L 91.0625 205.328125 L 92.652344 204.136719 L 94.242188 205.328125 "/> +<g style="fill:rgb(0%,0%,0%);fill-opacity:1;"> + <use xlink:href="#glyph0-1" x="79.308487" y="294.911294"/> +</g> +<g clip-path="url(#clip33)" clip-rule="nonzero"> +<path style="fill:none;stroke-width:0.79701;stroke-linecap:butt;stroke-linejoin:miter;stroke:rgb(0%,65.098572%,83.921814%);stroke-opacity:1;stroke-miterlimit:10;" d="M 134.492065 152.424778 C 134.492065 152.424778 134.492065 152.420863 134.492065 152.420863 C 134.492065 152.416948 134.492065 152.416948 134.492065 152.416948 C 134.492065 152.416948 134.48815 152.416948 134.48815 152.416948 C 134.48815 152.416948 134.48815 152.413033 134.48815 152.413033 C 134.48815 152.409118 134.48815 152.409118 134.48815 152.409118 C 134.48815 152.405204 134.48815 152.405204 134.48815 152.405204 C 134.48815 152.405204 134.484235 152.405204 134.484235 152.405204 C 134.484235 152.405204 134.484235 152.405204 134.484235 152.401289 C 134.484235 152.397374 134.484235 152.397374 134.484235 152.397374 C 134.484235 152.397374 134.484235 152.397374 134.484235 152.393459 C 134.48032 152.393459 134.48032 152.393459 134.48032 152.393459 C 134.48032 152.389544 134.48032 152.389544 134.48032 152.389544 C 134.48032 152.389544 134.48032 152.38563 134.48032 152.38563 C 134.48032 152.381715 134.48032 152.381715 134.48032 152.381715 C 134.48032 152.381715 134.476406 152.381715 134.476406 152.3778 C 134.476406 152.3778 134.476406 152.373885 134.476406 152.373885 C 134.476406 152.373885 134.476406 152.373885 134.476406 152.36997 C 134.472491 152.366056 134.472491 152.366056 134.472491 152.366056 C 134.472491 152.366056 134.472491 152.362141 134.472491 152.362141 C 134.472491 152.362141 134.472491 152.358226 134.472491 152.358226 C 134.472491 152.358226 134.472491 152.358226 134.468576 152.354311 C 134.468576 152.354311 134.468576 152.354311 134.468576 152.350397 C 134.468576 152.350397 134.468576 152.350397 134.468576 152.346482 C 134.468576 152.346482 134.468576 152.346482 134.468576 152.342567 C 134.464661 152.342567 134.464661 152.338652 134.464661 152.338652 C 134.464661 152.338652 134.464661 152.334737 134.464661 152.334737 C 134.464661 152.334737 134.460746 152.330823 134.460746 152.330823 C 134.460746 152.326908 134.460746 152.326908 134.460746 152.322993 C 134.460746 152.322993 134.460746 152.319078 134.460746 152.319078 C 134.456832 152.315163 134.456832 152.315163 134.456832 152.311249 C 134.456832 152.311249 134.456832 152.307334 134.456832 152.307334 C 134.452917 152.303419 134.452917 152.303419 134.452917 152.299504 C 134.452917 152.299504 134.452917 152.295589 134.449002 152.291675 C 134.449002 152.291675 134.449002 152.28776 134.449002 152.28776 C 134.449002 152.283845 134.445087 152.27993 134.445087 152.27993 C 134.445087 152.276016 134.445087 152.272101 134.445087 152.268186 C 134.441172 152.268186 134.441172 152.264271 134.441172 152.260356 C 134.441172 152.260356 134.437258 152.256442 134.437258 152.252527 C 134.437258 152.248612 134.437258 152.244697 134.437258 152.244697 C 134.433343 152.240782 134.433343 152.236868 134.433343 152.232953 C 134.429428 152.229038 134.429428 152.225123 134.429428 152.221208 C 134.429428 152.221208 134.425513 152.213379 134.425513 152.209464 C 134.425513 152.209464 134.421598 152.201635 134.421598 152.19772 C 134.421598 152.19772 134.417684 152.18989 134.417684 152.185975 C 134.417684 152.182061 134.413769 152.178146 134.413769 152.174231 C 134.413769 152.170316 134.409854 152.162487 134.409854 152.158572 C 134.409854 152.154657 134.405939 152.150742 134.405939 152.146827 C 134.402025 152.142913 134.402025 152.135083 134.402025 152.131168 C 134.39811 152.127254 134.39811 152.119424 134.394195 152.115509 C 134.394195 152.10768 134.39028 152.09985 134.39028 152.095935 C 134.386365 152.09202 134.386365 152.084191 134.382451 152.080276 C 134.382451 152.072446 134.378536 152.064617 134.378536 152.060702 C 134.374621 152.052873 134.374621 152.045043 134.370706 152.041128 C 134.370706 152.033299 134.366791 152.025469 134.366791 152.017639 C 134.362877 152.013725 134.358962 152.00198 134.358962 151.994151 C 134.355047 151.990236 134.351132 151.978492 134.351132 151.970662 C 134.347217 151.966747 134.347217 151.955003 134.343303 151.947173 C 134.339388 151.939344 134.335473 151.927599 134.335473 151.91977 C 134.331558 151.91194 134.327644 151.900196 134.327644 151.892366 C 134.323729 151.884537 134.319814 151.872792 134.315899 151.864963 C 134.315899 151.853218 134.311984 151.841474 134.30807 151.833644 C 134.304155 151.8219 134.30024 151.810156 134.296325 151.798411 C 134.296325 151.790582 134.288496 151.774922 134.288496 151.763178 C 134.284581 151.755349 134.276751 151.739689 134.276751 151.727945 C 134.272836 151.720115 134.265007 151.700541 134.265007 151.688797 C 134.261092 151.680968 134.253263 151.661394 134.249348 151.649649 C 134.245433 151.637905 134.241518 151.618331 134.237603 151.606587 C 134.233689 151.594842 134.225859 151.575268 134.221944 151.563524 C 134.218029 151.547865 134.214115 151.528291 134.2102 151.512632 C 134.206285 151.500887 134.198455 151.477398 134.194541 151.465654 C 134.190626 151.449995 134.182796 151.426506 134.178882 151.410847 C 134.171052 151.395188 134.163222 151.371699 134.159308 151.35604 C 134.155393 151.340381 134.147563 151.312977 134.139734 151.297318 C 134.135819 151.277744 134.127989 151.250341 134.124074 151.234682 C 134.116245 151.215108 134.108415 151.187704 134.100586 151.16813 C 134.096671 151.148556 134.088841 151.117238 134.081012 151.097664 C 134.073182 151.07809 134.065353 151.046772 134.057523 151.027198 C 134.053608 151.003709 134.041864 150.972391 134.034034 150.948902 C 134.026205 150.925413 134.018375 150.89018 134.010546 150.866691 C 134.002716 150.843203 133.990972 150.807969 133.983142 150.780566 C 133.975312 150.757077 133.963568 150.717929 133.955739 150.690526 C 133.947909 150.667037 133.936165 150.623974 133.928335 150.596571 C 133.916591 150.569167 133.904846 150.526105 133.897017 150.494786 C 133.885272 150.467383 133.873528 150.420405 133.861784 150.389087 C 133.853954 150.361683 133.838295 150.310791 133.830465 150.279473 C 133.818721 150.248155 133.803062 150.193348 133.795232 150.162029 C 133.783488 150.126796 133.767829 150.071989 133.756084 150.036756 C 133.74434 150.001523 133.728681 149.942801 133.716936 149.907568 C 133.705192 149.86842 133.685618 149.805783 133.673874 149.766635 C 133.662129 149.727488 133.642555 149.664851 133.630811 149.621788 C 133.619067 149.58264 133.595578 149.512174 133.583834 149.469111 C 133.572089 149.426049 133.5486 149.351668 133.536856 149.308605 C 133.521197 149.261628 133.497708 149.187247 133.482049 149.136354 C 133.470305 149.089377 133.446816 149.007166 133.431157 148.956274 C 133.415498 148.905382 133.388094 148.823171 133.372435 148.768364 C 133.356776 148.713557 133.329372 148.627432 133.313713 148.56871 C 133.298054 148.509988 133.266736 148.419948 133.251076 148.357311 C 133.231502 148.298589 133.204099 148.20072 133.184525 148.138083 C 133.164951 148.075446 133.133633 147.969747 133.114059 147.903196 C 133.094485 147.836644 133.063167 147.72703 133.043593 147.656564 C 133.024019 147.590013 132.988786 147.472569 132.965297 147.398188 C 132.945723 147.323807 132.91049 147.202448 132.887001 147.128067 C 132.863512 147.049772 132.828279 146.920584 132.800876 146.838373 C 132.777387 146.756162 132.738239 146.62306 132.71475 146.536934 C 132.691262 146.450809 132.648199 146.309876 132.620795 146.219836 C 132.597307 146.129796 132.554244 145.981034 132.52684 145.883164 C 132.499437 145.789209 132.452459 145.632618 132.425056 145.530833 C 132.393738 145.432964 132.34676 145.264628 132.319357 145.158928 C 132.288038 145.053229 132.237146 144.880978 132.205828 144.771364 C 132.174509 144.657835 132.123617 144.477755 132.092299 144.360311 C 132.057066 144.242868 132.002259 144.051043 131.97094 143.92577 C 131.935707 143.804411 131.876985 143.600842 131.841752 143.471654 C 131.806519 143.342466 131.747797 143.131067 131.708649 142.99405 C 131.673416 142.860947 131.61078 142.637804 131.571632 142.492957 C 131.532484 142.352024 131.469847 142.117137 131.426785 141.96446 C 131.387637 141.815698 131.321085 141.569066 131.278023 141.412475 C 131.23496 141.251968 131.164494 140.993592 131.121431 140.829171 C 131.078368 140.660835 131.003987 140.390715 130.95701 140.214549 C 130.913947 140.042298 130.839566 139.756519 130.788674 139.572524 C 130.741696 139.388529 130.663401 139.091005 130.616423 138.89918 C 130.565531 138.707355 130.48332 138.390257 130.432428 138.190603 C 130.381536 137.987034 130.299325 137.658192 130.244518 137.446793 C 130.193626 137.235394 130.1075 136.886978 130.052693 136.663835 C 129.997886 136.444607 129.907846 136.080532 129.849124 135.845644 C 129.794317 135.614672 129.704277 135.231022 129.645555 134.988305 C 129.586833 134.745588 129.492879 134.34628 129.434157 134.091818 C 129.37152 133.833442 129.27365 133.41456 129.214928 133.148354 C 129.152292 132.882149 129.054422 132.439777 128.991785 132.161827 C 128.929149 131.879962 128.827364 131.421932 128.764728 131.128323 C 128.698176 130.834714 128.596392 130.353195 128.52984 130.043926 C 128.467204 129.738573 128.361504 129.233565 128.294953 128.912552 C 128.228402 128.591539 128.122702 128.066958 128.056151 127.730286 C 127.993514 127.393614 127.8839 126.841628 127.817349 126.489297 C 127.750797 126.140881 127.645098 125.561492 127.578546 125.197417 C 127.511995 124.829427 127.402381 124.226549 127.339744 123.8429 C 127.273193 123.45925 127.167494 122.828969 127.100942 122.429661 C 127.034391 122.030352 126.932606 121.372668 126.866055 120.953785 C 126.803418 120.534903 126.701634 119.849814 126.638997 119.411358 C 126.580275 118.972902 126.482405 118.26041 126.423684 117.80238 C 126.364962 117.348264 126.271007 116.600539 126.2162 116.122935 C 126.161393 115.649245 126.075267 114.870202 126.024375 114.373024 C 125.973483 113.875846 125.895187 113.065484 125.852124 112.544817 C 125.805147 112.028065 125.738595 111.182471 125.699448 110.64223 C 125.664214 110.101989 125.605493 109.217246 125.578089 108.653517 C 125.546771 108.089787 125.507623 107.169811 125.488049 106.582593 C 125.468475 105.995375 125.441071 105.032336 125.433242 104.421629 C 125.425412 103.807007 125.425412 102.804821 125.429327 102.162796 C 125.437157 101.524685 125.456731 100.479436 125.480219 99.810007 C 125.503708 99.144493 125.550686 98.048352 125.593748 97.351519 C 125.632896 96.654687 125.715107 95.511568 125.781658 94.783418 C 125.844295 94.051352 125.965653 92.857341 126.055693 92.093957 C 126.141819 91.330573 126.30624 90.077841 126.427598 89.279224 C 126.548957 88.476692 126.76427 87.165237 126.920862 86.323557 C 127.073539 85.485793 127.351489 84.103872 127.547228 83.219129 C 127.742968 82.338302 128.087469 80.882 128.330186 79.95028 C 128.572903 79.01856 128.9957 77.483963 129.293224 76.497436 C 129.590748 75.510909 130.1075 73.886271 130.467661 72.841023 C 130.827822 71.791859 131.454188 70.065437 131.884815 68.949722 C 132.319357 67.834007 133.070996 65.994056 133.587748 64.800045 C 134.108415 63.606034 135.004902 61.629066 135.619524 60.345015 C 136.238061 59.060964 137.306798 56.931318 138.038864 55.545483 C 138.774844 54.155732 140.039321 51.846007 140.908405 50.338813 C 141.781403 48.827704 143.280767 46.310494 144.310357 44.654538 C 145.339946 42.998583 148.33476 38.406534 148.33476 38.406534 " transform="matrix(0.997819,0,0,-0.997819,12.133339,363.186038)"/> +</g> +<path style="fill:none;stroke-width:0.79701;stroke-linecap:butt;stroke-linejoin:miter;stroke:rgb(0%,65.098572%,83.921814%);stroke-opacity:1;stroke-miterlimit:10;" d="M 126.349303 89.197013 L 126.036119 92.274037 " transform="matrix(0.997819,0,0,-0.997819,12.133339,363.186038)"/> +<path style="fill-rule:nonzero;fill:rgb(0%,65.098572%,83.921814%);fill-opacity:1;stroke-width:0.79701;stroke-linecap:butt;stroke-linejoin:miter;stroke:rgb(0%,65.098572%,83.921814%);stroke-opacity:1;stroke-miterlimit:10;" d="M 7.369587 0.000244337 L 1.286945 2.292096 L 3.292505 -0.00172522 L 1.288385 -2.292574 Z M 7.369587 0.000244337 " transform="matrix(-0.101079,-0.99264,-0.99264,0.101079,138.206091,274.182509)"/> +<g clip-path="url(#clip34)" clip-rule="nonzero"> +<path style="fill:none;stroke-width:0.79701;stroke-linecap:butt;stroke-linejoin:miter;stroke:rgb(0%,65.098572%,83.921814%);stroke-opacity:1;stroke-miterlimit:10;" d="M 125.527197 152.424778 C 125.527197 152.420863 125.523282 152.420863 125.523282 152.420863 C 125.523282 152.420863 125.523282 152.416948 125.523282 152.416948 C 125.523282 152.413033 125.523282 152.413033 125.523282 152.413033 C 125.519367 152.413033 125.519367 152.413033 125.519367 152.413033 C 125.519367 152.413033 125.519367 152.409118 125.519367 152.409118 C 125.519367 152.409118 125.519367 152.405204 125.519367 152.405204 C 125.519367 152.405204 125.515452 152.401289 125.515452 152.401289 C 125.515452 152.401289 125.515452 152.397374 125.515452 152.397374 C 125.515452 152.397374 125.515452 152.393459 125.515452 152.393459 C 125.515452 152.393459 125.515452 152.393459 125.511538 152.393459 C 125.511538 152.393459 125.511538 152.389544 125.511538 152.389544 C 125.511538 152.389544 125.511538 152.389544 125.511538 152.38563 C 125.511538 152.38563 125.511538 152.381715 125.507623 152.381715 C 125.507623 152.381715 125.507623 152.3778 125.507623 152.3778 C 125.507623 152.3778 125.507623 152.3778 125.507623 152.373885 C 125.503708 152.373885 125.503708 152.36997 125.503708 152.36997 C 125.503708 152.36997 125.503708 152.36997 125.503708 152.366056 C 125.503708 152.366056 125.503708 152.366056 125.503708 152.362141 C 125.503708 152.362141 125.499793 152.362141 125.499793 152.362141 C 125.499793 152.358226 125.499793 152.358226 125.499793 152.358226 C 125.499793 152.354311 125.499793 152.354311 125.499793 152.354311 C 125.495879 152.354311 125.495879 152.350397 125.495879 152.350397 C 125.495879 152.350397 125.495879 152.346482 125.495879 152.346482 C 125.495879 152.342567 125.491964 152.342567 125.491964 152.342567 C 125.491964 152.338652 125.491964 152.338652 125.491964 152.334737 C 125.491964 152.334737 125.488049 152.334737 125.488049 152.330823 C 125.488049 152.330823 125.488049 152.326908 125.488049 152.326908 C 125.488049 152.326908 125.484134 152.322993 125.484134 152.322993 C 125.484134 152.319078 125.484134 152.315163 125.484134 152.315163 C 125.484134 152.315163 125.480219 152.311249 125.480219 152.311249 C 125.480219 152.307334 125.480219 152.303419 125.476305 152.303419 C 125.476305 152.299504 125.476305 152.299504 125.476305 152.295589 C 125.476305 152.295589 125.47239 152.291675 125.47239 152.28776 C 125.47239 152.28776 125.47239 152.283845 125.468475 152.27993 C 125.468475 152.27993 125.468475 152.276016 125.468475 152.272101 C 125.46456 152.272101 125.46456 152.268186 125.46456 152.264271 C 125.46456 152.264271 125.460645 152.260356 125.460645 152.256442 C 125.460645 152.252527 125.456731 152.248612 125.456731 152.248612 C 125.456731 152.244697 125.452816 152.240782 125.452816 152.236868 C 125.452816 152.236868 125.448901 152.229038 125.448901 152.229038 C 125.448901 152.225123 125.444986 152.221208 125.444986 152.217294 C 125.444986 152.213379 125.441071 152.209464 125.441071 152.205549 C 125.437157 152.201635 125.437157 152.19772 125.433242 152.193805 C 125.433242 152.18989 125.433242 152.182061 125.429327 152.182061 C 125.429327 152.178146 125.425412 152.170316 125.425412 152.166401 C 125.421498 152.162487 125.421498 152.158572 125.417583 152.150742 C 125.417583 152.146827 125.413668 152.142913 125.413668 152.138998 C 125.409753 152.135083 125.409753 152.127254 125.405838 152.123339 C 125.405838 152.115509 125.401924 152.111594 125.401924 152.103765 C 125.398009 152.09985 125.394094 152.09202 125.394094 152.088106 C 125.390179 152.084191 125.390179 152.072446 125.386264 152.068532 C 125.38235 152.064617 125.38235 152.052873 125.378435 152.048958 C 125.37452 152.045043 125.37452 152.033299 125.370605 152.029384 C 125.36669 152.021554 125.362776 152.013725 125.362776 152.005895 C 125.358861 152.00198 125.354946 151.990236 125.351031 151.982406 C 125.351031 151.978492 125.347117 151.966747 125.343202 151.958918 C 125.339287 151.951088 125.335372 151.939344 125.331457 151.935429 C 125.331457 151.927599 125.327543 151.915855 125.323628 151.908025 C 125.319713 151.900196 125.315798 151.884537 125.311883 151.876707 C 125.307969 151.868877 125.304054 151.857133 125.300139 151.849303 C 125.296224 151.837559 125.292309 151.825815 125.288395 151.81407 C 125.28448 151.806241 125.27665 151.790582 125.272736 151.782752 C 125.268821 151.771008 125.264906 151.755349 125.260991 151.747519 C 125.257076 151.735775 125.249247 151.720115 125.245332 151.708371 C 125.241417 151.700541 125.233588 151.680968 125.229673 151.669223 C 125.225758 151.657479 125.217928 151.64182 125.214014 151.630075 C 125.210099 151.618331 125.202269 151.598757 125.198355 151.583098 C 125.190525 151.571353 125.182695 151.551779 125.178781 151.540035 C 125.174866 151.524376 125.163121 151.504802 125.159207 151.489143 C 125.155292 151.473484 125.143547 151.45391 125.139633 151.438251 C 125.131803 151.422591 125.123974 151.399103 125.120059 151.383444 C 125.112229 151.367784 125.100485 151.344296 125.09657 151.324722 C 125.08874 151.309063 125.080911 151.281659 125.073081 151.266 C 125.065252 151.250341 125.053507 151.219022 125.045678 151.203363 C 125.041763 151.183789 125.030019 151.152471 125.022189 151.132897 C 125.014359 151.117238 125.002615 151.08592 124.994785 151.062431 C 124.986956 151.042857 124.971297 151.011539 124.963467 150.98805 C 124.955638 150.968476 124.943893 150.933243 124.932149 150.909754 C 124.924319 150.886265 124.90866 150.851032 124.900831 150.827543 C 124.893001 150.804055 124.877342 150.764907 124.865597 150.737503 C 124.857768 150.714015 124.842109 150.674867 124.830364 150.647463 C 124.822535 150.62006 124.802961 150.576997 124.795131 150.549593 C 124.783387 150.52219 124.763813 150.475212 124.752069 150.447809 C 124.740324 150.416491 124.724665 150.369513 124.712921 150.338195 C 124.701176 150.306876 124.681602 150.255984 124.665943 150.224666 C 124.654199 150.193348 124.634625 150.13854 124.618966 150.103307 C 124.607221 150.068074 124.583733 150.013267 124.571988 149.978034 C 124.556329 149.938886 124.53284 149.880164 124.521096 149.841016 C 124.505437 149.805783 124.481948 149.743147 124.466289 149.700084 C 124.45063 149.660936 124.423226 149.594385 124.407567 149.555237 C 124.391908 149.512174 124.364504 149.441708 124.348845 149.398645 C 124.329271 149.351668 124.301868 149.277287 124.282294 149.230309 C 124.266635 149.183332 124.235316 149.108951 124.215742 149.058059 C 124.200083 149.007166 124.168765 148.928871 124.145276 148.874064 C 124.125702 148.823171 124.094384 148.737046 124.07481 148.682239 C 124.051321 148.627432 124.016088 148.537392 123.996514 148.47867 C 123.973025 148.419948 123.937792 148.325993 123.914304 148.267271 C 123.890815 148.204635 123.851667 148.10285 123.828178 148.040213 C 123.804689 147.977577 123.761627 147.871877 123.738138 147.801411 C 123.710735 147.73486 123.667672 147.625246 123.640268 147.554779 C 123.61678 147.484313 123.569802 147.36687 123.542399 147.292489 C 123.514995 147.218108 123.468018 147.092834 123.436699 147.014539 C 123.409296 146.936243 123.358403 146.807055 123.327085 146.724844 C 123.295767 146.642634 123.244875 146.505616 123.213556 146.419491 C 123.178323 146.32945 123.123516 146.188518 123.092198 146.094563 C 123.056965 146.004523 122.998243 145.855761 122.96301 145.757891 C 122.927777 145.660021 122.869055 145.50343 122.829907 145.401645 C 122.790759 145.299861 122.728122 145.13544 122.688974 145.025825 C 122.649827 144.920126 122.58719 144.747875 122.544127 144.634347 C 122.501065 144.520818 122.434513 144.336823 122.39145 144.219379 C 122.348388 144.101935 122.274007 143.91011 122.230944 143.788752 C 122.183967 143.663479 122.109586 143.45991 122.062608 143.330722 C 122.015631 143.201534 121.937335 142.990135 121.886443 142.853117 C 121.83555 142.7161 121.75334 142.492957 121.702448 142.348109 C 121.651555 142.207177 121.56543 141.97229 121.510623 141.823528 C 121.455816 141.670851 121.365776 141.424219 121.310969 141.267628 C 121.252247 141.111036 121.162207 140.85266 121.09957 140.688239 C 121.040848 140.523818 120.942978 140.253697 120.884257 140.081446 C 120.82162 139.905281 120.719835 139.623416 120.657199 139.443336 C 120.590647 139.259341 120.484948 138.961817 120.418397 138.773907 C 120.351845 138.582082 120.242231 138.272814 120.17568 138.073159 C 120.105213 137.873505 119.991685 137.548578 119.917304 137.341094 C 119.846837 137.13361 119.729394 136.789108 119.655013 136.573795 C 119.580632 136.354567 119.455358 135.998321 119.380977 135.771263 C 119.302682 135.544205 119.173494 135.168386 119.095198 134.929583 C 119.012987 134.694696 118.883799 134.303217 118.801589 134.052671 C 118.719378 133.806039 118.58236 133.398901 118.496235 133.13661 C 118.41011 132.878234 118.273092 132.451522 118.183052 132.181401 C 118.096926 131.911281 117.952079 131.464995 117.862039 131.18313 C 117.771999 130.901265 117.623237 130.435405 117.529282 130.141796 C 117.439242 129.844272 117.286565 129.362753 117.19261 129.053484 C 117.09474 128.748131 116.942064 128.243123 116.844194 127.92211 C 116.746324 127.601098 116.589732 127.080431 116.487948 126.743759 C 116.390078 126.411002 116.229572 125.866846 116.127787 125.51843 C 116.026003 125.170013 115.865496 124.602369 115.763712 124.242208 C 115.661927 123.882048 115.497506 123.290914 115.391807 122.915095 C 115.290022 122.54319 115.121686 121.928568 115.019902 121.537089 C 114.918117 121.149525 114.749781 120.511414 114.647997 120.108191 C 114.542298 119.704967 114.377876 119.043368 114.276092 118.624485 C 114.170393 118.201688 114.005971 117.5166 113.904187 117.082058 C 113.802402 116.647517 113.641896 115.93894 113.540111 115.484824 C 113.442242 115.034623 113.28565 114.298643 113.18778 113.832783 C 113.089911 113.363008 112.937234 112.603539 112.847194 112.118105 C 112.753239 111.636586 112.608392 110.845799 112.522266 110.344706 C 112.432226 109.843613 112.295208 109.029336 112.216913 108.508669 C 112.134702 107.991917 112.009429 107.146323 111.938963 106.609996 C 111.864582 106.07367 111.754967 105.200672 111.692331 104.644772 C 111.625779 104.088872 111.535739 103.184556 111.480932 102.612996 C 111.43004 102.037522 111.359574 101.101888 111.320426 100.50684 C 111.285193 99.911792 111.2343 98.940924 111.214727 98.326302 C 111.195153 97.707765 111.175579 96.705579 111.175579 96.067468 C 111.171664 95.425443 111.187323 94.384109 111.210812 93.718595 C 111.2343 93.056995 111.289108 91.972599 111.336085 91.283596 C 111.386977 90.590678 111.488762 89.463219 111.570972 88.742897 C 111.653183 88.022576 111.80586 86.844224 111.927218 86.092585 C 112.044662 85.340945 112.26389 84.107787 112.428311 83.316999 C 112.588818 82.526212 112.882427 81.230416 113.09774 80.400481 C 113.313054 79.566631 113.692788 78.200369 113.966824 77.319542 C 114.240859 76.434799 114.722378 74.986327 115.066879 74.046778 C 115.411381 73.107228 116.014258 71.556972 116.44097 70.550871 C 116.867683 69.54477 117.615407 67.880984 118.136074 66.796588 C 118.660656 65.708276 119.572802 63.907473 120.214828 62.721292 C 120.852938 61.539025 121.964738 59.569886 122.743782 58.270176 C 123.51891 56.970466 124.869512 54.801673 125.809062 53.36103 C 126.752526 51.920388 128.384993 49.501048 129.524197 47.88424 C 130.663401 46.271347 132.640369 43.550568 134.02229 41.722361 C 135.400296 39.89024 137.796147 36.797556 139.467762 34.703144 C 141.139377 32.608731 146.075927 26.619103 146.075927 26.619103 " transform="matrix(0.997819,0,0,-0.997819,12.133339,363.186038)"/> +</g> +<path style="fill:none;stroke-width:0.79701;stroke-linecap:butt;stroke-linejoin:miter;stroke:rgb(0%,65.098572%,83.921814%);stroke-opacity:1;stroke-miterlimit:10;" d="M 112.761068 81.461389 L 112.212998 84.50318 " transform="matrix(0.997819,0,0,-0.997819,12.133339,363.186038)"/> +<path style="fill-rule:nonzero;fill:rgb(0%,65.098572%,83.921814%);fill-opacity:1;stroke-width:0.79701;stroke-linecap:butt;stroke-linejoin:miter;stroke:rgb(0%,65.098572%,83.921814%);stroke-opacity:1;stroke-miterlimit:10;" d="M 7.368751 -0.000336353 L 1.28671 2.295164 L 3.291089 -0.000131788 L 1.285389 -2.295489 Z M 7.368751 -0.000336353 " transform="matrix(-0.177272,-0.981903,-0.981903,0.177272,124.649696,281.90343)"/> +<g clip-path="url(#clip35)" clip-rule="nonzero"> +<path style="fill:none;stroke-width:0.79701;stroke-linecap:butt;stroke-linejoin:miter;stroke:rgb(0%,65.098572%,83.921814%);stroke-opacity:1;stroke-miterlimit:10;" d="M 116.558414 152.424778 C 116.558414 152.420863 116.558414 152.420863 116.558414 152.420863 C 116.558414 152.420863 116.558414 152.416948 116.558414 152.416948 C 116.554499 152.416948 116.554499 152.416948 116.554499 152.416948 C 116.554499 152.416948 116.554499 152.416948 116.554499 152.413033 C 116.554499 152.413033 116.554499 152.409118 116.554499 152.409118 C 116.550585 152.409118 116.550585 152.409118 116.550585 152.409118 C 116.550585 152.409118 116.550585 152.405204 116.550585 152.405204 C 116.550585 152.401289 116.550585 152.401289 116.550585 152.401289 C 116.54667 152.401289 116.54667 152.401289 116.54667 152.401289 C 116.54667 152.401289 116.54667 152.397374 116.54667 152.397374 C 116.54667 152.393459 116.54667 152.393459 116.542755 152.393459 C 116.542755 152.393459 116.542755 152.389544 116.542755 152.389544 C 116.542755 152.389544 116.542755 152.38563 116.542755 152.38563 C 116.53884 152.38563 116.53884 152.38563 116.53884 152.38563 C 116.53884 152.38563 116.53884 152.381715 116.53884 152.381715 C 116.53884 152.3778 116.534925 152.3778 116.534925 152.3778 C 116.534925 152.3778 116.534925 152.3778 116.534925 152.373885 C 116.534925 152.36997 116.531011 152.36997 116.531011 152.36997 C 116.531011 152.36997 116.531011 152.366056 116.531011 152.366056 C 116.531011 152.366056 116.531011 152.366056 116.531011 152.362141 C 116.527096 152.362141 116.527096 152.362141 116.527096 152.362141 C 116.527096 152.358226 116.527096 152.358226 116.527096 152.358226 C 116.527096 152.354311 116.523181 152.354311 116.523181 152.354311 C 116.523181 152.350397 116.523181 152.350397 116.523181 152.350397 C 116.523181 152.346482 116.519266 152.346482 116.519266 152.346482 C 116.519266 152.342567 116.519266 152.342567 116.519266 152.338652 C 116.515351 152.338652 116.515351 152.338652 116.515351 152.334737 C 116.515351 152.334737 116.515351 152.330823 116.511437 152.330823 C 116.511437 152.330823 116.511437 152.326908 116.511437 152.326908 C 116.511437 152.322993 116.507522 152.322993 116.507522 152.319078 C 116.507522 152.319078 116.507522 152.315163 116.503607 152.315163 C 116.503607 152.311249 116.503607 152.311249 116.503607 152.307334 C 116.499692 152.307334 116.499692 152.303419 116.499692 152.303419 C 116.499692 152.299504 116.495778 152.295589 116.495778 152.295589 C 116.495778 152.291675 116.491863 152.291675 116.491863 152.28776 C 116.491863 152.28776 116.487948 152.283845 116.487948 152.27993 C 116.487948 152.27993 116.484033 152.276016 116.484033 152.272101 C 116.484033 152.272101 116.480118 152.268186 116.480118 152.264271 C 116.480118 152.260356 116.476204 152.256442 116.476204 152.256442 C 116.472289 152.252527 116.472289 152.248612 116.472289 152.244697 C 116.468374 152.244697 116.468374 152.240782 116.464459 152.236868 C 116.464459 152.232953 116.460544 152.229038 116.460544 152.225123 C 116.460544 152.225123 116.45663 152.217294 116.45663 152.213379 C 116.452715 152.213379 116.452715 152.205549 116.4488 152.205549 C 116.4488 152.201635 116.444885 152.193805 116.444885 152.18989 C 116.44097 152.18989 116.437056 152.182061 116.437056 152.178146 C 116.433141 152.174231 116.433141 152.170316 116.429226 152.166401 C 116.429226 152.162487 116.425311 152.154657 116.421397 152.150742 C 116.421397 152.146827 116.417482 152.138998 116.413567 152.135083 C 116.413567 152.131168 116.409652 152.123339 116.405737 152.119424 C 116.405737 152.115509 116.401823 152.10768 116.397908 152.103765 C 116.397908 152.09985 116.393993 152.09202 116.390078 152.084191 C 116.386163 152.080276 116.382249 152.072446 116.382249 152.064617 C 116.378334 152.060702 116.374419 152.052873 116.370504 152.045043 C 116.366589 152.041128 116.362675 152.033299 116.35876 152.025469 C 116.35876 152.021554 116.35093 152.00981 116.35093 152.00198 C 116.347016 151.998065 116.339186 151.986321 116.339186 151.982406 C 116.335271 151.974577 116.327442 151.962832 116.327442 151.955003 C 116.323527 151.947173 116.315697 151.939344 116.311782 151.931514 C 116.307868 151.923684 116.303953 151.91194 116.300038 151.904111 C 116.296123 151.896281 116.288294 151.880622 116.284379 151.872792 C 116.280464 151.864963 116.272635 151.853218 116.26872 151.845389 C 116.264805 151.833644 116.256975 151.8219 116.253061 151.810156 C 116.249146 151.802326 116.241316 151.786667 116.237401 151.778837 C 116.233487 151.767093 116.225657 151.751434 116.217827 151.743604 C 116.213913 151.73186 116.206083 151.716201 116.198254 151.704456 C 116.194339 151.692712 116.186509 151.677053 116.17868 151.665308 C 116.174765 151.653564 116.166935 151.63399 116.159106 151.622246 C 116.155191 151.610501 116.143446 151.590927 116.135617 151.579183 C 116.131702 151.567439 116.119958 151.547865 116.112128 151.532206 C 116.108213 151.520461 116.096469 151.496972 116.088639 151.485228 C 116.08081 151.469569 116.069065 151.44608 116.065151 151.430421 C 116.057321 151.418677 116.045577 151.391273 116.037747 151.379529 C 116.029918 151.36387 116.014258 151.336466 116.006429 151.320807 C 115.998599 151.305148 115.986855 151.277744 115.979025 151.25817 C 115.967281 151.242511 115.955537 151.215108 115.943792 151.195534 C 115.935963 151.17596 115.920303 151.148556 115.912474 151.128982 C 115.90073 151.109408 115.88507 151.07809 115.877241 151.058516 C 115.865496 151.035027 115.849837 151.003709 115.838093 150.98022 C 115.826349 150.960646 115.810689 150.925413 115.798945 150.901924 C 115.787201 150.88235 115.767627 150.843203 115.755882 150.819714 C 115.744138 150.796225 115.724564 150.757077 115.71282 150.733588 C 115.701075 150.706185 115.681501 150.667037 115.665842 150.639634 C 115.654098 150.61223 115.630609 150.569167 115.618865 150.541764 C 115.603206 150.51436 115.583632 150.467383 115.567972 150.439979 C 115.552313 150.408661 115.528825 150.361683 115.513165 150.330365 C 115.497506 150.299047 115.474017 150.248155 115.454444 150.216836 C 115.438784 150.185518 115.411381 150.130711 115.395722 150.095478 C 115.380063 150.060245 115.348744 150.005438 115.333085 149.970205 C 115.313511 149.934971 115.286108 149.872335 115.266534 149.837102 C 115.24696 149.797954 115.215641 149.735317 115.196067 149.696169 C 115.176493 149.657021 115.14126 149.59047 115.121686 149.547407 C 115.102112 149.504345 115.066879 149.437793 115.043391 149.390816 C 115.019902 149.347753 114.984669 149.273372 114.96118 149.226395 C 114.937691 149.179417 114.898543 149.105036 114.875055 149.054144 C 114.851566 149.007166 114.808503 148.924956 114.785015 148.874064 C 114.757611 148.819256 114.714548 148.737046 114.687145 148.682239 C 114.659741 148.627432 114.616679 148.537392 114.589275 148.47867 C 114.557957 148.423863 114.510979 148.329908 114.479661 148.267271 C 114.452257 148.208549 114.401365 148.106765 114.370047 148.044128 C 114.338729 147.981492 114.287836 147.875792 114.252603 147.809241 C 114.21737 147.742689 114.162563 147.633075 114.12733 147.562609 C 114.096012 147.492143 114.03729 147.378614 113.998142 147.304233 C 113.962909 147.229852 113.900272 147.108493 113.865039 147.030198 C 113.825891 146.951902 113.75934 146.826629 113.720192 146.744418 C 113.681044 146.662207 113.610578 146.529105 113.567515 146.442979 C 113.528367 146.356854 113.457901 146.215921 113.410923 146.125881 C 113.367861 146.035841 113.29348 145.890994 113.246502 145.797039 C 113.199525 145.699169 113.121229 145.546492 113.070337 145.448623 C 113.019444 145.346838 112.941149 145.186332 112.886342 145.080633 C 112.835449 144.974933 112.749324 144.806597 112.694517 144.696983 C 112.63971 144.587369 112.553585 144.407289 112.494863 144.29376 C 112.436141 144.180231 112.342186 143.992321 112.283464 143.870963 C 112.224742 143.753519 112.122958 143.553865 112.060321 143.428591 C 111.997684 143.303318 111.8959 143.095834 111.829348 142.966646 C 111.762797 142.833543 111.657098 142.61823 111.586632 142.477298 C 111.52008 142.34028 111.406551 142.113222 111.33217 141.97229 C 111.261704 141.827442 111.140346 141.58864 111.065965 141.439878 C 110.991584 141.287202 110.86631 141.04057 110.788014 140.880063 C 110.709719 140.723472 110.580531 140.465096 110.49832 140.300675 C 110.416109 140.136253 110.279092 139.862218 110.192966 139.689967 C 110.106841 139.517717 109.965909 139.235852 109.875869 139.055772 C 109.785828 138.875691 109.637066 138.582082 109.543111 138.394172 C 109.449157 138.206262 109.29648 137.896994 109.19861 137.701254 C 109.10074 137.505515 108.940234 137.184502 108.838449 136.980933 C 108.736665 136.777364 108.568329 136.444607 108.46263 136.229294 C 108.35693 136.017895 108.180765 135.669479 108.071151 135.45025 C 107.961537 135.227107 107.781456 134.866947 107.664013 134.635974 C 107.550484 134.405002 107.362574 134.029182 107.24513 133.79038 C 107.123772 133.551578 106.928032 133.164013 106.802759 132.913467 C 106.6814 132.666835 106.477831 132.259697 106.348643 132.005236 C 106.219455 131.74686 106.011971 131.327977 105.878869 131.061771 C 105.745766 130.795566 105.526537 130.361024 105.38952 130.083074 C 105.252502 129.809039 105.025444 129.358838 104.884512 129.073058 C 104.74358 128.787279 104.508692 128.325334 104.363845 128.031724 C 104.215083 127.7342 103.976281 127.256596 103.823604 126.951243 C 103.670927 126.649804 103.424296 126.15654 103.267704 125.843357 C 103.111112 125.530174 102.856651 125.021251 102.696145 124.700239 C 102.535638 124.379226 102.273347 123.854644 102.108926 123.525802 C 101.944505 123.193045 101.674385 122.656718 101.506049 122.320047 C 101.337713 121.97946 101.063677 121.431389 100.887512 121.082973 C 100.715261 120.734557 100.433396 120.170827 100.257231 119.818496 C 100.081065 119.46225 99.791371 118.886776 99.611291 118.526616 C 99.43121 118.16254 99.137601 117.579237 98.953606 117.207332 C 98.769611 116.839341 98.468172 116.244293 98.280262 115.868474 C 98.096267 115.492654 97.790913 114.889776 97.603004 114.506127 C 97.411179 114.126392 97.105825 113.51177 96.910086 113.128121 C 96.718261 112.744472 96.408993 112.12202 96.213253 111.734456 C 96.021429 111.342977 95.708245 110.716611 95.512506 110.325132 C 95.312852 109.933653 94.999669 109.303372 94.803929 108.911893 C 94.604275 108.516499 94.291092 107.882303 94.091437 107.490824 C 93.895698 107.09543 93.5786 106.461234 93.382861 106.065841 C 93.183206 105.674362 92.866108 105.040166 92.670369 104.648687 C 92.474629 104.253293 92.161446 103.626927 91.965707 103.235448 C 91.769967 102.843969 91.456784 102.221517 91.264959 101.837868 C 91.073135 101.450304 90.763866 100.835682 90.575957 100.452033 C 90.384132 100.072298 90.078778 99.465506 89.894783 99.089686 C 89.706873 98.717781 89.409349 98.122733 89.225354 97.754743 C 89.041359 97.390667 88.751665 96.807364 88.571584 96.451118 C 88.395419 96.094872 88.113554 95.527228 87.937388 95.182726 C 87.765138 94.83431 87.491102 94.290154 87.326681 93.953482 C 87.158345 93.620725 86.89214 93.092228 86.731633 92.771216 C 86.571127 92.450203 86.32058 91.945195 86.163989 91.635927 C 86.011312 91.326658 85.77251 90.845139 85.623748 90.555445 C 85.478901 90.261836 85.247928 89.803805 85.11091 89.525855 C 84.973893 89.25182 84.758579 88.821193 84.629391 88.558902 C 84.496288 88.300526 84.296634 87.897303 84.175276 87.654586 C 84.053917 87.411869 83.866007 87.036049 83.752478 86.808991 C 83.63895 86.585848 83.466699 86.237432 83.364914 86.029948 C 83.259215 85.822464 83.098709 85.505366 83.004754 85.317457 C 82.910799 85.125632 82.765952 84.835938 82.679826 84.663687 C 82.593701 84.491436 82.464513 84.23306 82.386217 84.076468 C 82.307921 83.923792 82.190477 83.688904 82.123926 83.551887 C 82.05346 83.410954 81.951675 83.20347 81.889039 83.082112 C 81.830317 82.960753 81.736362 82.780673 81.68547 82.674974 C 81.630663 82.56536 81.552367 82.408768 81.505389 82.314813 C 81.458412 82.224773 81.39186 82.087755 81.352713 82.00946 C 81.313565 81.931164 81.254843 81.81372 81.223524 81.747169 C 81.188291 81.680617 81.141314 81.582747 81.109996 81.52794 C 81.082592 81.473133 81.043444 81.390923 81.019955 81.34786 C 80.996467 81.300883 80.965148 81.234331 80.945574 81.199098 C 80.926 81.15995 80.902512 81.105143 80.886853 81.07774 C 80.871193 81.046421 80.851619 81.003359 80.83596 80.97987 C 80.824216 80.956381 80.808557 80.925063 80.800727 80.905489 C 80.792898 80.885915 80.777238 80.862426 80.769409 80.846767 C 80.765494 80.835023 80.75375 80.815449 80.749835 80.803704 C 80.742005 80.79196 80.738091 80.780216 80.734176 80.772386 C 80.730261 80.764556 80.722431 80.752812 80.722431 80.744983 C 80.718517 80.741068 80.714602 80.733238 80.710687 80.729323 C 80.710687 80.725409 80.706772 80.721494 80.706772 80.717579 C 80.706772 80.713664 80.702857 80.709749 80.702857 80.709749 C 80.702857 80.705835 80.698943 80.705835 80.698943 80.705835 C 80.698943 80.70192 80.698943 80.70192 80.698943 80.70192 C 80.698943 80.698005 80.695028 80.698005 80.695028 80.698005 " transform="matrix(0.997819,0,0,-0.997819,12.133339,363.186038)"/> +</g> +<path style="fill:none;stroke-width:0.79701;stroke-linecap:butt;stroke-linejoin:miter;stroke:rgb(0%,65.098572%,83.921814%);stroke-opacity:1;stroke-miterlimit:10;" d="M 100.527351 120.362652 L 99.145431 117.59881 " transform="matrix(0.997819,0,0,-0.997819,12.133339,363.186038)"/> +<path style="fill-rule:nonzero;fill:rgb(0%,65.098572%,83.921814%);fill-opacity:1;stroke-width:0.79701;stroke-linecap:butt;stroke-linejoin:miter;stroke:rgb(0%,65.098572%,83.921814%);stroke-opacity:1;stroke-miterlimit:10;" d="M 7.368198 0.0000874869 L 1.287673 2.295975 L 3.288705 0.000434145 L 1.289034 -2.294767 Z M 7.368198 0.0000874869 " transform="matrix(-0.446135,0.892459,0.892459,0.446135,112.443381,243.084303)"/> +<g clip-path="url(#clip36)" clip-rule="nonzero"> +<path style="fill:none;stroke-width:0.79701;stroke-linecap:butt;stroke-linejoin:miter;stroke:rgb(0%,65.098572%,83.921814%);stroke-opacity:1;stroke-miterlimit:10;" d="M 107.593546 152.424778 C 107.593546 152.424778 107.593546 152.420863 107.593546 152.420863 C 107.593546 152.420863 107.589632 152.420863 107.589632 152.420863 C 107.589632 152.420863 107.589632 152.420863 107.589632 152.416948 C 107.589632 152.416948 107.589632 152.416948 107.585717 152.416948 C 107.585717 152.416948 107.585717 152.413033 107.585717 152.413033 C 107.585717 152.413033 107.585717 152.413033 107.585717 152.409118 C 107.585717 152.409118 107.581802 152.409118 107.581802 152.409118 C 107.581802 152.409118 107.581802 152.409118 107.581802 152.405204 C 107.581802 152.405204 107.581802 152.401289 107.577887 152.401289 C 107.577887 152.401289 107.577887 152.401289 107.577887 152.397374 C 107.577887 152.397374 107.573972 152.397374 107.573972 152.397374 C 107.573972 152.397374 107.573972 152.393459 107.573972 152.393459 C 107.573972 152.393459 107.573972 152.393459 107.573972 152.389544 C 107.570058 152.389544 107.570058 152.389544 107.570058 152.389544 C 107.570058 152.38563 107.570058 152.38563 107.570058 152.38563 C 107.570058 152.38563 107.566143 152.38563 107.566143 152.381715 C 107.566143 152.381715 107.566143 152.3778 107.562228 152.3778 C 107.562228 152.373885 107.562228 152.373885 107.562228 152.373885 C 107.558313 152.373885 107.558313 152.36997 107.558313 152.36997 C 107.558313 152.36997 107.558313 152.36997 107.558313 152.366056 C 107.558313 152.366056 107.554398 152.366056 107.554398 152.366056 C 107.554398 152.362141 107.554398 152.362141 107.554398 152.362141 C 107.550484 152.362141 107.550484 152.358226 107.550484 152.358226 C 107.550484 152.358226 107.550484 152.354311 107.546569 152.354311 C 107.546569 152.354311 107.546569 152.350397 107.546569 152.350397 C 107.546569 152.350397 107.542654 152.346482 107.542654 152.346482 C 107.542654 152.346482 107.542654 152.342567 107.538739 152.342567 C 107.538739 152.342567 107.538739 152.338652 107.538739 152.338652 C 107.534824 152.334737 107.534824 152.334737 107.534824 152.334737 C 107.534824 152.330823 107.53091 152.330823 107.53091 152.326908 C 107.53091 152.326908 107.526995 152.322993 107.526995 152.322993 C 107.526995 152.322993 107.52308 152.319078 107.52308 152.315163 C 107.52308 152.315163 107.519165 152.311249 107.519165 152.311249 C 107.519165 152.311249 107.515251 152.307334 107.515251 152.303419 C 107.515251 152.303419 107.511336 152.299504 107.511336 152.299504 C 107.511336 152.295589 107.507421 152.291675 107.507421 152.291675 C 107.507421 152.28776 107.503506 152.28776 107.503506 152.283845 C 107.499591 152.27993 107.499591 152.27993 107.495677 152.276016 C 107.495677 152.272101 107.491762 152.272101 107.491762 152.268186 C 107.491762 152.264271 107.487847 152.260356 107.487847 152.260356 C 107.483932 152.256442 107.483932 152.252527 107.480017 152.248612 C 107.480017 152.248612 107.476103 152.244697 107.472188 152.240782 C 107.472188 152.236868 107.468273 152.232953 107.468273 152.229038 C 107.464358 152.229038 107.464358 152.221208 107.460443 152.221208 C 107.456529 152.217294 107.456529 152.213379 107.452614 152.209464 C 107.452614 152.205549 107.448699 152.201635 107.444784 152.19772 C 107.444784 152.193805 107.44087 152.185975 107.436955 152.182061 C 107.43304 152.182061 107.429125 152.174231 107.429125 152.170316 C 107.42521 152.166401 107.421296 152.158572 107.421296 152.154657 C 107.417381 152.150742 107.413466 152.146827 107.409551 152.142913 C 107.405636 152.138998 107.401722 152.131168 107.397807 152.127254 C 107.397807 152.123339 107.389977 152.115509 107.389977 152.111594 C 107.386062 152.103765 107.382148 152.095935 107.378233 152.09202 C 107.374318 152.088106 107.370403 152.080276 107.366489 152.072446 C 107.362574 152.068532 107.354744 152.060702 107.354744 152.052873 C 107.350829 152.048958 107.343 152.041128 107.339085 152.033299 C 107.33517 152.029384 107.331255 152.017639 107.327341 152.013725 C 107.323426 152.005895 107.315596 151.998065 107.311681 151.990236 C 107.307767 151.982406 107.299937 151.974577 107.296022 151.966747 C 107.292108 151.958918 107.284278 151.947173 107.280363 151.939344 C 107.272534 151.935429 107.264704 151.923684 107.260789 151.915855 C 107.256874 151.908025 107.249045 151.892366 107.241215 151.884537 C 107.2373 151.876707 107.229471 151.864963 107.225556 151.857133 C 107.217727 151.849303 107.209897 151.833644 107.202067 151.825815 C 107.198153 151.817985 107.186408 151.802326 107.182493 151.790582 C 107.174664 151.782752 107.166834 151.767093 107.159005 151.759263 C 107.151175 151.747519 107.143346 151.73186 107.135516 151.720115 C 107.127686 151.712286 107.115942 151.692712 107.108112 151.680968 C 107.104198 151.673138 107.092453 151.653564 107.084624 151.64182 C 107.076794 151.630075 107.061135 151.610501 107.053305 151.598757 C 107.045476 151.587013 107.033731 151.567439 107.025902 151.551779 C 107.018072 151.540035 107.002413 151.520461 106.994584 151.504802 C 106.986754 151.493058 106.971095 151.469569 106.95935 151.45391 C 106.951521 151.442165 106.935862 151.418677 106.928032 151.403017 C 106.916288 151.387358 106.900629 151.36387 106.888884 151.344296 C 106.87714 151.328636 106.861481 151.305148 106.849736 151.285574 C 106.837992 151.269915 106.822333 151.242511 106.810588 151.226852 C 106.798844 151.207278 106.77927 151.179874 106.767526 151.160301 C 106.755781 151.140727 106.736207 151.109408 106.720548 151.089834 C 106.708804 151.07026 106.685315 151.038942 106.673571 151.015453 C 106.657912 150.995879 106.638338 150.960646 106.622679 150.941072 C 106.607019 150.917584 106.583531 150.88235 106.567871 150.858862 C 106.556127 150.835373 106.528724 150.80014 106.513064 150.772736 C 106.497405 150.749248 106.470002 150.7101 106.454343 150.686611 C 106.438683 150.659207 106.41128 150.616145 106.391706 150.588741 C 106.376047 150.565253 106.344728 150.518275 106.325155 150.490872 C 106.305581 150.463468 106.278177 150.416491 106.258603 150.385172 C 106.235114 150.357769 106.203796 150.306876 106.184222 150.275558 C 106.164648 150.24424 106.129415 150.193348 106.105926 150.158114 C 106.086352 150.126796 106.047204 150.071989 106.023716 150.036756 C 106.004142 150.001523 105.964994 149.946716 105.941505 149.907568 C 105.914102 149.872335 105.874954 149.809698 105.851465 149.774465 C 105.824061 149.735317 105.780999 149.668766 105.753595 149.629618 C 105.726192 149.59047 105.683129 149.523919 105.655726 149.480856 C 105.624407 149.437793 105.57743 149.367327 105.550026 149.320349 C 105.518708 149.277287 105.467816 149.202906 105.436497 149.155928 C 105.405179 149.108951 105.354287 149.030655 105.319054 148.983678 C 105.287735 148.932785 105.232928 148.850575 105.197695 148.799683 C 105.162462 148.744875 105.10374 148.65875 105.068507 148.603943 C 105.029359 148.549136 104.970637 148.459096 104.931489 148.404289 C 104.892342 148.345567 104.829705 148.251612 104.786642 148.188975 C 104.747494 148.130254 104.680943 148.028469 104.633965 147.965832 C 104.590903 147.903196 104.520437 147.797496 104.477374 147.730945 C 104.430396 147.664394 104.356015 147.554779 104.309038 147.484313 C 104.26206 147.417762 104.183765 147.300318 104.132872 147.225937 C 104.08198 147.155471 103.99977 147.034112 103.944963 146.955817 C 103.89407 146.877521 103.807945 146.752248 103.753138 146.673952 C 103.694416 146.591741 103.604376 146.458638 103.545654 146.372513 C 103.486932 146.290302 103.392977 146.14937 103.330341 146.063245 C 103.267704 145.973205 103.165919 145.828357 103.103283 145.734402 C 103.036731 145.644362 102.931032 145.491685 102.864481 145.393816 C 102.797929 145.295946 102.6844 145.13544 102.613934 145.033655 C 102.543468 144.935785 102.426024 144.767449 102.351643 144.66175 C 102.273347 144.556051 102.151989 144.379885 102.073693 144.270271 C 101.995397 144.160657 101.866209 143.976662 101.783999 143.863133 C 101.701788 143.745689 101.564771 143.553865 101.478645 143.436421 C 101.388605 143.315062 101.247673 143.115408 101.157632 142.990135 C 101.067592 142.864862 100.914915 142.657378 100.820961 142.524275 C 100.723091 142.395087 100.566499 142.179774 100.468629 142.042756 C 100.366845 141.905738 100.202424 141.682595 100.096724 141.537748 C 99.991025 141.396816 99.818774 141.165843 99.70916 141.017081 C 99.599546 140.868319 99.419466 140.625602 99.302022 140.472925 C 99.188493 140.320249 98.996669 140.065787 98.87531 139.909196 C 98.753952 139.748689 98.554297 139.486398 98.429024 139.321977 C 98.299836 139.157556 98.092352 138.887436 97.959249 138.715185 C 97.826147 138.546849 97.610833 138.264984 97.469901 138.088819 C 97.328968 137.912653 97.101911 137.622959 96.957063 137.442878 C 96.808301 137.258883 96.569499 136.961359 96.416822 136.773449 C 96.264146 136.585539 96.013599 136.280186 95.857007 136.084446 C 95.696501 135.892622 95.43421 135.575524 95.265874 135.375869 C 95.097538 135.176215 94.823503 134.855202 94.651252 134.647719 C 94.475087 134.44415 94.189307 134.115307 94.005312 133.903909 C 93.821317 133.696425 93.523793 133.355838 93.331968 133.144439 C 93.140144 132.929126 92.82696 132.584625 92.627306 132.365396 C 92.427652 132.150083 92.09881 131.797752 91.891326 131.578524 C 91.679927 131.355381 91.33934 130.999135 91.120112 130.775992 C 90.900884 130.552849 90.544638 130.192688 90.313666 129.96563 C 90.086608 129.742487 89.710788 129.378412 89.471986 129.151354 C 89.233184 128.924296 88.841705 128.560221 88.591158 128.333163 C 88.340612 128.106105 87.929559 127.74203 87.667268 127.514972 C 87.404977 127.291829 86.97435 126.931669 86.700315 126.708526 C 86.42628 126.485383 85.976079 126.129137 85.690299 125.909909 C 85.400605 125.69068 84.926915 125.342264 84.625477 125.126951 C 84.324038 124.915552 83.830774 124.574965 83.513676 124.371396 C 83.196578 124.163912 82.675911 123.838985 82.339239 123.643245 C 82.006482 123.451421 81.458412 123.142152 81.106081 122.962072 C 80.75375 122.778077 80.178276 122.492297 79.806371 122.327876 C 79.434466 122.15954 78.823759 121.901164 78.43228 121.756317 C 78.036886 121.607555 77.390946 121.384412 76.972063 121.259139 C 76.557095 121.133865 75.868093 120.94987 75.425721 120.852001 C 74.979435 120.754131 74.24737 120.617113 73.77368 120.550562 C 73.299991 120.487925 72.513118 120.405715 72.004195 120.378311 C 71.495273 120.350907 70.653593 120.339163 70.105522 120.354822 C 69.553537 120.374396 68.645306 120.437033 68.050258 120.507499 C 67.45521 120.577965 66.468683 120.730642 65.818828 120.863745 C 65.172888 120.996848 64.092406 121.259139 63.383829 121.466622 C 62.675252 121.670192 61.489071 122.057756 60.706113 122.351365 C 59.923155 122.641059 58.611701 123.177385 57.738703 123.568864 C 56.869619 123.964258 55.409403 124.672835 54.43462 125.185672 C 53.463752 125.69851 51.823456 126.614571 50.7234 127.26834 C 49.627259 127.926025 47.771649 129.084803 46.522831 129.910823 C 45.274013 130.736844 43.156112 132.193146 41.723299 133.222735 C 40.290486 134.252325 37.855487 136.057043 36.199531 137.333264 C 34.543575 138.609486 31.721012 140.84483 29.787106 142.418576 C 27.8532 143.992321 22.27071 148.686154 22.27071 148.686154 " transform="matrix(0.997819,0,0,-0.997819,12.133339,363.186038)"/> +</g> +<path style="fill:none;stroke-width:0.79701;stroke-linecap:butt;stroke-linejoin:miter;stroke:rgb(0%,65.098572%,83.921814%);stroke-opacity:1;stroke-miterlimit:10;" d="M 71.808456 119.904621 L 68.758835 120.39397 " transform="matrix(0.997819,0,0,-0.997819,12.133339,363.186038)"/> +<path style="fill-rule:nonzero;fill:rgb(0%,65.098572%,83.921814%);fill-opacity:1;stroke-width:0.79701;stroke-linecap:butt;stroke-linejoin:miter;stroke:rgb(0%,65.098572%,83.921814%);stroke-opacity:1;stroke-miterlimit:10;" d="M 7.368826 0.0000220414 L 1.286834 2.295134 L 3.292725 0.000105043 L 1.285602 -2.292646 Z M 7.368826 0.0000220414 " transform="matrix(-0.985166,-0.158104,-0.158104,0.985166,83.786867,243.543928)"/> +<g clip-path="url(#clip37)" clip-rule="nonzero"> +<path style="fill:none;stroke-width:0.79701;stroke-linecap:butt;stroke-linejoin:miter;stroke:rgb(0%,65.098572%,83.921814%);stroke-opacity:1;stroke-miterlimit:10;" d="M 98.628678 152.424778 C 98.628678 152.424778 98.624764 152.424778 98.624764 152.424778 C 98.624764 152.424778 98.624764 152.420863 98.624764 152.420863 C 98.620849 152.416948 98.620849 152.416948 98.620849 152.416948 C 98.620849 152.416948 98.620849 152.413033 98.620849 152.413033 C 98.620849 152.413033 98.616934 152.413033 98.616934 152.413033 C 98.616934 152.409118 98.616934 152.409118 98.616934 152.409118 C 98.616934 152.409118 98.613019 152.409118 98.613019 152.409118 C 98.613019 152.409118 98.613019 152.409118 98.613019 152.405204 C 98.613019 152.405204 98.609104 152.405204 98.609104 152.405204 C 98.609104 152.405204 98.609104 152.405204 98.609104 152.401289 C 98.609104 152.401289 98.60519 152.401289 98.60519 152.401289 C 98.60519 152.401289 98.60519 152.401289 98.60519 152.397374 C 98.60519 152.397374 98.60519 152.397374 98.601275 152.397374 C 98.601275 152.397374 98.601275 152.393459 98.601275 152.393459 C 98.601275 152.393459 98.601275 152.393459 98.59736 152.393459 C 98.59736 152.389544 98.59736 152.389544 98.59736 152.389544 C 98.593445 152.38563 98.593445 152.38563 98.593445 152.38563 C 98.593445 152.381715 98.589531 152.381715 98.589531 152.381715 C 98.589531 152.381715 98.589531 152.381715 98.589531 152.3778 C 98.585616 152.3778 98.585616 152.3778 98.585616 152.3778 C 98.585616 152.3778 98.585616 152.373885 98.581701 152.373885 C 98.581701 152.373885 98.581701 152.373885 98.581701 152.36997 C 98.581701 152.36997 98.577786 152.36997 98.577786 152.36997 C 98.577786 152.366056 98.577786 152.366056 98.577786 152.366056 C 98.573871 152.366056 98.573871 152.362141 98.573871 152.362141 C 98.573871 152.362141 98.569957 152.358226 98.569957 152.358226 C 98.569957 152.358226 98.566042 152.354311 98.566042 152.354311 C 98.566042 152.354311 98.566042 152.350397 98.562127 152.350397 C 98.562127 152.350397 98.562127 152.346482 98.558212 152.346482 C 98.558212 152.346482 98.558212 152.342567 98.554297 152.342567 C 98.554297 152.342567 98.554297 152.338652 98.550383 152.338652 C 98.550383 152.338652 98.550383 152.334737 98.546468 152.334737 C 98.546468 152.330823 98.546468 152.330823 98.542553 152.326908 C 98.542553 152.326908 98.538638 152.322993 98.538638 152.322993 C 98.538638 152.322993 98.534723 152.319078 98.534723 152.319078 C 98.534723 152.315163 98.530809 152.315163 98.530809 152.311249 C 98.526894 152.311249 98.526894 152.307334 98.522979 152.307334 C 98.522979 152.303419 98.519064 152.299504 98.519064 152.299504 C 98.51515 152.295589 98.51515 152.295589 98.511235 152.291675 C 98.511235 152.291675 98.50732 152.28776 98.50732 152.283845 C 98.503405 152.283845 98.49949 152.27993 98.49949 152.276016 C 98.495576 152.276016 98.491661 152.272101 98.491661 152.268186 C 98.487746 152.268186 98.487746 152.264271 98.483831 152.260356 C 98.483831 152.256442 98.479916 152.252527 98.476002 152.252527 C 98.472087 152.248612 98.468172 152.244697 98.468172 152.240782 C 98.464257 152.240782 98.460342 152.232953 98.460342 152.232953 C 98.456428 152.229038 98.452513 152.225123 98.448598 152.221208 C 98.448598 152.217294 98.440769 152.213379 98.440769 152.209464 C 98.436854 152.205549 98.432939 152.201635 98.429024 152.19772 C 98.425109 152.193805 98.421195 152.18989 98.41728 152.185975 C 98.413365 152.182061 98.40945 152.178146 98.405535 152.174231 C 98.401621 152.170316 98.397706 152.162487 98.393791 152.158572 C 98.389876 152.154657 98.385961 152.146827 98.382047 152.142913 C 98.378132 152.138998 98.370302 152.135083 98.366388 152.127254 C 98.362473 152.123339 98.358558 152.115509 98.354643 152.111594 C 98.350728 152.10768 98.342899 152.09985 98.338984 152.095935 C 98.335069 152.09202 98.32724 152.084191 98.323325 152.076361 C 98.31941 152.072446 98.31158 152.064617 98.307666 152.056787 C 98.299836 152.052873 98.292007 152.045043 98.288092 152.037213 C 98.284177 152.033299 98.276347 152.021554 98.268518 152.017639 C 98.264603 152.00981 98.256773 152.00198 98.248944 151.994151 C 98.245029 151.986321 98.233285 151.978492 98.22937 151.970662 C 98.22154 151.962832 98.213711 151.951088 98.205881 151.947173 C 98.201966 151.939344 98.190222 151.927599 98.182392 151.91977 C 98.178478 151.91194 98.166733 151.900196 98.158904 151.892366 C 98.151074 151.884537 98.13933 151.872792 98.1315 151.861048 C 98.123671 151.853218 98.111926 151.841474 98.104097 151.833644 C 98.096267 151.8219 98.084523 151.810156 98.076693 151.798411 C 98.068864 151.790582 98.053204 151.774922 98.045375 151.767093 C 98.037545 151.755349 98.021886 151.739689 98.014056 151.727945 C 98.006227 151.720115 97.990568 151.700541 97.978823 151.692712 C 97.970994 151.680968 97.955335 151.661394 97.94359 151.649649 C 97.935761 151.637905 97.916187 151.622246 97.908357 151.610501 C 97.896613 151.594842 97.877039 151.575268 97.869209 151.563524 C 97.857465 151.551779 97.837891 151.532206 97.826147 151.516546 C 97.814402 151.504802 97.794828 151.481313 97.783084 151.469569 C 97.767425 151.45391 97.747851 151.430421 97.736106 151.414762 C 97.720447 151.399103 97.700873 151.375614 97.685214 151.359955 C 97.669555 151.344296 97.649981 151.320807 97.634322 151.301233 C 97.618663 151.285574 97.595174 151.25817 97.579515 151.242511 C 97.563856 151.222937 97.536452 151.195534 97.520793 151.17596 C 97.505134 151.160301 97.47773 151.128982 97.458156 151.109408 C 97.442497 151.089834 97.415094 151.058516 97.39552 151.038942 C 97.375946 151.019368 97.348542 150.984135 97.328968 150.964561 C 97.309394 150.941072 97.278076 150.905839 97.254587 150.886265 C 97.235013 150.862777 97.203695 150.827543 97.180206 150.804055 C 97.160632 150.780566 97.125399 150.741418 97.101911 150.714015 C 97.078422 150.690526 97.043189 150.647463 97.0197 150.623974 C 96.992296 150.596571 96.953149 150.553508 96.92966 150.526105 C 96.902256 150.498701 96.863108 150.455638 96.835705 150.42432 C 96.808301 150.396917 96.765239 150.349939 96.737835 150.318621 C 96.710432 150.287302 96.663454 150.23641 96.636051 150.205092 C 96.604732 150.173774 96.557755 150.122881 96.526436 150.087648 C 96.495118 150.052415 96.444226 149.997608 96.408993 149.962375 C 96.377674 149.927142 96.322867 149.86842 96.287634 149.833187 C 96.252401 149.794039 96.197594 149.735317 96.158446 149.696169 C 96.123213 149.657021 96.064491 149.594385 96.025343 149.551322 C 95.986196 149.512174 95.923559 149.445623 95.884411 149.40256 C 95.841348 149.359497 95.774797 149.289031 95.731734 149.242054 C 95.688672 149.198991 95.618205 149.12461 95.575143 149.077633 C 95.528165 149.030655 95.457699 148.952359 95.406807 148.901467 C 95.359829 148.850575 95.281533 148.772279 95.234556 148.717472 C 95.183664 148.66658 95.101453 148.580454 95.046646 148.529562 C 94.995754 148.474755 94.909628 148.384715 94.854821 148.325993 C 94.7961 148.271186 94.706059 148.177231 94.647338 148.118509 C 94.588616 148.059787 94.494661 147.961918 94.432024 147.899281 C 94.369387 147.836644 94.267603 147.73486 94.204966 147.668308 C 94.138415 147.601757 94.032716 147.496058 93.966164 147.429506 C 93.895698 147.35904 93.782169 147.249426 93.711703 147.17896 C 93.641237 147.104579 93.519878 146.99105 93.445497 146.916669 C 93.371116 146.842288 93.245843 146.720929 93.163632 146.642634 C 93.085337 146.564338 92.952234 146.439064 92.870023 146.356854 C 92.787813 146.278558 92.64688 146.145455 92.560755 146.05933 C 92.470715 145.977119 92.325867 145.840102 92.231912 145.753976 C 92.137958 145.663936 91.985281 145.523004 91.887411 145.432964 C 91.789541 145.339009 91.629035 145.194161 91.52725 145.096292 C 91.421551 145.002337 91.253215 144.84966 91.143601 144.75179 C 91.033987 144.65392 90.857821 144.493414 90.740378 144.395544 C 90.626849 144.29376 90.438939 144.125424 90.31758 144.023639 C 90.200137 143.91794 90.000482 143.745689 89.875209 143.63999 C 89.746021 143.530376 89.538537 143.35421 89.405434 143.244596 C 89.272332 143.131067 89.053103 142.950987 88.912171 142.833543 C 88.771239 142.720014 88.540266 142.532105 88.395419 142.414661 C 88.246657 142.297217 88.00394 142.105393 87.847348 141.984034 C 87.690757 141.862676 87.436295 141.666936 87.271874 141.541663 C 87.111368 141.420304 86.841247 141.216735 86.668997 141.091462 C 86.496746 140.966189 86.214881 140.76262 86.030886 140.633432 C 85.850806 140.504244 85.553282 140.29676 85.361457 140.163657 C 85.169632 140.034469 84.856449 139.82307 84.656795 139.693882 C 84.453226 139.560779 84.124383 139.349381 83.912985 139.216278 C 83.697671 139.083175 83.349255 138.867862 83.126112 138.734759 C 82.902969 138.601656 82.538894 138.390257 82.304006 138.257154 C 82.065204 138.124052 81.67764 137.912653 81.431008 137.77955 C 81.184377 137.650362 80.773324 137.438963 80.511033 137.309775 C 80.252657 137.184502 79.818115 136.977018 79.54408 136.851745 C 79.26613 136.726472 78.812014 136.526818 78.518405 136.409374 C 78.228711 136.288015 77.747191 136.096191 77.437923 135.982662 C 77.128655 135.869133 76.619732 135.689053 76.29089 135.583353 C 75.962047 135.477654 75.425721 135.313233 75.077305 135.215363 C 74.732804 135.117493 74.161244 134.972646 73.793254 134.886521 C 73.421349 134.80431 72.814557 134.679037 72.423078 134.608571 C 72.035514 134.538104 71.389573 134.43632 70.970691 134.385428 C 70.555723 134.334535 69.86672 134.264069 69.424349 134.232751 C 68.978063 134.201433 68.245997 134.170114 67.768393 134.162285 C 67.294704 134.154455 66.507831 134.166199 65.998908 134.189688 C 65.489986 134.209262 64.648306 134.271899 64.100235 134.326706 C 63.55608 134.385428 62.647848 134.502871 62.06063 134.600741 C 61.469497 134.698611 60.4908 134.882606 59.856604 135.027453 C 59.218493 135.1723 58.1615 135.438506 57.468582 135.634246 C 56.779579 135.8339 55.628631 136.19406 54.876991 136.456351 C 54.121437 136.718642 52.868704 137.184502 52.046599 137.521174 C 51.220578 137.857846 49.846487 138.452894 48.942171 138.875691 C 48.037854 139.294574 46.526745 140.038384 45.528474 140.559051 C 44.530203 141.083632 42.854673 141.999693 41.746788 142.637804 C 40.638902 143.279829 38.779377 144.395544 37.542304 145.174587 C 36.30523 145.953631 34.222562 147.308148 32.836727 148.247697 C 31.450891 149.191161 27.543931 151.958918 27.543931 151.958918 " transform="matrix(0.997819,0,0,-0.997819,12.133339,363.186038)"/> +</g> +<path style="fill:none;stroke-width:0.79701;stroke-linecap:butt;stroke-linejoin:miter;stroke:rgb(0%,65.098572%,83.921814%);stroke-opacity:1;stroke-miterlimit:10;" d="M 68.136383 133.79038 L 65.071103 134.197518 " transform="matrix(0.997819,0,0,-0.997819,12.133339,363.186038)"/> +<path style="fill-rule:nonzero;fill:rgb(0%,65.098572%,83.921814%);fill-opacity:1;stroke-width:0.79701;stroke-linecap:butt;stroke-linejoin:miter;stroke:rgb(0%,65.098572%,83.921814%);stroke-opacity:1;stroke-miterlimit:10;" d="M 7.368775 0.00190446 L 1.284798 2.295465 L 3.293041 -0.000192303 L 1.288159 -2.293552 Z M 7.368775 0.00190446 " transform="matrix(-0.989018,-0.131812,-0.131812,0.989018,80.120133,229.688158)"/> +<g clip-path="url(#clip38)" clip-rule="nonzero"> +<path style="fill:none;stroke-width:0.79701;stroke-linecap:butt;stroke-linejoin:miter;stroke:rgb(0%,65.098572%,83.921814%);stroke-opacity:1;stroke-miterlimit:10;" d="M 80.691113 80.698005 C 80.691113 80.698005 80.691113 80.698005 80.691113 80.70192 C 80.687198 80.70192 80.687198 80.70192 80.687198 80.705835 C 80.683284 80.705835 80.683284 80.705835 80.679369 80.709749 C 80.679369 80.709749 80.675454 80.713664 80.671539 80.717579 C 80.671539 80.721494 80.66371 80.725409 80.659795 80.729323 C 80.65588 80.733238 80.64805 80.741068 80.644136 80.744983 C 80.636306 80.752812 80.628476 80.764556 80.620647 80.772386 C 80.612817 80.780216 80.597158 80.79196 80.585414 80.803704 C 80.577584 80.815449 80.55801 80.835023 80.542351 80.846767 C 80.530607 80.862426 80.503203 80.885915 80.483629 80.905489 C 80.46797 80.925063 80.432737 80.956381 80.409248 80.97987 C 80.38576 81.003359 80.342697 81.046421 80.315293 81.07774 C 80.283975 81.105143 80.229168 81.15995 80.193935 81.199098 C 80.154787 81.234331 80.088236 81.300883 80.045173 81.34786 C 79.998195 81.390923 79.915985 81.473133 79.861178 81.52794 C 79.806371 81.582747 79.708501 81.680617 79.64195 81.747169 C 79.575398 81.81372 79.457954 81.931164 79.379659 82.00946 C 79.301363 82.087755 79.164345 82.224773 79.074305 82.314813 C 78.98035 82.408768 78.823759 82.56536 78.718059 82.674974 C 78.61236 82.780673 78.428365 82.960753 78.307006 83.082112 C 78.185648 83.20347 77.978164 83.410954 77.841146 83.551887 C 77.700214 83.688904 77.469241 83.923792 77.31265 84.076468 C 77.159973 84.23306 76.897682 84.491436 76.725431 84.663687 C 76.553181 84.835938 76.263486 85.125632 76.075576 85.317457 C 75.883752 85.505366 75.566654 85.822464 75.35917 86.029948 C 75.151686 86.237432 74.80327 86.585848 74.580127 86.808991 C 74.353069 87.036049 73.977249 87.411869 73.734532 87.654586 C 73.491815 87.897303 73.088592 88.300526 72.830216 88.558902 C 72.57184 88.821193 72.137298 89.25182 71.863263 89.525855 C 71.585313 89.803805 71.127282 90.261836 70.837588 90.555445 C 70.543979 90.845139 70.06246 91.326658 69.753191 91.635927 C 69.447838 91.945195 68.94283 92.450203 68.617902 92.771216 C 68.29689 93.092228 67.772308 93.620725 67.435636 93.953482 C 67.102879 94.290154 66.554808 94.83431 66.206392 95.182726 C 65.861891 95.527228 65.294246 96.094872 64.938 96.451118 C 64.581754 96.807364 64.002366 97.390667 63.634375 97.754743 C 63.266385 98.122733 62.671337 98.717781 62.299432 99.089686 C 61.923612 99.465506 61.31682 100.072298 60.937086 100.452033 C 60.557351 100.835682 59.938814 101.450304 59.555165 101.837868 C 59.167601 102.221517 58.545149 102.843969 58.15367 103.235448 C 57.762191 103.626927 57.135825 104.253293 56.744346 104.648687 C 56.348952 105.040166 55.718671 105.674362 55.323277 106.065841 C 54.927884 106.461234 54.293688 107.09543 53.902209 107.490824 C 53.506815 107.882303 52.872619 108.516499 52.48114 108.911893 C 52.085747 109.303372 51.455465 109.933653 51.063986 110.325132 C 50.672508 110.716611 50.046141 111.342977 49.658577 111.734456 C 49.267098 112.12202 48.648561 112.744472 48.260997 113.128121 C 47.877348 113.51177 47.262726 114.126392 46.882991 114.506127 C 46.503257 114.889776 45.896464 115.492654 45.520645 115.868474 C 45.144825 116.244293 44.549777 116.839341 44.181787 117.207332 C 43.813796 117.579237 43.226578 118.16254 42.862503 118.526616 C 42.502342 118.886776 41.926868 119.46225 41.570622 119.818496 C 41.218291 120.170827 40.654561 120.734557 40.306145 121.082973 C 39.961644 121.431389 39.409658 121.97946 39.072986 122.320047 C 38.7324 122.656718 38.196074 123.193045 37.867231 123.525802 C 37.534474 123.854644 37.013807 124.379226 36.692794 124.700239 C 36.367867 125.021251 35.858944 125.530174 35.549676 125.843357 C 35.236493 126.15654 34.739314 126.649804 34.437876 126.951243 C 34.132522 127.256596 33.654918 127.7342 33.361309 128.031724 C 33.067699 128.325334 32.601839 128.787279 32.31606 129.073058 C 32.03028 129.358838 31.580079 129.809039 31.306044 130.083074 C 31.032009 130.361024 30.597467 130.795566 30.331261 131.061771 C 30.061141 131.327977 29.642259 131.74686 29.387797 132.005236 C 29.129421 132.259697 28.722283 132.666835 28.475651 132.913467 C 28.22902 133.164013 27.837541 133.551578 27.598738 133.79038 C 27.359936 134.029182 26.984117 134.405002 26.753144 134.635974 C 26.522171 134.866947 26.162011 135.227107 25.942783 135.45025 C 25.71964 135.669479 25.371223 136.017895 25.159825 136.229294 C 24.948426 136.444607 24.611754 136.777364 24.408185 136.980933 C 24.204616 137.184502 23.883603 137.505515 23.687864 137.701254 C 23.492124 137.896994 23.182856 138.206262 22.994946 138.394172 C 22.807036 138.582082 22.513427 138.875691 22.333347 139.055772 C 22.153266 139.235852 21.871401 139.517717 21.699151 139.689967 C 21.5269 139.862218 21.25678 140.136253 21.092358 140.300675 C 20.924022 140.465096 20.665646 140.723472 20.509055 140.880063 C 20.352463 141.04057 20.101917 141.287202 19.953155 141.439878 C 19.800478 141.58864 19.56559 141.827442 19.420743 141.97229 C 19.275896 142.113222 19.048838 142.34028 18.911821 142.477298 C 18.774803 142.61823 18.555575 142.833543 18.426387 142.966646 C 18.293284 143.095834 18.0858 143.303318 17.960527 143.428591 C 17.835254 143.553865 17.639514 143.753519 17.518156 143.870963 C 17.396797 143.992321 17.208887 144.180231 17.095358 144.29376 C 16.981829 144.407289 16.801749 144.587369 16.692135 144.696983 C 16.582521 144.806597 16.414185 144.974933 16.308486 145.080633 C 16.206701 145.186332 16.04228 145.346838 15.94441 145.448623 C 15.842626 145.546492 15.689949 145.699169 15.595994 145.797039 C 15.502039 145.890994 15.353277 146.035841 15.263237 146.125881 C 15.173197 146.215921 15.032264 146.356854 14.946139 146.442979 C 14.860014 146.529105 14.726911 146.662207 14.6447 146.744418 C 14.56249 146.826629 14.437216 146.951902 14.35892 147.030198 C 14.280625 147.108493 14.159266 147.229852 14.084885 147.304233 C 14.010504 147.378614 13.896975 147.492143 13.826509 147.562609 C 13.756043 147.633075 13.646429 147.742689 13.579877 147.809241 C 13.513326 147.875792 13.407627 147.981492 13.34499 148.044128 C 13.282353 148.106765 13.184484 148.208549 13.121847 148.267271 C 13.063125 148.329908 12.96917 148.423863 12.910448 148.47867 C 12.851727 148.537392 12.761686 148.627432 12.710794 148.682239 C 12.655987 148.737046 12.569862 148.819256 12.518969 148.874064 C 12.464162 148.924956 12.385867 149.007166 12.334974 149.054144 C 12.287997 149.105036 12.209701 149.179417 12.162724 149.226395 C 12.115746 149.273372 12.041365 149.347753 11.998302 149.390816 C 11.95524 149.437793 11.884774 149.504345 11.841711 149.547407 C 11.798648 149.59047 11.736012 149.657021 11.692949 149.696169 C 11.653801 149.735317 11.591164 149.797954 11.555931 149.837102 C 11.516783 149.872335 11.458062 149.934971 11.418914 149.970205 C 11.383681 150.005438 11.328873 150.060245 11.29364 150.095478 C 11.258407 150.130711 11.207515 150.185518 11.172282 150.216836 C 11.140964 150.248155 11.090071 150.299047 11.058753 150.330365 C 11.027435 150.361683 10.980457 150.408661 10.953054 150.439979 C 10.921735 150.467383 10.874758 150.51436 10.847354 150.541764 C 10.819951 150.569167 10.776888 150.61223 10.749485 150.639634 C 10.725996 150.667037 10.682933 150.706185 10.659444 150.733588 C 10.632041 150.757077 10.592893 150.796225 10.569404 150.819714 C 10.545916 150.843203 10.510682 150.88235 10.487194 150.901924 C 10.463705 150.925413 10.428472 150.960646 10.408898 150.98022 C 10.385409 151.003709 10.354091 151.035027 10.334517 151.058516 C 10.311028 151.07809 10.27971 151.109408 10.264051 151.128982 C 10.244477 151.148556 10.213158 151.17596 10.193585 151.195534 C 10.177925 151.215108 10.146607 151.242511 10.130948 151.25817 C 10.115289 151.277744 10.087885 151.305148 10.068311 151.320807 C 10.052652 151.336466 10.029163 151.36387 10.013504 151.379529 C 9.997845 151.391273 9.974356 151.418677 9.958697 151.430421 C 9.943038 151.44608 9.919549 151.469569 9.907805 151.485228 C 9.892146 151.496972 9.868657 151.520461 9.856913 151.532206 C 9.845168 151.547865 9.82168 151.567439 9.809935 151.579183 C 9.798191 151.590927 9.778617 151.610501 9.766872 151.622246 C 9.755128 151.63399 9.735554 151.653564 9.72381 151.665308 C 9.712065 151.677053 9.696406 151.692712 9.684662 151.704456 C 9.672918 151.716201 9.657258 151.73186 9.649429 151.743604 C 9.637684 151.751434 9.622025 151.767093 9.610281 151.778837 C 9.602451 151.786667 9.586792 151.802326 9.578963 151.810156 C 9.571133 151.8219 9.555474 151.833644 9.547644 151.845389 C 9.5359 151.853218 9.524156 151.864963 9.516326 151.872792 C 9.508496 151.880622 9.496752 151.896281 9.488922 151.904111 C 9.481093 151.91194 9.465434 151.923684 9.461519 151.931514 C 9.453689 151.939344 9.441945 151.947173 9.434115 151.955003 C 9.426286 151.962832 9.414541 151.974577 9.410627 151.982406 C 9.402797 151.986321 9.391053 151.998065 9.387138 152.00198 C 9.379308 152.00981 9.371479 152.021554 9.363649 152.025469 C 9.359734 152.033299 9.34799 152.041128 9.344075 152.045043 C 9.336246 152.052873 9.328416 152.060702 9.324501 152.064617 C 9.316672 152.072446 9.308842 152.080276 9.304927 152.084191 C 9.301013 152.09202 9.293183 152.09985 9.289268 152.103765 C 9.281439 152.10768 9.273609 152.115509 9.269694 152.119424 C 9.265779 152.123339 9.25795 152.131168 9.254035 152.135083 C 9.25012 152.138998 9.242291 152.146827 9.238376 152.150742 C 9.234461 152.154657 9.230546 152.162487 9.226632 152.166401 C 9.222717 152.170316 9.214887 152.174231 9.210972 152.178146 C 9.207058 152.182061 9.203143 152.18989 9.199228 152.18989 C 9.195313 152.193805 9.191398 152.201635 9.187484 152.205549 C 9.183569 152.205549 9.179654 152.213379 9.175739 152.213379 C 9.171824 152.217294 9.16791 152.225123 9.163995 152.225123 C 9.16008 152.229038 9.156165 152.232953 9.152251 152.236868 C 9.152251 152.240782 9.148336 152.244697 9.144421 152.244697 C 9.140506 152.248612 9.136591 152.252527 9.132677 152.256442 C 9.132677 152.256442 9.128762 152.260356 9.124847 152.264271 C 9.124847 152.268186 9.120932 152.272101 9.117017 152.272101 C 9.117017 152.276016 9.113103 152.27993 9.109188 152.27993 C 9.109188 152.283845 9.105273 152.28776 9.101358 152.28776 C 9.101358 152.291675 9.097443 152.291675 9.093529 152.295589 C 9.093529 152.295589 9.089614 152.299504 9.089614 152.303419 C 9.085699 152.303419 9.081784 152.307334 9.081784 152.307334 C 9.081784 152.311249 9.07787 152.311249 9.073955 152.315163 C 9.073955 152.315163 9.07004 152.319078 9.07004 152.319078 C 9.07004 152.322993 9.066125 152.322993 9.066125 152.326908 C 9.06221 152.326908 9.06221 152.330823 9.058296 152.330823 C 9.058296 152.330823 9.054381 152.334737 9.054381 152.334737 C 9.054381 152.338652 9.050466 152.338652 9.050466 152.338652 C 9.046551 152.342567 9.046551 152.342567 9.046551 152.346482 C 9.042636 152.346482 9.042636 152.346482 9.042636 152.350397 C 9.038722 152.350397 9.038722 152.350397 9.038722 152.354311 C 9.034807 152.354311 9.034807 152.354311 9.034807 152.358226 C 9.030892 152.358226 9.030892 152.358226 9.030892 152.362141 C 9.030892 152.362141 9.026977 152.362141 9.026977 152.362141 C 9.026977 152.366056 9.023062 152.366056 9.023062 152.366056 C 9.023062 152.366056 9.023062 152.36997 9.019148 152.36997 C 9.019148 152.36997 9.019148 152.36997 9.019148 152.373885 C 9.015233 152.373885 9.015233 152.373885 9.015233 152.373885 C 9.015233 152.3778 9.011318 152.3778 9.011318 152.3778 C 9.011318 152.3778 9.011318 152.3778 9.011318 152.381715 C 9.007403 152.381715 9.007403 152.381715 9.007403 152.381715 C 9.007403 152.381715 9.007403 152.38563 9.007403 152.38563 C 9.003489 152.38563 9.003489 152.38563 9.003489 152.38563 C 9.003489 152.38563 9.003489 152.389544 8.999574 152.389544 C 8.999574 152.389544 8.999574 152.393459 8.999574 152.393459 C 8.995659 152.393459 8.995659 152.393459 8.995659 152.393459 C 8.995659 152.393459 8.995659 152.393459 8.995659 152.397374 C 8.995659 152.397374 8.991744 152.397374 8.991744 152.397374 C 8.991744 152.397374 8.991744 152.401289 8.991744 152.401289 C 8.991744 152.401289 8.987829 152.401289 8.987829 152.401289 C 8.987829 152.401289 8.987829 152.401289 8.987829 152.405204 C 8.987829 152.405204 8.987829 152.405204 8.983915 152.405204 C 8.983915 152.405204 8.983915 152.409118 8.983915 152.409118 C 8.983915 152.409118 8.983915 152.409118 8.98 152.409118 C 8.98 152.409118 8.98 152.413033 8.98 152.413033 C 8.976085 152.413033 8.976085 152.413033 8.976085 152.413033 C 8.976085 152.416948 8.976085 152.416948 8.976085 152.416948 C 8.976085 152.416948 8.97217 152.416948 8.97217 152.416948 C 8.97217 152.416948 8.97217 152.420863 8.97217 152.420863 C 8.97217 152.420863 8.97217 152.420863 8.968255 152.420863 C 8.968255 152.420863 8.968255 152.420863 8.968255 152.424778 C 8.968255 152.424778 8.964341 152.424778 8.964341 152.424778 " transform="matrix(0.997819,0,0,-0.997819,12.133339,363.186038)"/> +</g> +<path style="fill:none;stroke-width:0.79701;stroke-linecap:butt;stroke-linejoin:miter;stroke:rgb(0%,65.098572%,83.921814%);stroke-opacity:1;stroke-miterlimit:10;" d="M 47.834285 113.554833 L 45.649833 115.739286 " transform="matrix(0.997819,0,0,-0.997819,12.133339,363.186038)"/> +<path style="fill-rule:nonzero;fill:rgb(0%,65.098572%,83.921814%);fill-opacity:1;stroke-width:0.79701;stroke-linecap:butt;stroke-linejoin:miter;stroke:rgb(0%,65.098572%,83.921814%);stroke-opacity:1;stroke-miterlimit:10;" d="M 7.370504 0.000800336 L 1.285999 2.292871 L 3.290177 0.000800336 L 1.288767 -2.294038 Z M 7.370504 0.000800336 " transform="matrix(-0.705558,-0.705558,-0.705558,0.705558,59.864942,249.879438)"/> +<g clip-path="url(#clip39)" clip-rule="nonzero"> +<path style="fill:none;stroke-width:0.79701;stroke-linecap:butt;stroke-linejoin:miter;stroke:rgb(0%,65.098572%,83.921814%);stroke-opacity:1;stroke-miterlimit:10;" d="M 39.777648 16.444566 C 39.777648 16.444566 42.369239 23.354169 43.218748 25.75002 C 44.068258 28.149786 45.242695 31.657437 45.900379 33.720532 C 46.558064 35.783626 47.458465 38.821502 47.959558 40.618391 C 48.460651 42.411364 49.133995 45.073421 49.501985 46.654996 C 49.869976 48.232656 50.35541 50.589359 50.6177 51.990854 C 50.876077 53.396263 51.201004 55.50242 51.36934 56.762982 C 51.537676 58.01963 51.729501 59.926132 51.819541 61.065336 C 51.909581 62.20454 51.991792 63.942706 52.01528 64.98404 C 52.038769 66.025374 52.02311 67.622608 51.987877 68.581732 C 51.956558 69.54477 51.858689 71.020645 51.780393 71.913217 C 51.698182 72.805789 51.533761 74.183795 51.412403 75.017646 C 51.291044 75.851496 51.063986 77.143376 50.91131 77.930249 C 50.754718 78.713207 50.480683 79.934621 50.292773 80.674516 C 50.108778 81.418326 49.79168 82.573189 49.584196 83.273937 C 49.372797 83.978599 49.020466 85.078654 48.789494 85.748083 C 48.562436 86.421427 48.178787 87.470591 47.932155 88.112616 C 47.685523 88.750727 47.278385 89.756828 47.016094 90.37145 C 46.757718 90.986072 46.327091 91.94911 46.056971 92.540243 C 45.78685 93.127462 45.344479 94.055267 45.062614 94.622911 C 44.784664 95.190556 44.330549 96.079213 44.044769 96.627283 C 43.758989 97.171439 43.293129 98.032693 43.003435 98.557275 C 42.713741 99.081856 42.243966 99.911792 41.950357 100.4168 C 41.656747 100.925722 41.186973 101.724339 40.893363 102.213688 C 40.599754 102.703037 40.126065 103.47425 39.832456 103.944025 C 39.538846 104.417714 39.065157 105.161524 38.775462 105.61564 C 38.481853 106.07367 38.012078 106.790077 37.722384 107.228533 C 37.43269 107.66699 36.970744 108.359907 36.68105 108.782705 C 36.39527 109.209417 35.93724 109.874931 35.655375 110.282069 C 35.37351 110.693122 34.92331 111.335147 34.645359 111.730541 C 34.367409 112.12202 33.925038 112.744472 33.651003 113.124206 C 33.380882 113.500026 32.946341 114.098989 32.680135 114.463064 C 32.413929 114.831054 31.991132 115.402614 31.728841 115.754945 C 31.470465 116.107276 31.059412 116.663176 30.804951 116.999848 C 30.55049 117.33652 30.147266 117.868931 29.900635 118.193858 C 29.654003 118.522701 29.262524 119.031623 29.023722 119.344807 C 28.78492 119.65799 28.405185 120.147338 28.170298 120.448777 C 27.939325 120.750216 27.571335 121.219991 27.344277 121.509685 C 27.121134 121.79938 26.764888 122.24958 26.54566 122.52753 C 26.326432 122.80548 25.985845 123.240022 25.774447 123.502313 C 25.563048 123.768519 25.230291 124.187401 25.026722 124.441862 C 24.823153 124.696324 24.50214 125.091718 24.306401 125.338349 C 24.110661 125.581066 23.801393 125.964716 23.613483 126.195688 C 23.425573 126.430576 23.128049 126.794651 22.944054 127.017794 C 22.763973 127.240937 22.478194 127.593268 22.302028 127.804667 C 22.129778 128.01998 21.851828 128.352737 21.683492 128.560221 C 21.51907 128.76379 21.252865 129.080888 21.092358 129.276627 C 20.931852 129.472367 20.677391 129.777721 20.524714 129.96563 C 20.368122 130.15354 20.125405 130.443235 19.976643 130.623315 C 19.827881 130.799481 19.596909 131.081345 19.455976 131.249681 C 19.311129 131.421932 19.087986 131.688138 18.954883 131.848644 C 18.817866 132.013065 18.602552 132.263612 18.473364 132.420203 C 18.344176 132.576795 18.140607 132.819512 18.015334 132.964359 C 17.890061 133.113121 17.694321 133.344094 17.576877 133.485026 C 17.459434 133.625959 17.271524 133.845187 17.157995 133.982204 C 17.044466 134.115307 16.864386 134.322791 16.758686 134.451979 C 16.649072 134.581167 16.480736 134.780821 16.375037 134.90218 C 16.273253 135.023538 16.108831 135.215363 16.010962 135.332807 C 15.913092 135.446336 15.7565 135.626416 15.662545 135.739945 C 15.56859 135.849559 15.419828 136.02181 15.329788 136.127509 C 15.239748 136.233208 15.098816 136.397629 15.01269 136.495499 C 14.93048 136.597284 14.793462 136.753875 14.711252 136.84783 C 14.632956 136.9457 14.503768 137.094462 14.425472 137.184502 C 14.347176 137.274542 14.225818 137.415475 14.151437 137.5016 C 14.077056 137.587725 13.963527 137.720828 13.893061 137.803039 C 13.81868 137.885249 13.709065 138.014438 13.642514 138.092733 C 13.575963 138.171029 13.470263 138.292388 13.407627 138.366769 C 13.34499 138.44115 13.243206 138.554678 13.180569 138.625145 C 13.121847 138.695611 13.027892 138.805225 12.96917 138.871776 C 12.910448 138.938328 12.820408 139.044027 12.765601 139.106664 C 12.710794 139.1693 12.624669 139.271085 12.573777 139.329807 C 12.518969 139.392443 12.436759 139.486398 12.389781 139.541205 C 12.338889 139.599927 12.260593 139.689967 12.213616 139.744774 C 12.166638 139.799582 12.092257 139.881792 12.049195 139.932684 C 12.002217 139.987491 11.931751 140.065787 11.888688 140.116679 C 11.845626 140.163657 11.779074 140.241953 11.739926 140.28893 C 11.700778 140.335908 11.638142 140.406374 11.598994 140.453351 C 11.559846 140.496414 11.501124 140.562965 11.461976 140.606028 C 11.426743 140.649091 11.368021 140.715642 11.332788 140.75479 C 11.30147 140.793938 11.246663 140.856575 11.21143 140.895723 C 11.180111 140.930956 11.129219 140.989678 11.097901 141.024911 C 11.066583 141.064059 11.01569 141.118866 10.988287 141.154099 C 10.956968 141.185417 10.909991 141.240224 10.882587 141.271542 C 10.855184 141.302861 10.812121 141.353753 10.784718 141.385071 C 10.757314 141.41639 10.714252 141.463367 10.690763 141.494685 C 10.663359 141.522089 10.624211 141.569066 10.600723 141.59647 C 10.577234 141.623873 10.538086 141.666936 10.514597 141.690425 C 10.491109 141.717828 10.455875 141.756976 10.436301 141.78438 C 10.412813 141.807869 10.381494 141.847016 10.358006 141.870505 C 10.338432 141.893994 10.307113 141.929227 10.287539 141.952716 C 10.267966 141.976204 10.236647 142.011438 10.217073 142.031012 C 10.201414 142.0545 10.170096 142.085819 10.154437 142.105393 C 10.134863 142.124966 10.107459 142.156285 10.0918 142.175859 C 10.076141 142.195433 10.048737 142.226751 10.033078 142.24241 C 10.017419 142.261984 9.99393 142.289388 9.978271 142.305047 C 9.962612 142.324621 9.939123 142.352024 9.923464 142.367683 C 9.91172 142.383343 9.888231 142.406831 9.876487 142.42249 C 9.860827 142.43815 9.841253 142.461638 9.825594 142.477298 C 9.81385 142.492957 9.794276 142.516445 9.782532 142.52819 C 9.770787 142.543849 9.751213 142.563423 9.739469 142.579082 C 9.727725 142.590826 9.712065 142.6104 9.700321 142.622145 C 9.688577 142.633889 9.672918 142.653463 9.661173 142.665207 C 9.649429 142.676952 9.63377 142.696526 9.62594 142.70827 C 9.614196 142.720014 9.598537 142.735674 9.590707 142.747418 C 9.582877 142.759162 9.567218 142.774822 9.559389 142.782651 C 9.547644 142.794395 9.5359 142.810055 9.52807 142.817884 C 9.520241 142.829629 9.504582 142.845288 9.496752 142.853117 C 9.488922 142.860947 9.477178 142.876606 9.469348 142.884436 C 9.461519 142.892265 9.449775 142.907924 9.441945 142.915754 C 9.43803 142.923584 9.426286 142.935328 9.418456 142.943157 C 9.410627 142.950987 9.402797 142.962731 9.394967 142.970561 C 9.387138 142.978391 9.379308 142.990135 9.371479 142.99405 C 9.367564 143.001879 9.35582 143.013624 9.351905 143.021453 C 9.344075 143.025368 9.336246 143.037112 9.332331 143.041027 C 9.324501 143.048857 9.316672 143.060601 9.312757 143.064516 C 9.308842 143.072346 9.297098 143.080175 9.293183 143.08409 C 9.289268 143.091919 9.281439 143.099749 9.277524 143.103664 C 9.273609 143.111493 9.265779 143.119323 9.261865 143.123238 C 9.25795 143.127153 9.25012 143.134982 9.246205 143.138897 C 9.242291 143.146727 9.234461 143.154556 9.230546 143.158471 C 9.226632 143.162386 9.218802 143.170215 9.214887 143.17413 C 9.214887 143.178045 9.207058 143.185874 9.203143 143.189789 C 9.199228 143.193704 9.195313 143.197619 9.191398 143.201534 C 9.187484 143.205448 9.183569 143.213278 9.179654 143.217193 C 9.175739 143.221108 9.171824 143.225022 9.16791 143.228937 C 9.163995 143.232852 9.16008 143.236767 9.156165 143.240681 C 9.156165 143.244596 9.148336 143.248511 9.148336 143.252426 C 9.144421 143.256341 9.140506 143.260255 9.136591 143.26417 C 9.136591 143.26417 9.132677 143.272 9.128762 143.272 C 9.124847 143.275915 9.120932 143.279829 9.120932 143.283744 C 9.117017 143.283744 9.113103 143.287659 9.113103 143.291574 C 9.109188 143.295489 9.105273 143.299403 9.105273 143.299403 C 9.101358 143.303318 9.101358 143.307233 9.097443 143.307233 C 9.097443 143.311148 9.093529 143.315062 9.089614 143.315062 C 9.089614 143.318977 9.085699 143.322892 9.085699 143.322892 C 9.081784 143.326807 9.07787 143.330722 9.07787 143.330722 C 9.07787 143.334636 9.073955 143.334636 9.073955 143.338551 C 9.07004 143.338551 9.066125 143.342466 9.066125 143.342466 C 9.066125 143.346381 9.06221 143.350296 9.06221 143.350296 C 9.058296 143.350296 9.058296 143.35421 9.054381 143.35421 C 9.054381 143.358125 9.054381 143.358125 9.050466 143.36204 C 9.050466 143.36204 9.046551 143.365955 9.046551 143.365955 C 9.046551 143.365955 9.042636 143.36987 9.042636 143.36987 C 9.042636 143.373784 9.038722 143.373784 9.038722 143.373784 C 9.038722 143.377699 9.034807 143.377699 9.034807 143.381614 C 9.034807 143.381614 9.030892 143.381614 9.030892 143.385529 C 9.030892 143.385529 9.026977 143.385529 9.026977 143.389443 C 9.026977 143.389443 9.026977 143.389443 9.023062 143.393358 C 9.019148 143.397273 9.019148 143.397273 9.019148 143.397273 C 9.019148 143.397273 9.015233 143.401188 9.015233 143.401188 C 9.015233 143.401188 9.015233 143.405103 9.015233 143.405103 C 9.011318 143.405103 9.011318 143.405103 9.011318 143.409017 C 9.011318 143.409017 9.007403 143.409017 9.007403 143.409017 C 9.007403 143.409017 9.007403 143.412932 9.007403 143.412932 C 9.007403 143.412932 9.003489 143.412932 9.003489 143.412932 C 9.003489 143.416847 9.003489 143.416847 9.003489 143.416847 C 9.003489 143.416847 8.999574 143.416847 8.999574 143.420762 C 8.999574 143.420762 8.995659 143.420762 8.995659 143.424677 C 8.995659 143.424677 8.995659 143.424677 8.991744 143.428591 C 8.991744 143.428591 8.991744 143.432506 8.987829 143.432506 C 8.987829 143.432506 8.987829 143.436421 8.987829 143.436421 C 8.983915 143.436421 8.983915 143.436421 8.983915 143.436421 C 8.983915 143.436421 8.983915 143.440336 8.983915 143.440336 C 8.98 143.440336 8.98 143.440336 8.98 143.440336 C 8.98 143.440336 8.98 143.440336 8.98 143.444251 C 8.98 143.444251 8.976085 143.444251 8.976085 143.444251 C 8.976085 143.448165 8.976085 143.448165 8.976085 143.448165 C 8.976085 143.448165 8.976085 143.448165 8.97217 143.448165 C 8.97217 143.448165 8.97217 143.45208 8.97217 143.45208 C 8.97217 143.45208 8.968255 143.45208 8.968255 143.45208 C 8.968255 143.455995 8.968255 143.455995 8.968255 143.455995 C 8.968255 143.455995 8.964341 143.455995 8.964341 143.455995 C 8.964341 143.455995 8.964341 143.45991 8.964341 143.45991 " transform="matrix(0.997819,0,0,-0.997819,12.133339,363.186038)"/> +</g> +<path style="fill:none;stroke-width:0.79701;stroke-linecap:butt;stroke-linejoin:miter;stroke:rgb(0%,65.098572%,83.921814%);stroke-opacity:1;stroke-miterlimit:10;" d="M 47.630716 89.369264 L 48.57418 86.425342 " transform="matrix(0.997819,0,0,-0.997819,12.133339,363.186038)"/> +<path style="fill-rule:nonzero;fill:rgb(0%,65.098572%,83.921814%);fill-opacity:1;stroke-width:0.79701;stroke-linecap:butt;stroke-linejoin:miter;stroke:rgb(0%,65.098572%,83.921814%);stroke-opacity:1;stroke-miterlimit:10;" d="M 7.367886 -0.000266319 L 1.286503 2.29284 L 3.289567 -0.00129005 L 1.284859 -2.294374 Z M 7.367886 -0.000266319 " transform="matrix(0.304345,0.950223,0.950223,-0.304345,59.66022,274.010505)"/> +<g clip-path="url(#clip40)" clip-rule="nonzero"> +<path style="fill:none;stroke-width:0.79701;stroke-linecap:butt;stroke-linejoin:miter;stroke:rgb(0%,65.098572%,83.921814%);stroke-opacity:1;stroke-miterlimit:10;" d="M 31.478295 12.349696 C 31.478295 12.349696 33.463093 18.558552 34.120778 20.754749 C 34.774548 22.950946 35.690608 26.231539 36.203446 28.17719 C 36.716283 30.12284 37.42486 33.047188 37.820254 34.785354 C 38.211733 36.527436 38.748059 39.150344 39.041668 40.71626 C 39.331362 42.282176 39.718927 44.650624 39.92641 46.071692 C 40.12998 47.492761 40.39227 49.64981 40.525373 50.945605 C 40.658476 52.2414 40.811153 54.218369 40.881619 55.40455 C 40.956 56.594646 41.018637 58.415023 41.034296 59.515079 C 41.05387 60.61122 41.038211 62.298495 41.010807 63.31634 C 40.983404 64.334185 40.905108 65.904016 40.838556 66.851395 C 40.772005 67.798774 40.634987 69.26682 40.537118 70.155477 C 40.439248 71.044134 40.259168 72.418225 40.133894 73.252075 C 40.008621 74.085926 39.785478 75.381721 39.636716 76.168594 C 39.487954 76.951552 39.229578 78.172966 39.065157 78.916776 C 38.896821 79.660586 38.611041 80.815449 38.430961 81.520111 C 38.246966 82.220858 37.941612 83.316999 37.745873 83.986428 C 37.550133 84.651942 37.225206 85.693276 37.021637 86.327472 C 36.814153 86.965583 36.477481 87.956025 36.262168 88.558902 C 36.050769 89.16178 35.702353 90.105244 35.483124 90.680718 C 35.263896 91.256192 34.90765 92.156594 34.684507 92.708579 C 34.461364 93.25665 34.097289 94.113989 33.874146 94.63857 C 33.647088 95.163152 33.283013 95.985258 33.055955 96.486351 C 32.828897 96.987444 32.464822 97.770402 32.237764 98.248006 C 32.014621 98.725611 31.650546 99.47725 31.423488 99.93528 C 31.200345 100.389396 30.836269 101.109717 30.613126 101.544259 C 30.389983 101.982715 30.033738 102.667803 29.814509 103.086686 C 29.591366 103.505568 29.239035 104.159338 29.023722 104.558647 C 28.804494 104.96187 28.459992 105.588236 28.248594 105.967971 C 28.03328 106.35162 27.692693 106.950583 27.48521 107.318573 C 27.277726 107.682649 26.944969 108.254208 26.7414 108.606539 C 26.537831 108.954955 26.212903 109.503026 26.013249 109.839698 C 25.813594 110.172455 25.500411 110.697037 25.304672 111.014135 C 25.112847 111.335147 24.803579 111.83624 24.615669 112.141594 C 24.427759 112.446948 24.130235 112.924552 23.950155 113.218161 C 23.76616 113.507856 23.476465 113.965886 23.3003 114.243836 C 23.124134 114.521786 22.846184 114.960242 22.673933 115.226448 C 22.501683 115.492654 22.231562 115.907621 22.067141 116.162083 C 21.90272 116.416544 21.640429 116.811938 21.483837 117.054655 C 21.323331 117.297372 21.072784 117.677106 20.916193 117.908079 C 20.763516 118.139051 20.520799 118.503127 20.375952 118.722355 C 20.22719 118.945498 19.992303 119.29 19.85137 119.501398 C 19.706523 119.708882 19.48338 120.037724 19.346362 120.241293 C 19.209345 120.440948 18.994031 120.754131 18.864843 120.945955 C 18.73174 121.13778 18.528171 121.435304 18.398983 121.619299 C 18.27371 121.79938 18.07797 122.085159 17.956612 122.261325 C 17.835254 122.433575 17.643429 122.703696 17.5299 122.868117 C 17.412456 123.036453 17.232376 123.294829 17.118847 123.451421 C 17.009233 123.608012 16.836982 123.854644 16.727368 124.003406 C 16.621669 124.156083 16.457248 124.39097 16.355463 124.531903 C 16.253679 124.672835 16.093172 124.895978 15.995302 125.032996 C 15.901348 125.170013 15.748671 125.381412 15.654716 125.5106 C 15.560761 125.639788 15.415914 125.843357 15.329788 125.964716 C 15.239748 126.086074 15.098816 126.281814 15.016605 126.395342 C 14.93048 126.512786 14.797377 126.696781 14.719081 126.806395 C 14.636871 126.919924 14.511597 127.092175 14.433301 127.197874 C 14.355006 127.303574 14.237562 127.467995 14.163181 127.569779 C 14.0888 127.671564 13.975271 127.828155 13.904805 127.92211 C 13.834339 128.016065 13.724725 128.168742 13.658173 128.258782 C 13.591622 128.348822 13.485922 128.489755 13.423286 128.57588 C 13.360649 128.662006 13.258865 128.799023 13.200143 128.881234 C 13.141421 128.95953 13.043551 129.088718 12.988744 129.167013 C 12.930022 129.245309 12.839982 129.366668 12.785175 129.441049 C 12.730368 129.51543 12.644243 129.628959 12.59335 129.699425 C 12.538543 129.769891 12.456333 129.879505 12.409355 129.946056 C 12.358463 130.012608 12.280167 130.118307 12.23319 130.180944 C 12.186212 130.24358 12.111831 130.34145 12.068769 130.404087 C 12.021791 130.462809 11.951325 130.556764 11.908262 130.615485 C 11.869114 130.670293 11.802563 130.760333 11.7595 130.81514 C 11.720352 130.869947 11.657716 130.952157 11.618568 131.00305 C 11.57942 131.053942 11.516783 131.136152 11.48155 131.18313 C 11.446317 131.234022 11.387595 131.308403 11.352362 131.355381 C 11.317129 131.402358 11.262322 131.472824 11.231004 131.519802 C 11.199685 131.562865 11.144878 131.629416 11.11356 131.672479 C 11.082242 131.715541 11.035264 131.778178 11.003946 131.817326 C 10.972628 131.856474 10.929565 131.91911 10.898247 131.958258 C 10.870843 131.993491 10.82778 132.052213 10.800377 132.087446 C 10.772973 132.122679 10.729911 132.181401 10.706422 132.21272 C 10.679018 132.247953 10.639871 132.298845 10.616382 132.330163 C 10.592893 132.365396 10.553745 132.412374 10.530256 132.443692 C 10.506768 132.47501 10.471535 132.521988 10.448046 132.549391 C 10.428472 132.58071 10.393239 132.623772 10.373665 132.651176 C 10.350176 132.67858 10.318858 132.721642 10.299284 132.749046 C 10.27971 132.772534 10.248392 132.815597 10.232732 132.839086 C 10.213158 132.862575 10.18184 132.901723 10.166181 132.925211 C 10.146607 132.9487 10.119204 132.983933 10.103544 133.007422 C 10.087885 133.026996 10.060482 133.062229 10.044823 133.085718 C 10.029163 133.105292 10.00176 133.13661 9.990015 133.156184 C 9.974356 133.175758 9.950868 133.207076 9.935208 133.22665 C 9.919549 133.246224 9.899975 133.273627 9.884316 133.293201 C 9.872572 133.312775 9.849083 133.340179 9.837339 133.355838 C 9.825594 133.371497 9.802106 133.398901 9.790361 133.41456 C 9.778617 133.430219 9.759043 133.457623 9.747299 133.469367 C 9.735554 133.485026 9.719895 133.508515 9.708151 133.524174 C 9.696406 133.539833 9.680747 133.563322 9.669003 133.575066 C 9.657258 133.586811 9.641599 133.610299 9.63377 133.622044 C 9.622025 133.637703 9.606366 133.657277 9.598537 133.669021 C 9.586792 133.680766 9.575048 133.70034 9.563303 133.712084 C 9.555474 133.723828 9.543729 133.739487 9.531985 133.751232 C 9.524156 133.762976 9.512411 133.78255 9.504582 133.79038 C 9.496752 133.802124 9.485008 133.817783 9.477178 133.829528 C 9.469348 133.837357 9.457604 133.853016 9.449775 133.860846 C 9.441945 133.87259 9.430201 133.888249 9.422371 133.896079 C 9.418456 133.903909 9.406712 133.919568 9.398882 133.927397 C 9.394967 133.935227 9.383223 133.946971 9.379308 133.954801 C 9.371479 133.96263 9.363649 133.97829 9.35582 133.986119 C 9.351905 133.990034 9.34016 134.001778 9.336246 134.009608 C 9.328416 134.017437 9.320586 134.029182 9.316672 134.037011 C 9.312757 134.040926 9.301013 134.052671 9.297098 134.0605 C 9.293183 134.06833 9.285353 134.076159 9.281439 134.083989 C 9.277524 134.087904 9.269694 134.099648 9.265779 134.103563 C 9.25795 134.111392 9.254035 134.119222 9.25012 134.123137 C 9.246205 134.130966 9.238376 134.138796 9.234461 134.142711 C 9.230546 134.15054 9.222717 134.15837 9.218802 134.162285 C 9.214887 134.166199 9.210972 134.174029 9.207058 134.177944 C 9.203143 134.181859 9.195313 134.189688 9.195313 134.193603 C 9.191398 134.201433 9.183569 134.205347 9.183569 134.209262 C 9.179654 134.217092 9.171824 134.221007 9.171824 134.224921 C 9.16791 134.228836 9.163995 134.236666 9.16008 134.24058 C 9.156165 134.244495 9.152251 134.24841 9.148336 134.252325 C 9.148336 134.25624 9.144421 134.260154 9.140506 134.264069 C 9.136591 134.267984 9.132677 134.275814 9.132677 134.275814 C 9.128762 134.279728 9.124847 134.283643 9.120932 134.287558 C 9.120932 134.291473 9.117017 134.295388 9.113103 134.299302 C 9.113103 134.303217 9.109188 134.307132 9.105273 134.311047 C 9.105273 134.311047 9.101358 134.314961 9.097443 134.318876 C 9.097443 134.322791 9.093529 134.326706 9.093529 134.326706 C 9.089614 134.330621 9.085699 134.334535 9.085699 134.33845 C 9.081784 134.33845 9.081784 134.342365 9.07787 134.34628 C 9.07787 134.34628 9.073955 134.350195 9.073955 134.354109 C 9.07004 134.354109 9.07004 134.358024 9.066125 134.358024 C 9.066125 134.361939 9.06221 134.365854 9.06221 134.365854 C 9.06221 134.369769 9.058296 134.369769 9.058296 134.373683 C 9.054381 134.373683 9.054381 134.377598 9.054381 134.377598 C 9.050466 134.381513 9.050466 134.385428 9.046551 134.385428 C 9.046551 134.385428 9.046551 134.389342 9.042636 134.389342 C 9.042636 134.393257 9.042636 134.393257 9.038722 134.397172 C 9.038722 134.397172 9.038722 134.401087 9.034807 134.401087 C 9.034807 134.401087 9.034807 134.405002 9.030892 134.405002 C 9.030892 134.408916 9.030892 134.408916 9.026977 134.408916 C 9.026977 134.412831 9.026977 134.412831 9.026977 134.416746 C 9.023062 134.416746 9.023062 134.416746 9.023062 134.420661 C 9.023062 134.420661 9.019148 134.420661 9.019148 134.424576 C 9.019148 134.424576 9.019148 134.424576 9.015233 134.424576 C 9.015233 134.42849 9.015233 134.42849 9.015233 134.42849 C 9.011318 134.432405 9.011318 134.432405 9.011318 134.432405 C 9.011318 134.432405 9.011318 134.43632 9.007403 134.43632 C 9.007403 134.43632 9.007403 134.43632 9.007403 134.440235 C 9.007403 134.440235 9.003489 134.440235 9.003489 134.440235 C 9.003489 134.44415 9.003489 134.44415 9.003489 134.44415 C 9.003489 134.44415 8.999574 134.448064 8.999574 134.448064 C 8.999574 134.448064 8.999574 134.451979 8.995659 134.451979 C 8.995659 134.455894 8.995659 134.455894 8.995659 134.455894 C 8.991744 134.455894 8.991744 134.455894 8.991744 134.455894 C 8.991744 134.459809 8.991744 134.459809 8.991744 134.459809 C 8.987829 134.459809 8.987829 134.463723 8.987829 134.463723 C 8.987829 134.467638 8.983915 134.467638 8.983915 134.467638 C 8.983915 134.471553 8.983915 134.471553 8.983915 134.471553 C 8.983915 134.471553 8.98 134.471553 8.98 134.471553 C 8.98 134.471553 8.98 134.475468 8.98 134.475468 C 8.98 134.475468 8.98 134.475468 8.976085 134.475468 C 8.976085 134.479383 8.976085 134.479383 8.976085 134.479383 C 8.976085 134.479383 8.976085 134.479383 8.976085 134.483297 C 8.97217 134.483297 8.97217 134.483297 8.97217 134.483297 C 8.97217 134.483297 8.97217 134.487212 8.97217 134.487212 C 8.97217 134.487212 8.968255 134.487212 8.968255 134.487212 C 8.968255 134.491127 8.968255 134.491127 8.968255 134.491127 C 8.968255 134.491127 8.964341 134.491127 8.964341 134.491127 " transform="matrix(0.997819,0,0,-0.997819,12.133339,363.186038)"/> +</g> +<path style="fill:none;stroke-width:0.79701;stroke-linecap:butt;stroke-linejoin:miter;stroke:rgb(0%,65.098572%,83.921814%);stroke-opacity:1;stroke-miterlimit:10;" d="M 38.622786 81.042507 L 39.249152 78.016374 " transform="matrix(0.997819,0,0,-0.997819,12.133339,363.186038)"/> +<path style="fill-rule:nonzero;fill:rgb(0%,65.098572%,83.921814%);fill-opacity:1;stroke-width:0.79701;stroke-linecap:butt;stroke-linejoin:miter;stroke:rgb(0%,65.098572%,83.921814%);stroke-opacity:1;stroke-miterlimit:10;" d="M 7.371117 0.000298986 L 1.285953 2.293077 L 3.29251 0.000528257 L 1.28801 -2.293839 Z M 7.371117 0.000298986 " transform="matrix(0.203096,0.976884,0.976884,-0.203096,50.670632,282.318862)"/> +<g clip-path="url(#clip41)" clip-rule="nonzero"> +<path style="fill:none;stroke-width:0.79701;stroke-linecap:butt;stroke-linejoin:miter;stroke:rgb(0%,65.098572%,83.921814%);stroke-opacity:1;stroke-miterlimit:10;" d="M 44.831642 8.967318 C 44.831642 8.971233 44.831642 8.971233 44.831642 8.971233 C 44.835556 8.971233 44.835556 8.971233 44.835556 8.971233 C 44.835556 8.975147 44.835556 8.975147 44.835556 8.975147 C 44.835556 8.975147 44.835556 8.979062 44.835556 8.979062 C 44.835556 8.979062 44.839471 8.979062 44.839471 8.979062 C 44.839471 8.982977 44.839471 8.982977 44.839471 8.982977 C 44.839471 8.982977 44.839471 8.986892 44.839471 8.986892 C 44.839471 8.986892 44.839471 8.986892 44.843386 8.986892 C 44.843386 8.986892 44.843386 8.986892 44.843386 8.990806 C 44.843386 8.990806 44.843386 8.990806 44.843386 8.994721 C 44.843386 8.994721 44.847301 8.994721 44.847301 8.994721 C 44.847301 8.994721 44.847301 8.998636 44.847301 8.998636 C 44.847301 8.998636 44.847301 9.002551 44.847301 9.002551 C 44.851216 9.002551 44.851216 9.006466 44.851216 9.006466 C 44.851216 9.006466 44.851216 9.01038 44.851216 9.01038 C 44.851216 9.01038 44.85513 9.01038 44.85513 9.014295 C 44.85513 9.014295 44.85513 9.01821 44.85513 9.01821 C 44.85513 9.01821 44.859045 9.01821 44.859045 9.022125 C 44.859045 9.02604 44.859045 9.02604 44.859045 9.02604 C 44.86296 9.02604 44.86296 9.029954 44.86296 9.029954 C 44.86296 9.029954 44.86296 9.033869 44.86296 9.033869 C 44.86296 9.033869 44.866875 9.037784 44.866875 9.037784 C 44.866875 9.037784 44.866875 9.041699 44.866875 9.041699 C 44.866875 9.041699 44.87079 9.045614 44.87079 9.045614 C 44.87079 9.045614 44.87079 9.049528 44.87079 9.049528 C 44.874704 9.049528 44.874704 9.053443 44.874704 9.053443 C 44.874704 9.057358 44.874704 9.057358 44.878619 9.057358 C 44.878619 9.061273 44.878619 9.061273 44.878619 9.065187 C 44.878619 9.065187 44.882534 9.069102 44.882534 9.069102 C 44.882534 9.073017 44.886449 9.073017 44.886449 9.076932 C 44.886449 9.076932 44.886449 9.080847 44.886449 9.080847 C 44.890364 9.084761 44.890364 9.084761 44.890364 9.088676 C 44.894278 9.088676 44.894278 9.092591 44.894278 9.096506 C 44.894278 9.096506 44.898193 9.100421 44.898193 9.100421 C 44.898193 9.104335 44.902108 9.10825 44.902108 9.10825 C 44.902108 9.112165 44.906023 9.11608 44.906023 9.11608 C 44.906023 9.119995 44.909937 9.123909 44.909937 9.123909 C 44.909937 9.127824 44.913852 9.131739 44.913852 9.135654 C 44.917767 9.135654 44.917767 9.139568 44.917767 9.143483 C 44.921682 9.147398 44.921682 9.151313 44.925597 9.155228 C 44.925597 9.155228 44.929511 9.163057 44.929511 9.163057 C 44.929511 9.166972 44.933426 9.170887 44.933426 9.174802 C 44.937341 9.178716 44.937341 9.182631 44.941256 9.186546 C 44.941256 9.190461 44.945171 9.194376 44.945171 9.19829 C 44.949085 9.202205 44.953 9.20612 44.953 9.210035 C 44.956915 9.213949 44.956915 9.221779 44.96083 9.225694 C 44.96083 9.229609 44.964745 9.233523 44.968659 9.241353 C 44.968659 9.245268 44.972574 9.249183 44.976489 9.253097 C 44.976489 9.257012 44.980404 9.264842 44.984318 9.268757 C 44.984318 9.276586 44.988233 9.284416 44.992148 9.28833 C 44.992148 9.292245 44.996063 9.300075 44.999978 9.30399 C 45.003892 9.311819 45.007807 9.319649 45.007807 9.323564 C 45.011722 9.327478 45.015637 9.339223 45.019552 9.343138 C 45.023466 9.350967 45.027381 9.358797 45.031296 9.362711 C 45.031296 9.370541 45.039126 9.378371 45.039126 9.3862 C 45.04304 9.39403 45.05087 9.401859 45.05087 9.409689 C 45.054785 9.417519 45.062614 9.425348 45.066529 9.433178 C 45.066529 9.441007 45.074359 9.452752 45.078273 9.460581 C 45.082188 9.468411 45.086103 9.480155 45.090018 9.487985 C 45.093933 9.495814 45.101762 9.507559 45.105677 9.515388 C 45.109592 9.523218 45.117421 9.538877 45.121336 9.546707 C 45.125251 9.554536 45.13308 9.570195 45.136995 9.578025 C 45.14091 9.585854 45.14874 9.601514 45.152654 9.613258 C 45.156569 9.621088 45.168314 9.636747 45.172228 9.648491 C 45.176143 9.656321 45.183973 9.675895 45.191802 9.683724 C 45.195717 9.695469 45.203547 9.715043 45.211376 9.726787 C 45.215291 9.734616 45.223121 9.75419 45.23095 9.765935 C 45.23878 9.777679 45.246609 9.797253 45.254439 9.808997 C 45.258354 9.824657 45.270098 9.844231 45.277928 9.855975 C 45.281842 9.871634 45.293587 9.891208 45.301416 9.906867 C 45.309246 9.918612 45.32099 9.9421 45.324905 9.957759 C 45.332735 9.973419 45.344479 9.996907 45.352309 10.012567 C 45.360138 10.028226 45.375797 10.055629 45.383627 10.071288 C 45.391457 10.086948 45.403201 10.114351 45.411031 10.13001 C 45.422775 10.149584 45.434519 10.176988 45.446264 10.196562 C 45.454093 10.212221 45.469752 10.243539 45.477582 10.263113 C 45.489326 10.282687 45.504985 10.314005 45.512815 10.333579 C 45.524559 10.353153 45.540219 10.388386 45.551963 10.40796 C 45.563707 10.431449 45.579366 10.462767 45.591111 10.486256 C 45.602855 10.509745 45.622429 10.544978 45.634174 10.572381 C 45.645918 10.59587 45.665492 10.635018 45.677236 10.658507 C 45.688981 10.681996 45.708555 10.725058 45.724214 10.752462 C 45.735958 10.77595 45.759447 10.819013 45.771191 10.850331 C 45.78685 10.877735 45.810339 10.920798 45.822083 10.952116 C 45.837743 10.97952 45.861231 11.030412 45.87689 11.057815 C 45.89255 11.089134 45.919953 11.140026 45.935612 11.175259 C 45.951271 11.206577 45.978675 11.261384 45.994334 11.292703 C 46.009993 11.327936 46.041312 11.382743 46.056971 11.421891 C 46.076545 11.457124 46.103948 11.515846 46.123522 11.554994 C 46.143096 11.590227 46.174414 11.652863 46.193988 11.695926 C 46.213562 11.735074 46.248795 11.801625 46.268369 11.840773 C 46.291858 11.883836 46.323176 11.954302 46.346665 11.997365 C 46.370154 12.044342 46.405387 12.114808 46.428876 12.161786 C 46.452364 12.208763 46.491512 12.287059 46.515001 12.334037 C 46.53849 12.384929 46.581553 12.46714 46.605041 12.518032 C 46.632445 12.568924 46.675507 12.655049 46.702911 12.709856 C 46.730315 12.764664 46.773377 12.854704 46.804696 12.909511 C 46.832099 12.968233 46.879077 13.062188 46.910395 13.120909 C 46.937798 13.183546 46.988691 13.281416 47.020009 13.344052 C 47.051327 13.410604 47.106134 13.512388 47.137453 13.57894 C 47.172686 13.645491 47.227493 13.755105 47.262726 13.825571 C 47.297959 13.896038 47.352766 14.013481 47.391914 14.087862 C 47.427147 14.158329 47.489784 14.279687 47.528932 14.357983 C 47.564165 14.436279 47.630716 14.565467 47.669864 14.643762 C 47.712927 14.725973 47.779478 14.859076 47.822541 14.945201 C 47.861689 15.031327 47.932155 15.172259 47.979132 15.262299 C 48.022195 15.352339 48.096576 15.501101 48.143554 15.595056 C 48.190531 15.689011 48.268827 15.845603 48.319719 15.943473 C 48.370611 16.041342 48.448907 16.205763 48.503714 16.311463 C 48.554606 16.413247 48.640732 16.585498 48.695539 16.695112 C 48.750346 16.800811 48.840386 16.980892 48.895193 17.094421 C 48.953915 17.211864 49.04787 17.399774 49.106592 17.517218 C 49.165314 17.638576 49.267098 17.834316 49.329735 17.959589 C 49.392371 18.088777 49.494156 18.292346 49.560707 18.425449 C 49.627259 18.558552 49.732958 18.773865 49.803424 18.910883 C 49.87389 19.047901 49.983505 19.274958 50.057886 19.419806 C 50.128352 19.564653 50.24971 19.79954 50.324091 19.952217 C 50.398472 20.104894 50.523746 20.351526 50.602041 20.508117 C 50.680337 20.664709 50.809525 20.927 50.891736 21.091421 C 50.973946 21.255842 51.110964 21.525962 51.197089 21.698213 C 51.283215 21.870464 51.424147 22.152329 51.514187 22.332409 C 51.604227 22.512489 51.752989 22.810013 51.846944 22.997923 C 51.940899 23.185833 52.093576 23.491187 52.191446 23.686926 C 52.289316 23.882666 52.449822 24.203678 52.551606 24.407247 C 52.653391 24.614731 52.821727 24.947488 52.927426 25.158887 C 53.033126 25.3742 53.209291 25.718702 53.318905 25.941845 C 53.428519 26.161073 53.6086 26.525148 53.726043 26.752206 C 53.839572 26.983179 54.027482 27.358999 54.148841 27.597801 C 54.266284 27.836603 54.462024 28.228082 54.587297 28.474714 C 54.708655 28.72526 54.912225 29.128483 55.041413 29.38686 C 55.170601 29.645236 55.378084 30.064118 55.511187 30.330324 C 55.64429 30.59653 55.863518 31.031071 56.000536 31.305106 C 56.137554 31.583056 56.364611 32.033257 56.505544 32.315122 C 56.646476 32.600902 56.881364 33.066762 57.026211 33.360371 C 57.174973 33.65398 57.413775 34.135499 57.566452 34.436938 C 57.719129 34.742292 57.96576 35.235555 58.122352 35.548738 C 58.278943 35.861921 58.533405 36.370844 58.693911 36.691857 C 58.854418 37.012869 59.116708 37.537451 59.28113 37.866294 C 59.445551 38.195136 59.715671 38.731462 59.884007 39.072049 C 60.052343 39.408721 60.326378 39.960706 60.502544 40.309122 C 60.674795 40.653624 60.956659 41.217353 61.132825 41.573599 C 61.312905 41.92593 61.598685 42.501404 61.778765 42.86548 C 61.958846 43.22564 62.252455 43.812859 62.43645 44.180849 C 62.62436 44.548839 62.921884 45.147802 63.109794 45.519707 C 63.293789 45.895527 63.599142 46.502319 63.787052 46.882054 C 63.978877 47.261788 64.28423 47.87641 64.47997 48.263974 C 64.671795 48.647624 64.981063 49.270075 65.176802 49.657639 C 65.368627 50.045204 65.685725 50.67157 65.881465 51.063049 C 66.077204 51.454528 66.390387 52.084809 66.586127 52.480203 C 66.785781 52.875596 67.098964 53.505877 67.298618 53.901271 C 67.494358 54.296665 67.811456 54.930861 68.01111 55.32234 C 68.20685 55.717733 68.523947 56.348015 68.719687 56.743408 C 68.915426 57.134887 69.22861 57.765168 69.424349 58.152733 C 69.620089 58.544211 69.933272 59.166663 70.125096 59.554227 C 70.316921 59.941791 70.626189 60.556413 70.818014 60.936148 C 71.005924 61.319797 71.311278 61.92659 71.495273 62.298495 C 71.683183 62.674314 71.980707 63.269362 72.164702 63.633438 C 72.348697 64.001428 72.638391 64.580817 72.818472 64.937063 C 72.994637 65.297223 73.276502 65.860953 73.452667 66.209369 C 73.624918 66.553871 73.898953 67.101941 74.067289 67.434698 C 74.231711 67.77137 74.497916 68.295952 74.658423 68.62088 C 74.818929 68.941892 75.069475 69.4469 75.226067 69.756168 C 75.378744 70.061522 75.617546 70.543041 75.766308 70.83665 C 75.911155 71.13026 76.142128 71.584375 76.279145 71.862325 C 76.416163 72.140275 76.631476 72.570902 76.760665 72.829278 C 76.893767 73.091569 77.093422 73.494792 77.21478 73.737509 C 77.336139 73.980226 77.524048 74.356046 77.637577 74.579189 C 77.751106 74.806247 77.923357 75.150748 78.029056 75.358232 C 78.130841 75.565716 78.291347 75.886729 78.385302 76.074639 C 78.479257 76.262549 78.624104 76.552243 78.71023 76.724494 C 78.796355 76.896744 78.925543 77.159035 79.003839 77.311712 C 79.082135 77.468304 79.199578 77.703191 79.26613 77.840209 C 79.336596 77.977226 79.43838 78.18471 79.501017 78.306069 C 79.563654 78.427427 79.653694 78.611422 79.704586 78.717122 C 79.759393 78.822821 79.837689 78.983327 79.884666 79.073367 C 79.931644 79.167322 79.998195 79.300425 80.037343 79.382636 C 80.076491 79.460932 80.135213 79.57446 80.170446 79.641012 C 80.201764 79.707563 80.248742 79.805433 80.28006 79.86024 C 80.307464 79.918962 80.346612 79.997258 80.3701 80.044235 C 80.393589 80.091213 80.424907 80.153849 80.444481 80.192997 C 80.464055 80.232145 80.487544 80.283037 80.503203 80.314356 C 80.518862 80.345674 80.542351 80.384822 80.554095 80.408311 C 80.56584 80.431799 80.581499 80.467032 80.589329 80.486606 C 80.601073 80.502266 80.612817 80.529669 80.620647 80.541413 C 80.624562 80.557073 80.636306 80.576647 80.640221 80.588391 C 80.64805 80.596221 80.651965 80.61188 80.65588 80.619709 C 80.659795 80.627539 80.667624 80.639283 80.667624 80.643198 C 80.671539 80.651028 80.675454 80.654942 80.679369 80.658857 C 80.679369 80.662772 80.683284 80.670602 80.683284 80.670602 C 80.683284 80.674516 80.687198 80.678431 80.687198 80.682346 C 80.687198 80.682346 80.691113 80.686261 80.691113 80.686261 C 80.691113 80.686261 80.691113 80.690175 80.691113 80.690175 C 80.691113 80.690175 80.695028 80.690175 80.695028 80.690175 " transform="matrix(0.997819,0,0,-0.997819,12.133339,363.186038)"/> +</g> +<path style="fill:none;stroke-width:0.79701;stroke-linecap:butt;stroke-linejoin:miter;stroke:rgb(0%,65.098572%,83.921814%);stroke-opacity:1;stroke-miterlimit:10;" d="M 60.862705 41.025529 L 62.244625 43.793285 " transform="matrix(0.997819,0,0,-0.997819,12.133339,363.186038)"/> +<path style="fill-rule:nonzero;fill:rgb(0%,65.098572%,83.921814%);fill-opacity:1;stroke-width:0.79701;stroke-linecap:butt;stroke-linejoin:miter;stroke:rgb(0%,65.098572%,83.921814%);stroke-opacity:1;stroke-miterlimit:10;" d="M 7.369748 0.00109081 L 1.285722 2.295228 L 3.290256 0.00143746 L 1.287082 -2.295514 Z M 7.369748 0.00109081 " transform="matrix(0.446135,-0.892459,-0.892459,-0.446135,72.861511,322.24956)"/> +<g clip-path="url(#clip42)" clip-rule="nonzero"> +<path style="fill:none;stroke-width:0.79701;stroke-linecap:butt;stroke-linejoin:miter;stroke:rgb(0%,65.098572%,83.921814%);stroke-opacity:1;stroke-miterlimit:10;" d="M 53.79651 8.967318 C 53.79651 8.967318 53.800424 8.967318 53.800424 8.967318 C 53.800424 8.967318 53.800424 8.971233 53.800424 8.971233 C 53.800424 8.971233 53.800424 8.975147 53.800424 8.975147 C 53.800424 8.975147 53.804339 8.975147 53.804339 8.975147 C 53.804339 8.975147 53.804339 8.979062 53.804339 8.979062 C 53.808254 8.979062 53.808254 8.982977 53.808254 8.982977 C 53.808254 8.982977 53.808254 8.986892 53.808254 8.986892 C 53.808254 8.986892 53.812169 8.986892 53.812169 8.986892 C 53.812169 8.990806 53.812169 8.990806 53.812169 8.990806 C 53.816083 8.994721 53.816083 8.994721 53.816083 8.994721 C 53.816083 8.994721 53.816083 8.998636 53.816083 8.998636 C 53.816083 8.998636 53.816083 8.998636 53.819998 8.998636 C 53.819998 8.998636 53.819998 8.998636 53.819998 9.002551 C 53.819998 9.002551 53.819998 9.002551 53.819998 9.006466 C 53.823913 9.006466 53.823913 9.006466 53.823913 9.006466 C 53.823913 9.006466 53.823913 9.006466 53.823913 9.01038 C 53.823913 9.01038 53.823913 9.01038 53.827828 9.01038 C 53.827828 9.01038 53.827828 9.014295 53.827828 9.014295 C 53.827828 9.014295 53.827828 9.014295 53.827828 9.01821 C 53.831743 9.01821 53.831743 9.01821 53.831743 9.01821 C 53.831743 9.01821 53.831743 9.022125 53.831743 9.022125 C 53.835657 9.022125 53.835657 9.02604 53.835657 9.02604 C 53.835657 9.02604 53.835657 9.02604 53.835657 9.029954 C 53.839572 9.029954 53.839572 9.029954 53.839572 9.033869 C 53.839572 9.033869 53.839572 9.033869 53.843487 9.033869 C 53.843487 9.037784 53.843487 9.037784 53.843487 9.037784 C 53.843487 9.041699 53.847402 9.041699 53.847402 9.045614 C 53.847402 9.045614 53.847402 9.045614 53.851317 9.049528 C 53.851317 9.049528 53.851317 9.049528 53.851317 9.053443 C 53.855231 9.053443 53.855231 9.057358 53.855231 9.057358 C 53.855231 9.057358 53.859146 9.061273 53.859146 9.061273 C 53.859146 9.065187 53.863061 9.065187 53.863061 9.069102 C 53.863061 9.069102 53.866976 9.073017 53.866976 9.073017 C 53.866976 9.073017 53.870891 9.076932 53.870891 9.080847 C 53.870891 9.080847 53.874805 9.084761 53.874805 9.084761 C 53.874805 9.088676 53.87872 9.088676 53.87872 9.092591 C 53.87872 9.092591 53.882635 9.096506 53.882635 9.100421 C 53.882635 9.100421 53.88655 9.104335 53.88655 9.10825 C 53.890464 9.10825 53.890464 9.112165 53.894379 9.11608 C 53.894379 9.11608 53.898294 9.119995 53.898294 9.123909 C 53.898294 9.123909 53.902209 9.127824 53.902209 9.131739 C 53.906124 9.131739 53.910038 9.135654 53.910038 9.139568 C 53.910038 9.143483 53.913953 9.147398 53.917868 9.151313 C 53.917868 9.151313 53.921783 9.155228 53.921783 9.159142 C 53.925698 9.163057 53.929612 9.166972 53.929612 9.170887 C 53.933527 9.174802 53.933527 9.178716 53.937442 9.182631 C 53.937442 9.186546 53.941357 9.190461 53.945272 9.194376 C 53.945272 9.19829 53.949186 9.202205 53.953101 9.20612 C 53.957016 9.210035 53.960931 9.217864 53.960931 9.217864 C 53.964845 9.221779 53.96876 9.229609 53.972675 9.233523 C 53.972675 9.237438 53.97659 9.245268 53.980505 9.249183 C 53.984419 9.253097 53.988334 9.260927 53.992249 9.264842 C 53.992249 9.268757 54.000079 9.276586 54.000079 9.280501 C 54.003993 9.284416 54.007908 9.292245 54.011823 9.29616 C 54.015738 9.30399 54.019653 9.311819 54.023567 9.315734 C 54.027482 9.319649 54.035312 9.331393 54.035312 9.335308 C 54.039226 9.339223 54.047056 9.350967 54.050971 9.354882 C 54.054886 9.362711 54.0588 9.370541 54.062715 9.378371 C 54.06663 9.382285 54.07446 9.39403 54.078374 9.401859 C 54.082289 9.405774 54.090119 9.417519 54.094034 9.425348 C 54.097948 9.429263 54.105778 9.441007 54.109693 9.448837 C 54.117522 9.456666 54.125352 9.468411 54.129267 9.47624 C 54.133181 9.48407 54.141011 9.495814 54.148841 9.503644 C 54.152755 9.511473 54.160585 9.527133 54.168415 9.534962 C 54.172329 9.542792 54.180159 9.554536 54.187988 9.566281 C 54.191903 9.57411 54.203648 9.589769 54.207562 9.597599 C 54.215392 9.605428 54.223222 9.621088 54.231051 9.632832 C 54.238881 9.640662 54.24671 9.660235 54.25454 9.668065 C 54.262369 9.679809 54.274114 9.695469 54.281943 9.707213 C 54.285858 9.718957 54.297603 9.738531 54.305432 9.750276 C 54.313262 9.76202 54.328921 9.777679 54.33675 9.793338 C 54.34458 9.805083 54.356324 9.824657 54.364154 9.836401 C 54.371984 9.848145 54.387643 9.871634 54.395472 9.883378 C 54.403302 9.899038 54.418961 9.922526 54.430705 9.934271 C 54.438535 9.94993 54.454194 9.973419 54.465939 9.989078 C 54.473768 10.004737 54.489427 10.028226 54.501172 10.043885 C 54.512916 10.059544 54.528575 10.086948 54.54032 10.102607 C 54.552064 10.118266 54.567723 10.149584 54.579467 10.165243 C 54.591212 10.184817 54.610786 10.212221 54.62253 10.231795 C 54.634274 10.251369 54.657763 10.278772 54.669508 10.298346 C 54.681252 10.31792 54.704741 10.353153 54.716485 10.372727 C 54.732144 10.392301 54.751718 10.427534 54.767377 10.451023 C 54.783036 10.470597 54.806525 10.50583 54.822184 10.529319 C 54.833929 10.552807 54.861332 10.591955 54.876991 10.615444 C 54.892651 10.638933 54.920054 10.678081 54.935713 10.705484 C 54.951372 10.728973 54.978776 10.772036 54.99835 10.799439 C 55.017924 10.826843 55.045327 10.869905 55.064901 10.901224 C 55.084475 10.928627 55.111879 10.975605 55.135368 11.003008 C 55.154941 11.034327 55.18626 11.081304 55.205834 11.116537 C 55.229322 11.147855 55.260641 11.198748 55.28413 11.230066 C 55.303703 11.265299 55.342851 11.320106 55.36634 11.351425 C 55.389829 11.386658 55.425062 11.445379 55.448551 11.480613 C 55.475954 11.51976 55.515102 11.578482 55.542506 11.61763 C 55.565994 11.656778 55.609057 11.719415 55.636461 11.758563 C 55.663864 11.801625 55.706927 11.868177 55.73433 11.911239 C 55.765649 11.954302 55.812626 12.024768 55.84003 12.067831 C 55.871348 12.114808 55.92224 12.185275 55.953559 12.232252 C 55.984877 12.283144 56.035769 12.357525 56.071002 12.408418 C 56.102321 12.45931 56.157128 12.541521 56.192361 12.592413 C 56.227594 12.643305 56.286316 12.72943 56.321549 12.784237 C 56.360697 12.839045 56.419418 12.929085 56.458566 12.987807 C 56.497714 13.046528 56.560351 13.140483 56.603414 13.199205 C 56.642561 13.261842 56.713028 13.359712 56.75609 13.422348 C 56.799153 13.4889 56.869619 13.590684 56.912682 13.657236 C 56.959659 13.723787 57.03404 13.833401 57.081018 13.903867 C 57.127995 13.974333 57.206291 14.087862 57.257183 14.162243 C 57.308076 14.236624 57.390286 14.357983 57.445093 14.432364 C 57.495986 14.51066 57.582111 14.635933 57.636918 14.718143 C 57.69564 14.800354 57.78568 14.929542 57.844402 15.015667 C 57.903124 15.101793 57.997079 15.23881 58.059715 15.328851 C 58.122352 15.414976 58.224136 15.563738 58.286773 15.653778 C 58.353324 15.747733 58.459024 15.90041 58.525575 15.99828 C 58.592127 16.092235 58.705656 16.252741 58.776122 16.354525 C 58.846588 16.45631 58.964032 16.624646 59.038413 16.730345 C 59.116708 16.836045 59.238067 17.008295 59.316363 17.121824 C 59.394658 17.231438 59.523847 17.411519 59.606057 17.528962 C 59.692182 17.646406 59.825285 17.834316 59.911411 17.955674 C 60.001451 18.077033 60.142383 18.272772 60.232423 18.40196 C 60.326378 18.527234 60.47514 18.734717 60.569095 18.863906 C 60.666965 18.997008 60.823557 19.212322 60.921426 19.349339 C 61.023211 19.486357 61.187632 19.7095 61.293331 19.850432 C 61.399031 19.991365 61.571281 20.226252 61.680896 20.375014 C 61.79051 20.523776 61.97059 20.762578 62.088034 20.91917 C 62.205477 21.071847 62.393387 21.322393 62.514746 21.4829 C 62.636104 21.643406 62.835758 21.901782 62.961032 22.066203 C 63.09022 22.230624 63.297704 22.500745 63.430806 22.672996 C 63.563909 22.845246 63.783137 23.123196 63.920155 23.299362 C 64.061087 23.475527 64.288145 23.765222 64.432992 23.949217 C 64.581754 24.129297 64.820557 24.426821 64.973233 24.618646 C 65.12591 24.806556 65.376457 25.111909 65.533048 25.303734 C 65.693555 25.499474 65.955846 25.816572 66.124182 26.012311 C 66.292517 26.211965 66.566553 26.536893 66.738803 26.740462 C 66.914969 26.944031 67.200749 27.276788 67.384744 27.484272 C 67.568739 27.695671 67.866263 28.032342 68.058088 28.247656 C 68.249912 28.459054 68.563095 28.807471 68.76275 29.022784 C 68.962404 29.242012 69.291246 29.594343 69.49873 29.813572 C 69.710129 30.0328 70.050715 30.389046 70.269944 30.616103 C 70.489172 30.839246 70.845418 31.199407 71.07639 31.42255 C 71.303448 31.649608 71.679268 32.013683 71.91807 32.240741 C 72.156872 32.467799 72.548351 32.831874 72.798898 33.058932 C 73.049444 33.282075 73.460497 33.646151 73.722788 33.873208 C 73.985079 34.100266 74.415706 34.460427 74.689741 34.68357 C 74.963776 34.906713 75.413977 35.262959 75.699757 35.482187 C 75.989451 35.701415 76.463141 36.049831 76.764579 36.26123 C 77.066018 36.476543 77.559282 36.813215 77.87638 37.020699 C 78.193477 37.224268 78.714144 37.549196 79.050816 37.744935 C 79.383573 37.940675 79.931644 38.246028 80.283975 38.430023 C 80.636306 38.614018 81.21178 38.895883 81.583685 39.064219 C 81.95559 39.232555 82.566297 39.487016 82.957776 39.635778 C 83.35317 39.78454 83.99911 40.007683 84.417993 40.132957 C 84.83296 40.25823 85.521963 40.442225 85.964335 40.540095 C 86.410621 40.637964 87.142686 40.771067 87.616376 40.837619 C 88.090065 40.90417 88.876938 40.982466 89.385861 41.009869 C 89.894783 41.037273 90.736463 41.052932 91.284533 41.033358 C 91.836519 41.017699 92.74475 40.955062 93.339798 40.884596 C 93.934846 40.81413 94.921373 40.657538 95.571228 40.524436 C 96.217168 40.391333 97.29765 40.132957 98.006227 39.925473 C 98.714804 39.717989 99.900985 39.330425 100.683943 39.04073 C 101.466901 38.747121 102.778355 38.21471 103.651353 37.819316 C 104.520437 37.427837 105.980653 36.71926 106.955436 36.206423 C 107.926303 35.689671 109.5666 34.777525 110.666656 34.11984 C 111.762797 33.46607 113.618407 32.303378 114.867225 31.477357 C 116.116043 30.651337 118.233944 29.19895 119.666757 28.16936 C 121.09957 27.13977 123.534569 25.331138 125.190525 24.054916 C 126.846481 22.778695 129.669044 20.547265 131.60295 18.97352 C 133.536856 17.395859 139.119346 12.702027 139.119346 12.702027 " transform="matrix(0.997819,0,0,-0.997819,12.133339,363.186038)"/> +</g> +<path style="fill:none;stroke-width:0.79701;stroke-linecap:butt;stroke-linejoin:miter;stroke:rgb(0%,65.098572%,83.921814%);stroke-opacity:1;stroke-miterlimit:10;" d="M 89.5816 41.487474 L 92.631221 40.998125 " transform="matrix(0.997819,0,0,-0.997819,12.133339,363.186038)"/> +<path style="fill-rule:nonzero;fill:rgb(0%,65.098572%,83.921814%);fill-opacity:1;stroke-width:0.79701;stroke-linecap:butt;stroke-linejoin:miter;stroke:rgb(0%,65.098572%,83.921814%);stroke-opacity:1;stroke-miterlimit:10;" d="M 7.368344 0.00180346 L 1.286972 2.29305 L 3.292242 0.00188646 L 1.28574 -2.29473 Z M 7.368344 0.00180346 " transform="matrix(0.985166,0.158104,0.158104,-0.985166,101.518015,321.789934)"/> +<g clip-path="url(#clip43)" clip-rule="nonzero"> +<path style="fill:none;stroke-width:0.79701;stroke-linecap:butt;stroke-linejoin:miter;stroke:rgb(0%,65.098572%,83.921814%);stroke-opacity:1;stroke-miterlimit:10;" d="M 62.761377 8.967318 C 62.761377 8.967318 62.765292 8.967318 62.765292 8.967318 C 62.765292 8.967318 62.765292 8.967318 62.765292 8.971233 C 62.765292 8.971233 62.769207 8.971233 62.769207 8.971233 C 62.769207 8.971233 62.769207 8.975147 62.769207 8.975147 C 62.773122 8.975147 62.773122 8.975147 62.773122 8.975147 C 62.773122 8.975147 62.773122 8.975147 62.773122 8.979062 C 62.773122 8.979062 62.777037 8.979062 62.777037 8.979062 C 62.777037 8.979062 62.777037 8.982977 62.777037 8.982977 C 62.777037 8.982977 62.780951 8.982977 62.780951 8.986892 C 62.780951 8.986892 62.784866 8.990806 62.784866 8.990806 C 62.784866 8.990806 62.784866 8.994721 62.788781 8.994721 C 62.788781 8.994721 62.788781 8.994721 62.788781 8.998636 C 62.788781 8.998636 62.792696 8.998636 62.792696 8.998636 C 62.792696 9.002551 62.792696 9.002551 62.792696 9.002551 C 62.79661 9.002551 62.79661 9.002551 62.79661 9.002551 C 62.79661 9.006466 62.79661 9.006466 62.79661 9.006466 C 62.800525 9.006466 62.800525 9.006466 62.800525 9.01038 C 62.80444 9.01038 62.80444 9.014295 62.80444 9.014295 C 62.80444 9.014295 62.80444 9.014295 62.808355 9.014295 C 62.808355 9.01821 62.808355 9.01821 62.808355 9.01821 C 62.808355 9.01821 62.81227 9.022125 62.81227 9.022125 C 62.81227 9.022125 62.81227 9.022125 62.816184 9.02604 C 62.816184 9.02604 62.816184 9.02604 62.816184 9.029954 C 62.816184 9.029954 62.820099 9.029954 62.820099 9.029954 C 62.820099 9.033869 62.824014 9.033869 62.824014 9.033869 C 62.824014 9.037784 62.824014 9.037784 62.827929 9.037784 C 62.827929 9.041699 62.827929 9.041699 62.831844 9.041699 C 62.831844 9.045614 62.831844 9.045614 62.835758 9.045614 C 62.835758 9.049528 62.835758 9.049528 62.839673 9.053443 C 62.839673 9.053443 62.839673 9.053443 62.843588 9.057358 C 62.843588 9.057358 62.843588 9.061273 62.847503 9.061273 C 62.847503 9.061273 62.851418 9.065187 62.851418 9.065187 C 62.851418 9.069102 62.855332 9.069102 62.855332 9.073017 C 62.859247 9.073017 62.859247 9.076932 62.859247 9.076932 C 62.863162 9.080847 62.863162 9.080847 62.867077 9.084761 C 62.867077 9.084761 62.870991 9.088676 62.870991 9.092591 C 62.874906 9.092591 62.874906 9.096506 62.878821 9.096506 C 62.878821 9.100421 62.882736 9.104335 62.886651 9.104335 C 62.886651 9.10825 62.890565 9.112165 62.890565 9.112165 C 62.89448 9.11608 62.898395 9.119995 62.898395 9.119995 C 62.90231 9.123909 62.90231 9.127824 62.906225 9.127824 C 62.910139 9.131739 62.910139 9.135654 62.914054 9.139568 C 62.917969 9.139568 62.921884 9.147398 62.921884 9.147398 C 62.925799 9.151313 62.929713 9.155228 62.929713 9.159142 C 62.933628 9.163057 62.937543 9.166972 62.941458 9.166972 C 62.941458 9.170887 62.949287 9.178716 62.949287 9.178716 C 62.953202 9.182631 62.957117 9.186546 62.961032 9.190461 C 62.964946 9.194376 62.968861 9.202205 62.972776 9.20612 C 62.976691 9.20612 62.980606 9.213949 62.98452 9.217864 C 62.988435 9.221779 62.99235 9.225694 62.996265 9.229609 C 63.00018 9.233523 63.004094 9.241353 63.008009 9.245268 C 63.011924 9.249183 63.019753 9.257012 63.023668 9.260927 C 63.027583 9.264842 63.031498 9.272671 63.035413 9.276586 C 63.039327 9.280501 63.047157 9.28833 63.051072 9.29616 C 63.054987 9.300075 63.062816 9.307904 63.066731 9.311819 C 63.070646 9.319649 63.078475 9.327478 63.086305 9.331393 C 63.09022 9.339223 63.098049 9.347052 63.101964 9.350967 C 63.105879 9.358797 63.113708 9.366626 63.121538 9.374456 C 63.125453 9.378371 63.133282 9.390115 63.141112 9.39403 C 63.145027 9.401859 63.156771 9.413604 63.160686 9.417519 C 63.168515 9.425348 63.176345 9.437092 63.184175 9.444922 C 63.188089 9.452752 63.199834 9.464496 63.207663 9.472326 C 63.211578 9.47624 63.223323 9.4919 63.231152 9.499729 C 63.238982 9.507559 63.250726 9.519303 63.258556 9.527133 C 63.266385 9.534962 63.27813 9.550621 63.285959 9.558451 C 63.293789 9.566281 63.305533 9.58194 63.313363 9.589769 C 63.321192 9.601514 63.336851 9.617173 63.344681 9.625002 C 63.352511 9.636747 63.36817 9.652406 63.375999 9.660235 C 63.383829 9.67198 63.399488 9.687639 63.411232 9.699383 C 63.419062 9.711128 63.434721 9.726787 63.446466 9.738531 C 63.454295 9.750276 63.473869 9.76985 63.481699 9.781594 C 63.493443 9.793338 63.513017 9.812912 63.524761 9.824657 C 63.532591 9.840316 63.552165 9.85989 63.563909 9.871634 C 63.575654 9.887293 63.595228 9.906867 63.610887 9.922526 C 63.622631 9.938186 63.642205 9.961674 63.653949 9.973419 C 63.669609 9.989078 63.689182 10.012567 63.704842 10.028226 C 63.720501 10.043885 63.740075 10.071288 63.755734 10.086948 C 63.771393 10.102607 63.794882 10.13001 63.810541 10.149584 C 63.8262 10.165243 63.853604 10.192647 63.869263 10.212221 C 63.884922 10.231795 63.912325 10.259198 63.931899 10.278772 C 63.947559 10.298346 63.974962 10.329664 63.994536 10.353153 C 64.01411 10.372727 64.041514 10.404045 64.061087 10.427534 C 64.080661 10.447108 64.11198 10.482341 64.135468 10.50583 C 64.155042 10.529319 64.186361 10.564552 64.209849 10.588041 C 64.229423 10.611529 64.264657 10.650677 64.288145 10.674166 C 64.311634 10.701569 64.346867 10.740717 64.374271 10.768121 C 64.397759 10.79161 64.436907 10.834672 64.460396 10.862076 C 64.4878 10.889479 64.526947 10.936457 64.554351 10.96386 C 64.581754 10.995179 64.624817 11.042156 64.652221 11.073474 C 64.679624 11.100878 64.726602 11.15177 64.75792 11.183089 C 64.785324 11.218322 64.832301 11.269214 64.863619 11.304447 C 64.894938 11.335765 64.94583 11.390572 64.981063 11.425806 C 65.012381 11.461039 65.067188 11.51976 65.102421 11.558908 C 65.137655 11.594141 65.192462 11.656778 65.23161 11.695926 C 65.266843 11.735074 65.325564 11.797711 65.364712 11.836858 C 65.40386 11.879921 65.466497 11.946473 65.505645 11.989535 C 65.548707 12.032598 65.615259 12.103064 65.658322 12.146127 C 65.701384 12.193104 65.77185 12.267485 65.814913 12.314463 C 65.861891 12.36144 65.932357 12.439736 65.983249 12.486713 C 66.030227 12.537606 66.108522 12.619816 66.1555 12.670709 C 66.206392 12.721601 66.288603 12.807726 66.34341 12.862533 C 66.394302 12.91734 66.480427 13.00738 66.535234 13.062188 C 66.593956 13.120909 66.683996 13.214864 66.742718 13.273586 C 66.80144 13.332308 66.895395 13.430178 66.958032 13.492814 C 67.020668 13.555451 67.122453 13.657236 67.185089 13.723787 C 67.251641 13.786424 67.35734 13.896038 67.427806 13.962589 C 67.494358 14.029141 67.607887 14.142669 67.678353 14.213136 C 67.748819 14.283602 67.870178 14.401046 67.944559 14.475427 C 68.01894 14.549808 68.144213 14.671166 68.226423 14.749462 C 68.304719 14.823843 68.437822 14.953031 68.520033 15.031327 C 68.606158 15.113537 68.743176 15.24664 68.829301 15.328851 C 68.919341 15.414976 69.064188 15.551994 69.158143 15.638119 C 69.252098 15.724244 69.404775 15.869092 69.502645 15.959132 C 69.600515 16.049172 69.761021 16.197934 69.86672 16.291889 C 69.968505 16.385844 70.136841 16.538521 70.246455 16.63639 C 70.356069 16.73426 70.532234 16.894766 70.649678 16.996551 C 70.763207 17.098335 70.951117 17.262757 71.072475 17.368456 C 71.189919 17.474155 71.389573 17.642491 71.514847 17.752105 C 71.644035 17.857805 71.851519 18.03397 71.984621 18.147499 C 72.117724 18.257113 72.336952 18.441108 72.477885 18.554637 C 72.618817 18.668166 72.84979 18.856076 72.994637 18.97352 C 73.143399 19.090963 73.386116 19.282788 73.542708 19.404146 C 73.699299 19.525505 73.95376 19.725159 74.118182 19.846518 C 74.278688 19.971791 74.548808 20.171445 74.721059 20.296718 C 74.89331 20.425907 75.17909 20.629476 75.35917 20.758664 C 75.53925 20.887852 75.836774 21.095336 76.028599 21.224524 C 76.220424 21.353712 76.533607 21.56511 76.733261 21.698213 C 76.93683 21.831316 77.265672 22.042715 77.477071 22.175817 C 77.692384 22.30892 78.040801 22.520319 78.263944 22.653422 C 78.487087 22.786525 78.851162 23.001838 79.089964 23.134941 C 79.324852 23.268044 79.712416 23.479442 79.959047 23.60863 C 80.205679 23.741733 80.616732 23.949217 80.879023 24.078405 C 81.141314 24.207593 81.571941 24.411162 81.845976 24.536435 C 82.123926 24.661709 82.578042 24.861363 82.871651 24.982721 C 83.16526 25.10408 83.642864 25.29199 83.952133 25.405519 C 84.261401 25.522962 84.770324 25.699128 85.099166 25.808742 C 85.428008 25.914441 85.964335 26.078862 86.312751 26.172817 C 86.657252 26.270687 87.232726 26.419449 87.600717 26.50166 C 87.968707 26.587785 88.575499 26.713058 88.966978 26.783525 C 89.358457 26.853991 90.000482 26.951861 90.419365 27.002753 C 90.834333 27.05756 91.523336 27.128026 91.965707 27.15543 C 92.411993 27.186748 93.144058 27.221981 93.621663 27.229811 C 94.095352 27.233725 94.882225 27.225896 95.391148 27.202407 C 95.90007 27.178918 96.74175 27.120196 97.28982 27.061475 C 97.833976 27.006668 98.742207 26.889224 99.329426 26.791354 C 99.920559 26.693484 100.899256 26.505575 101.533452 26.364642 C 102.171563 26.219795 103.228556 25.953589 103.921474 25.753935 C 104.610477 25.554281 105.761425 25.19412 106.513064 24.935744 C 107.268619 24.673453 108.521351 24.203678 109.347372 23.867006 C 110.169478 23.534249 111.543569 22.939201 112.447885 22.516404 C 113.352202 22.093607 114.86331 21.353712 115.861582 20.82913 C 116.863768 20.308463 118.535383 19.392402 119.643268 18.750377 C 120.751154 18.112266 122.610679 16.992636 123.847752 16.217508 C 125.084826 15.438465 127.167494 14.083948 128.553329 13.140483 C 129.939165 12.200934 133.850039 9.433178 133.850039 9.433178 " transform="matrix(0.997819,0,0,-0.997819,12.133339,363.186038)"/> +</g> +<path style="fill:none;stroke-width:0.79701;stroke-linecap:butt;stroke-linejoin:miter;stroke:rgb(0%,65.098572%,83.921814%);stroke-opacity:1;stroke-miterlimit:10;" d="M 93.253673 27.601716 L 96.318953 27.190663 " transform="matrix(0.997819,0,0,-0.997819,12.133339,363.186038)"/> +<path style="fill-rule:nonzero;fill:rgb(0%,65.098572%,83.921814%);fill-opacity:1;stroke-width:0.79701;stroke-linecap:butt;stroke-linejoin:miter;stroke:rgb(0%,65.098572%,83.921814%);stroke-opacity:1;stroke-miterlimit:10;" d="M 7.368867 -0.00018126 L 1.288771 2.293896 L 3.292616 0.00160267 L 1.288251 -2.295637 Z M 7.368867 -0.00018126 " transform="matrix(0.989018,0.131812,0.131812,-0.989018,105.184739,335.645704)"/> +<g clip-path="url(#clip44)" clip-rule="nonzero"> +<path style="fill:none;stroke-width:0.79701;stroke-linecap:butt;stroke-linejoin:miter;stroke:rgb(0%,65.098572%,83.921814%);stroke-opacity:1;stroke-miterlimit:10;" d="M 80.698943 80.690175 C 80.702857 80.690175 80.702857 80.686261 80.702857 80.686261 C 80.706772 80.686261 80.706772 80.682346 80.710687 80.682346 C 80.710687 80.678431 80.714602 80.674516 80.718517 80.670602 C 80.722431 80.670602 80.726346 80.662772 80.730261 80.658857 C 80.734176 80.654942 80.742005 80.651028 80.74592 80.643198 C 80.75375 80.639283 80.761579 80.627539 80.769409 80.619709 C 80.777238 80.61188 80.792898 80.596221 80.804642 80.588391 C 80.812472 80.576647 80.832046 80.557073 80.847705 80.541413 C 80.859449 80.529669 80.886853 80.502266 80.906427 80.486606 C 80.922086 80.467032 80.957319 80.431799 80.980808 80.408311 C 81.004296 80.384822 81.047359 80.345674 81.074762 80.314356 C 81.106081 80.283037 81.160888 80.232145 81.196121 80.192997 C 81.235269 80.153849 81.30182 80.091213 81.344883 80.044235 C 81.39186 79.997258 81.474071 79.918962 81.528878 79.86024 C 81.583685 79.805433 81.681555 79.707563 81.748106 79.641012 C 81.814658 79.57446 81.932101 79.460932 82.010397 79.382636 C 82.088693 79.300425 82.225711 79.167322 82.315751 79.073367 C 82.409706 78.983327 82.566297 78.822821 82.671997 78.717122 C 82.781611 78.611422 82.961691 78.427427 83.083049 78.306069 C 83.204408 78.18471 83.411892 77.977226 83.548909 77.840209 C 83.689842 77.703191 83.920814 77.468304 84.077406 77.311712 C 84.230083 77.159035 84.492374 76.896744 84.664624 76.724494 C 84.836875 76.552243 85.12657 76.262549 85.314479 76.074639 C 85.506304 75.886729 85.823402 75.565716 86.030886 75.358232 C 86.23837 75.150748 86.586786 74.806247 86.809929 74.579189 C 87.036987 74.356046 87.412807 73.980226 87.655524 73.737509 C 87.898241 73.494792 88.301464 73.091569 88.55984 72.829278 C 88.822131 72.570902 89.252758 72.140275 89.526793 71.862325 C 89.804743 71.584375 90.262773 71.13026 90.552468 70.83665 C 90.846077 70.543041 91.327596 70.061522 91.636864 69.756168 C 91.942218 69.4469 92.447226 68.941892 92.772153 68.62088 C 93.093166 68.295952 93.617748 67.77137 93.95442 67.434698 C 94.287177 67.101941 94.835247 66.553871 95.183664 66.209369 C 95.528165 65.860953 96.09581 65.297223 96.452055 64.937063 C 96.808301 64.580817 97.38769 64.001428 97.75568 63.633438 C 98.123671 63.269362 98.718719 62.674314 99.090624 62.298495 C 99.466443 61.92659 100.073236 61.319797 100.45297 60.936148 C 100.832705 60.556413 101.451242 59.941791 101.834891 59.554227 C 102.222455 59.166663 102.844907 58.544211 103.236386 58.152733 C 103.627865 57.765168 104.254231 57.134887 104.649625 56.743408 C 105.041104 56.348015 105.671385 55.717733 106.066778 55.32234 C 106.462172 54.930861 107.096368 54.296665 107.487847 53.901271 C 107.883241 53.505877 108.517437 52.875596 108.908916 52.480203 C 109.304309 52.084809 109.93459 51.454528 110.326069 51.063049 C 110.717548 50.67157 111.343915 50.045204 111.731479 49.657639 C 112.122958 49.270075 112.741494 48.647624 113.129059 48.263974 C 113.512708 47.87641 114.12733 47.261788 114.507064 46.882054 C 114.886799 46.502319 115.493591 45.895527 115.869411 45.519707 C 116.245231 45.147802 116.840279 44.548839 117.208269 44.180849 C 117.576259 43.812859 118.163478 43.22564 118.527553 42.86548 C 118.887714 42.501404 119.463188 41.92593 119.819434 41.573599 C 120.171765 41.217353 120.735495 40.653624 121.083911 40.309122 C 121.428412 39.960706 121.980398 39.408721 122.317069 39.072049 C 122.657656 38.731462 123.193982 38.195136 123.522825 37.866294 C 123.855582 37.537451 124.376249 37.012869 124.701176 36.691857 C 125.022189 36.370844 125.531112 35.861921 125.84038 35.548738 C 126.153563 35.235555 126.650741 34.742292 126.95218 34.436938 C 127.257534 34.135499 127.735138 33.65398 128.028747 33.360371 C 128.322356 33.066762 128.788216 32.600902 129.073996 32.315122 C 129.359776 32.033257 129.809976 31.583056 130.084012 31.305106 C 130.358047 31.031071 130.792589 30.59653 131.062709 30.330324 C 131.328915 30.064118 131.747797 29.645236 132.002259 29.38686 C 132.260635 29.128483 132.667773 28.72526 132.914405 28.474714 C 133.161036 28.228082 133.552515 27.836603 133.791317 27.597801 C 134.03012 27.358999 134.405939 26.983179 134.636912 26.752206 C 134.867884 26.525148 135.228045 26.161073 135.447273 25.941845 C 135.670416 25.718702 136.018833 25.3742 136.230231 25.158887 C 136.44163 24.947488 136.778302 24.614731 136.981871 24.407247 C 137.18544 24.203678 137.506453 23.882666 137.702192 23.686926 C 137.897932 23.491187 138.2072 23.185833 138.39511 22.997923 C 138.58302 22.810013 138.876629 22.512489 139.056709 22.332409 C 139.23679 22.152329 139.518654 21.870464 139.690905 21.698213 C 139.863156 21.525962 140.133276 21.255842 140.297697 21.091421 C 140.466033 20.927 140.72441 20.664709 140.881001 20.508117 C 141.041507 20.351526 141.288139 20.104894 141.436901 19.952217 C 141.589578 19.79954 141.824465 19.564653 141.969313 19.419806 C 142.11416 19.274958 142.341218 19.047901 142.478235 18.910883 C 142.615253 18.773865 142.834481 18.558552 142.963669 18.425449 C 143.096772 18.292346 143.304256 18.088777 143.429529 17.959589 C 143.554802 17.834316 143.750542 17.638576 143.8719 17.517218 C 143.993259 17.399774 144.181169 17.211864 144.294697 17.094421 C 144.408226 16.980892 144.588307 16.800811 144.697921 16.695112 C 144.807535 16.585498 144.975871 16.413247 145.08157 16.311463 C 145.183355 16.205763 145.347776 16.041342 145.445646 15.943473 C 145.54743 15.845603 145.700107 15.689011 145.794062 15.595056 C 145.888017 15.501101 146.036779 15.352339 146.126819 15.262299 C 146.216859 15.172259 146.357792 15.031327 146.443917 14.945201 C 146.530042 14.859076 146.663145 14.725973 146.745356 14.643762 C 146.827566 14.565467 146.95284 14.436279 147.031135 14.357983 C 147.109431 14.279687 147.23079 14.158329 147.305171 14.087862 C 147.379552 14.013481 147.49308 13.896038 147.563547 13.825571 C 147.634013 13.755105 147.743627 13.645491 147.810178 13.57894 C 147.87673 13.512388 147.982429 13.410604 148.045066 13.344052 C 148.107702 13.281416 148.205572 13.183546 148.268209 13.120909 C 148.326931 13.062188 148.420886 12.968233 148.479607 12.909511 C 148.538329 12.854704 148.628369 12.764664 148.683176 12.709856 C 148.734069 12.655049 148.820194 12.568924 148.871086 12.518032 C 148.925893 12.46714 149.004189 12.384929 149.055081 12.334037 C 149.102059 12.287059 149.180355 12.208763 149.227332 12.161786 C 149.27431 12.114808 149.348691 12.044342 149.391753 11.997365 C 149.434816 11.954302 149.505282 11.883836 149.548345 11.840773 C 149.591408 11.801625 149.654044 11.735074 149.697107 11.695926 C 149.736255 11.652863 149.798891 11.590227 149.838039 11.554994 C 149.873272 11.515846 149.931994 11.457124 149.971142 11.421891 C 150.006375 11.382743 150.061182 11.327936 150.096415 11.292703 C 150.131649 11.261384 150.182541 11.206577 150.217774 11.175259 C 150.249092 11.140026 150.299985 11.089134 150.331303 11.057815 C 150.362621 11.030412 150.409599 10.97952 150.440917 10.952116 C 150.46832 10.920798 150.515298 10.877735 150.542701 10.850331 C 150.570105 10.819013 150.613168 10.77595 150.640571 10.752462 C 150.66406 10.725058 150.707123 10.681996 150.730611 10.658507 C 150.758015 10.635018 150.797163 10.59587 150.820652 10.572381 C 150.84414 10.544978 150.879373 10.509745 150.902862 10.486256 C 150.926351 10.462767 150.961584 10.431449 150.981158 10.40796 C 151.004647 10.388386 151.035965 10.353153 151.055539 10.333579 C 151.079028 10.314005 151.110346 10.282687 151.12992 10.263113 C 151.145579 10.243539 151.176897 10.212221 151.196471 10.196562 C 151.21213 10.176988 151.243449 10.149584 151.259108 10.13001 C 151.278682 10.114351 151.302171 10.086948 151.321745 10.071288 C 151.337404 10.055629 151.360892 10.028226 151.376552 10.012567 C 151.392211 9.996907 151.4157 9.973419 151.431359 9.957759 C 151.447018 9.9421 151.470507 9.918612 151.482251 9.906867 C 151.49791 9.891208 151.521399 9.871634 151.533143 9.855975 C 151.544888 9.844231 151.568376 9.824657 151.580121 9.808997 C 151.591865 9.797253 151.611439 9.777679 151.623183 9.765935 C 151.634928 9.75419 151.654502 9.734616 151.666246 9.726787 C 151.67799 9.715043 151.69365 9.695469 151.705394 9.683724 C 151.717138 9.675895 151.732797 9.656321 151.740627 9.648491 C 151.752371 9.636747 151.768031 9.621088 151.779775 9.613258 C 151.787605 9.601514 151.803264 9.585854 151.811093 9.578025 C 151.822838 9.570195 151.834582 9.554536 151.842412 9.546707 C 151.854156 9.538877 151.8659 9.523218 151.87373 9.515388 C 151.881559 9.507559 151.893304 9.495814 151.901133 9.487985 C 151.908963 9.480155 151.924622 9.468411 151.928537 9.460581 C 151.936367 9.452752 151.948111 9.441007 151.95594 9.433178 C 151.96377 9.425348 151.975514 9.417519 151.979429 9.409689 C 151.987259 9.401859 151.999003 9.39403 152.002918 9.3862 C 152.010748 9.378371 152.018577 9.370541 152.026407 9.362711 C 152.030321 9.358797 152.042066 9.350967 152.045981 9.343138 C 152.05381 9.339223 152.06164 9.327478 152.065555 9.323564 C 152.073384 9.319649 152.081214 9.311819 152.085129 9.30399 C 152.089043 9.300075 152.096873 9.292245 152.104702 9.28833 C 152.108617 9.284416 152.116447 9.276586 152.120362 9.268757 C 152.124276 9.264842 152.132106 9.257012 152.136021 9.253097 C 152.139936 9.249183 152.147765 9.245268 152.15168 9.241353 C 152.155595 9.233523 152.15951 9.229609 152.163424 9.225694 C 152.167339 9.221779 152.175169 9.213949 152.179083 9.210035 C 152.182998 9.20612 152.186913 9.202205 152.190828 9.19829 C 152.194743 9.194376 152.198657 9.190461 152.202572 9.186546 C 152.206487 9.182631 152.210402 9.178716 152.214317 9.174802 C 152.218231 9.170887 152.222146 9.166972 152.226061 9.163057 C 152.229976 9.163057 152.233891 9.155228 152.237805 9.155228 C 152.237805 9.151313 152.245635 9.147398 152.245635 9.143483 C 152.24955 9.139568 152.253464 9.135654 152.257379 9.135654 C 152.257379 9.131739 152.261294 9.127824 152.265209 9.123909 C 152.265209 9.123909 152.269124 9.119995 152.273038 9.11608 C 152.276953 9.11608 152.276953 9.112165 152.280868 9.10825 C 152.284783 9.10825 152.284783 9.104335 152.288698 9.100421 C 152.288698 9.100421 152.292612 9.096506 152.296527 9.096506 C 152.296527 9.092591 152.300442 9.088676 152.300442 9.088676 C 152.304357 9.084761 152.308272 9.084761 152.308272 9.080847 C 152.312186 9.080847 152.312186 9.076932 152.316101 9.076932 C 152.316101 9.073017 152.320016 9.073017 152.320016 9.069102 C 152.320016 9.069102 152.323931 9.065187 152.323931 9.065187 C 152.327845 9.061273 152.327845 9.061273 152.33176 9.057358 C 152.33176 9.057358 152.335675 9.057358 152.335675 9.053443 C 152.335675 9.053443 152.33959 9.049528 152.33959 9.049528 C 152.343505 9.049528 152.343505 9.045614 152.343505 9.045614 C 152.347419 9.045614 152.347419 9.041699 152.347419 9.041699 C 152.351334 9.041699 152.351334 9.037784 152.351334 9.037784 C 152.355249 9.037784 152.355249 9.033869 152.355249 9.033869 C 152.359164 9.033869 152.359164 9.029954 152.359164 9.029954 C 152.363079 9.029954 152.363079 9.02604 152.363079 9.02604 C 152.363079 9.02604 152.366993 9.02604 152.366993 9.022125 C 152.366993 9.022125 152.370908 9.022125 152.370908 9.022125 C 152.370908 9.01821 152.370908 9.01821 152.370908 9.01821 C 152.374823 9.01821 152.374823 9.014295 152.374823 9.014295 C 152.374823 9.014295 152.378738 9.014295 152.378738 9.014295 C 152.378738 9.01038 152.378738 9.01038 152.378738 9.01038 C 152.382653 9.01038 152.382653 9.006466 152.382653 9.006466 C 152.382653 9.006466 152.382653 9.006466 152.386567 9.006466 C 152.386567 9.006466 152.386567 9.002551 152.386567 9.002551 C 152.386567 9.002551 152.386567 9.002551 152.390482 9.002551 C 152.390482 9.002551 152.390482 8.998636 152.390482 8.998636 C 152.390482 8.998636 152.390482 8.998636 152.394397 8.998636 C 152.394397 8.998636 152.394397 8.994721 152.394397 8.994721 C 152.394397 8.994721 152.398312 8.994721 152.398312 8.994721 C 152.398312 8.990806 152.398312 8.990806 152.398312 8.990806 C 152.402226 8.990806 152.402226 8.990806 152.402226 8.990806 C 152.402226 8.986892 152.402226 8.986892 152.402226 8.986892 C 152.402226 8.986892 152.406141 8.986892 152.406141 8.986892 C 152.406141 8.986892 152.406141 8.982977 152.406141 8.982977 C 152.406141 8.982977 152.410056 8.982977 152.410056 8.982977 C 152.410056 8.982977 152.410056 8.982977 152.410056 8.979062 C 152.410056 8.979062 152.410056 8.979062 152.413971 8.979062 C 152.413971 8.979062 152.413971 8.975147 152.413971 8.975147 C 152.417886 8.975147 152.417886 8.975147 152.417886 8.975147 C 152.417886 8.975147 152.417886 8.975147 152.417886 8.971233 C 152.4218 8.971233 152.4218 8.971233 152.4218 8.971233 C 152.4218 8.971233 152.4218 8.971233 152.4218 8.967318 C 152.4218 8.967318 152.425715 8.967318 152.425715 8.967318 " transform="matrix(0.997819,0,0,-0.997819,12.133339,363.186038)"/> +</g> +<path style="fill:none;stroke-width:0.79701;stroke-linecap:butt;stroke-linejoin:miter;stroke:rgb(0%,65.098572%,83.921814%);stroke-opacity:1;stroke-miterlimit:10;" d="M 113.555771 47.837262 L 115.740223 45.648895 " transform="matrix(0.997819,0,0,-0.997819,12.133339,363.186038)"/> +<path style="fill-rule:nonzero;fill:rgb(0%,65.098572%,83.921814%);fill-opacity:1;stroke-width:0.79701;stroke-linecap:butt;stroke-linejoin:miter;stroke:rgb(0%,65.098572%,83.921814%);stroke-opacity:1;stroke-miterlimit:10;" d="M 7.369062 0.00196786 L 1.284557 2.294038 L 3.291503 -0.000800336 L 1.287325 -2.292871 Z M 7.369062 0.00196786 " transform="matrix(0.705558,0.705558,0.705558,-0.705558,125.439939,315.454434)"/> +<g style="fill:rgb(0%,0%,0%);fill-opacity:1;"> + <use xlink:href="#glyph0-2" x="177.2853" y="285.223472"/> +</g> +<g style="fill:rgb(0%,0%,0%);fill-opacity:1;"> + <use xlink:href="#glyph0-3" x="89.602982" y="195.712153"/> +</g> +<path style="fill:none;stroke-width:0.3985;stroke-linecap:butt;stroke-linejoin:miter;stroke:rgb(0%,0%,0%);stroke-opacity:1;stroke-miterlimit:10;" d="M 0.00155003 80.69409 L 159.396118 80.69409 " transform="matrix(0.997819,0,0,-0.997819,199.943766,363.186038)"/> +<path style=" stroke:none;fill-rule:nonzero;fill:rgb(0%,0%,0%);fill-opacity:1;" d="M 360.980469 282.667969 L 357.800781 281.078125 L 358.992188 282.667969 L 357.800781 284.257813 "/> +<path style="fill:none;stroke-width:0.3985;stroke-linecap:butt;stroke-linejoin:miter;stroke:rgb(0%,0%,0%);stroke-opacity:1;stroke-miterlimit:10;" d="M 80.69319 -0.0014649 L 80.69319 159.397018 " transform="matrix(0.997819,0,0,-0.997819,199.943766,363.186038)"/> +<path style=" stroke:none;fill-rule:nonzero;fill:rgb(0%,0%,0%);fill-opacity:1;" d="M 280.460938 202.148438 L 278.871094 205.328125 L 280.460938 204.136719 L 282.054688 205.328125 "/> +<g style="fill:rgb(0%,0%,0%);fill-opacity:1;"> + <use xlink:href="#glyph0-1" x="267.118914" y="294.911294"/> +</g> +<g clip-path="url(#clip45)" clip-rule="nonzero"> +<path style="fill:none;stroke-width:0.79701;stroke-linecap:butt;stroke-linejoin:miter;stroke:rgb(0%,65.098572%,83.921814%);stroke-opacity:1;stroke-miterlimit:10;" d="M 152.423878 80.69409 C 152.423878 80.69409 146.305062 75.561801 143.885722 73.647469 C 141.466382 71.733137 137.488956 68.718749 134.979576 66.894457 C 132.470196 65.066251 128.375326 62.212369 125.803309 60.489862 C 123.235207 58.771269 119.065957 56.093553 116.466536 54.492404 C 113.863201 52.891256 109.666547 50.421023 107.059297 48.949063 C 104.452048 47.481016 100.267138 45.230013 97.683377 43.902899 C 95.099616 42.57187 90.969513 40.559669 88.428814 39.381317 C 85.892031 38.20688 81.859798 36.44131 79.39348 35.423465 C 76.923248 34.40562 73.024118 32.898426 70.651755 32.045002 C 68.279393 31.187663 64.544684 29.950589 62.28585 29.261586 C 60.027017 28.572583 56.495877 27.60563 54.370146 27.084963 C 52.244415 26.568211 48.944248 25.871379 46.971194 25.519048 C 44.99814 25.170631 41.952434 24.743919 40.143801 24.559924 C 38.335168 24.375929 35.567412 24.215423 33.93886 24.195849 C 32.310307 24.176275 29.84399 24.274145 28.403348 24.411162 C 26.96662 24.552095 24.809571 24.900511 23.568583 25.190205 C 22.327594 25.4799 20.499388 26.071033 19.461968 26.50166 C 18.428464 26.936201 16.9291 27.750478 16.103079 28.322037 C 15.277059 28.893596 14.118281 29.915356 13.499744 30.612189 C 12.885122 31.305106 12.063016 32.522606 11.659793 33.332967 C 11.252655 34.143329 10.767221 35.536994 10.571482 36.44914 C 10.371827 37.361286 10.219151 38.907628 10.223065 39.909814 C 10.22698 40.912 10.395316 42.595359 10.598885 43.675841 C 10.798539 44.756323 11.280058 46.549297 11.667623 47.692415 C 12.055187 48.839448 12.83423 50.726377 13.39796 51.920388 C 13.965604 53.114399 15.022597 55.071793 15.754663 56.301037 C 16.490643 57.534196 17.806012 59.538568 18.69467 60.795215 C 19.583327 62.047948 21.133584 64.079724 22.163173 65.344201 C 23.192763 66.608678 24.958333 68.644368 26.113196 69.90493 C 27.268059 71.165493 29.225453 73.185524 30.48993 74.430427 C 31.758322 75.67533 33.876223 77.660128 35.234655 78.877628 C 36.597002 80.095127 38.851921 82.025119 40.292563 83.20347 C 41.729291 84.381822 44.097739 86.241347 45.593188 87.368806 C 47.092552 88.496266 49.543211 90.26575 51.081723 91.334488 C 52.62415 92.403226 55.129615 94.067011 56.699446 95.069197 C 58.265362 96.067468 60.802145 97.61381 62.379805 98.537701 C 63.957465 99.461591 66.494249 100.878745 68.06408 101.720424 C 69.637825 102.558189 72.15112 103.838326 73.701376 104.589965 C 75.247718 105.341605 77.71795 106.472979 79.229059 107.126749 C 80.740168 107.784433 83.136019 108.759216 84.596235 109.319031 C 86.056452 109.878846 88.358348 110.693122 89.755928 111.151152 C 91.153508 111.613097 93.341875 112.266867 94.661159 112.623113 C 95.984358 112.979359 98.039622 113.468708 99.272781 113.723169 C 100.50594 113.97763 102.416357 114.302558 103.551646 114.455235 C 104.686935 114.607911 106.432931 114.772333 107.466436 114.823225 C 108.496025 114.878032 110.065856 114.881947 110.985831 114.838884 C 111.901892 114.795821 113.287727 114.643144 114.086344 114.506127 C 114.888876 114.369109 116.078972 114.071585 116.756231 113.844527 C 117.437404 113.61747 118.423931 113.182928 118.979831 112.869745 C 119.531817 112.560476 120.318689 111.992832 120.745401 111.601353 C 121.168199 111.209874 121.751502 110.520871 122.049026 110.058926 C 122.34655 109.596981 122.726285 108.798364 122.898536 108.273782 C 123.070786 107.745285 123.243037 106.844884 123.293929 106.26158 C 123.340907 105.678277 123.317418 104.69175 123.246952 104.057554 C 123.172571 103.423358 122.957257 102.36245 122.769348 101.685191 C 122.581438 101.007933 122.186044 99.888303 121.88852 99.179726 C 121.587081 98.467234 121.019437 97.300627 120.616213 96.564647 C 120.21299 95.824752 119.480924 94.622911 118.979831 93.871272 C 118.482653 93.115717 117.601825 91.890388 117.014607 91.130919 C 116.423474 90.367535 115.409543 89.134376 114.740114 88.370992 C 114.070685 87.603694 112.935396 86.378365 112.195501 85.618895 C 111.455606 84.859426 110.214618 83.649756 109.412086 82.905946 C 108.613469 82.162136 107.278526 80.97987 106.429016 80.255634 C 105.579507 79.531398 104.170183 78.388279 103.277611 77.691447 C 102.388954 76.998529 100.924822 75.902388 100.000932 75.240789 C 99.077042 74.579189 97.573763 73.545685 96.630298 72.923233 C 95.686834 72.300782 94.160066 71.333829 93.204858 70.75444 C 92.253564 70.175051 90.715051 69.282479 89.763758 68.753982 C 88.812464 68.225486 87.281781 67.415124 86.338317 66.93752 C 85.394853 66.463831 83.887659 65.739595 82.963768 65.320712 C 82.039878 64.897915 80.567917 64.267634 79.67143 63.903558 C 78.774944 63.543398 77.35779 63.007071 76.496536 62.705633 C 75.631368 62.404194 74.27685 61.965737 73.458659 61.723021 C 72.640468 61.484218 71.360332 61.143632 70.593034 60.967466 C 69.825735 60.787386 68.631724 60.548584 67.919232 60.43114 C 67.206741 60.313696 66.1106 60.172764 65.45683 60.114042 C 64.806975 60.059235 63.812618 60.016172 63.229315 60.020087 C 62.642096 60.020087 61.757354 60.074894 61.244516 60.133616 C 60.731679 60.192338 59.960465 60.337185 59.518094 60.450714 C 59.079638 60.568158 58.429783 60.795215 58.061793 60.963551 C 57.697717 61.131887 57.169221 61.441156 56.879526 61.660384 C 56.589832 61.875697 56.186608 62.263261 55.97521 62.525552 C 55.759896 62.787843 55.481946 63.241959 55.344929 63.547312 C 55.211826 63.848751 55.055234 64.369418 54.992598 64.710005 C 54.933876 65.046677 54.898643 65.622151 54.910387 65.994056 C 54.926046 66.365961 55.008257 66.988412 55.094382 67.387721 C 55.176593 67.787029 55.372332 68.452544 55.525009 68.875341 C 55.677686 69.298138 55.979125 69.991056 56.198353 70.429512 C 56.417581 70.871883 56.820804 71.592205 57.098754 72.042406 C 57.376704 72.496521 57.873883 73.232502 58.20664 73.690532 C 58.539397 74.152477 59.1227 74.896287 59.50635 75.358232 C 59.893914 75.820177 60.551599 76.563987 60.982225 77.025933 C 61.412852 77.487878 62.137088 78.223858 62.606863 78.677974 C 63.076638 79.132089 63.859596 79.856325 64.364604 80.298697 C 64.865697 80.744983 65.699547 81.44573 66.231958 81.872442 C 66.760455 82.303069 67.633453 82.976413 68.185438 83.387465 C 68.733509 83.794604 69.637825 84.436629 70.201555 84.824193 C 70.769199 85.211757 71.689175 85.814635 72.260734 86.174795 C 72.836208 86.534956 73.767928 87.094771 74.343402 87.427528 C 74.918876 87.760285 75.846681 88.273123 76.422155 88.574561 C 76.997629 88.876 77.91369 89.334031 78.47742 89.604151 C 79.045064 89.874272 79.941551 90.277495 80.493536 90.512382 C 81.045521 90.74727 81.914605 91.091771 82.447016 91.291425 C 82.975513 91.49108 83.813278 91.780774 84.318285 91.94128 C 84.827208 92.101787 85.62191 92.332759 86.099515 92.454118 C 86.577119 92.579391 87.320929 92.747727 87.767215 92.833852 C 88.209586 92.923893 88.898589 93.029592 89.309642 93.080484 C 89.720695 93.131376 90.347061 93.182269 90.718966 93.194013 C 91.086956 93.205757 91.650686 93.197928 91.979528 93.178354 C 92.308371 93.154865 92.805549 93.092228 93.091329 93.037421 C 93.377108 92.9787 93.799906 92.861256 94.038708 92.775131 C 94.281425 92.68509 94.629841 92.516754 94.82558 92.399311 C 95.017405 92.277952 95.295355 92.062639 95.444117 91.917792 C 95.588964 91.76903 95.788619 91.510654 95.890403 91.338403 C 95.992188 91.162237 96.117461 90.864713 96.172268 90.668974 C 96.23099 90.473234 96.281882 90.136562 96.289712 89.921249 C 96.301456 89.702021 96.281882 89.337945 96.246649 89.103058 C 96.211416 88.868171 96.12529 88.476692 96.046995 88.226145 C 95.972614 87.975599 95.816022 87.560631 95.698578 87.29834 C 95.58505 87.039964 95.365821 86.609337 95.213145 86.339217 C 95.056553 86.065181 94.782518 85.626725 94.590693 85.348775 C 94.402783 85.070825 94.073941 84.624539 93.850798 84.342674 C 93.63157 84.064724 93.251835 83.614523 93.001288 83.332658 C 92.754657 83.054708 92.331859 82.604508 92.057824 82.330472 C 91.783789 82.052522 91.321844 81.610151 91.02432 81.340031 C 90.730711 81.065995 90.237447 80.635368 89.920349 80.373078 C 89.607166 80.110787 89.090414 79.695819 88.761571 79.441358 C 88.432729 79.190811 87.892488 78.791503 87.555816 78.5527 C 87.21523 78.313898 86.663244 77.938078 86.318743 77.714935 C 85.970327 77.487878 85.410512 77.139461 85.062095 76.928063 C 84.713679 76.720579 84.149949 76.399566 83.801533 76.207742 C 83.453117 76.019832 82.893302 75.726222 82.552715 75.557886 C 82.208214 75.385636 81.656229 75.12726 81.319557 74.974583 C 80.982885 74.825821 80.446559 74.602678 80.121631 74.47349 C 79.796704 74.344302 79.279951 74.152477 78.966768 74.046778 C 78.653585 73.937164 78.164236 73.784487 77.866712 73.702276 C 77.569188 73.616151 77.107243 73.498707 76.829293 73.436071 C 76.551343 73.373434 76.120716 73.295138 75.86234 73.25599 C 75.603964 73.216842 75.20857 73.169865 74.977598 73.154206 C 74.74271 73.134632 74.386465 73.126802 74.175066 73.130717 C 73.963667 73.134632 73.646569 73.158121 73.466489 73.185524 C 73.282494 73.209013 73.008459 73.267735 72.847952 73.314712 C 72.691361 73.357775 72.464303 73.447815 72.335115 73.514366 C 72.202012 73.577003 72.018017 73.694447 71.916232 73.776657 C 71.814448 73.858868 71.67743 74.00763 71.603049 74.1055 C 71.528668 74.203369 71.434713 74.37562 71.391651 74.489149 C 71.344673 74.602678 71.297696 74.794503 71.278122 74.919776 C 71.262463 75.048964 71.254633 75.260362 71.266377 75.39738 C 71.274207 75.538313 71.30944 75.769285 71.348588 75.914132 C 71.383821 76.062894 71.458202 76.309526 71.520839 76.462203 C 71.579561 76.618794 71.697004 76.877171 71.779215 77.037677 C 71.86534 77.198183 72.018017 77.464389 72.123716 77.62881 C 72.229416 77.797146 72.417325 78.067267 72.542599 78.235602 C 72.667872 78.403938 72.883185 78.674059 73.028033 78.84631 C 73.17288 79.014646 73.419512 79.284766 73.576103 79.453102 C 73.73661 79.621438 74.00673 79.891558 74.182896 80.059894 C 74.355146 80.224316 74.644841 80.486606 74.832751 80.647113 C 75.016746 80.811534 75.326014 81.065995 75.521754 81.222587 C 75.717493 81.375264 76.038506 81.621895 76.23816 81.770657 C 76.441729 81.919419 76.774486 82.150392 76.98197 82.291324 C 77.189454 82.432257 77.526126 82.651485 77.737524 82.780673 C 77.948923 82.909861 78.28951 83.11343 78.496994 83.230874 C 78.708392 83.352232 79.048979 83.536227 79.260377 83.645842 C 79.467861 83.751541 79.804533 83.915962 80.008102 84.013832 C 80.215586 84.111701 80.544428 84.256549 80.744083 84.338759 C 80.943737 84.42097 81.260835 84.546243 81.45266 84.616709 C 81.644484 84.687176 81.949838 84.78896 82.133833 84.843767 C 82.317828 84.902489 82.603608 84.980785 82.779773 85.023847 C 82.952024 85.06691 83.21823 85.125632 83.382651 85.15695 C 83.543157 85.184354 83.789789 85.223502 83.938551 85.239161 C 84.083398 85.25482 84.310456 85.266564 84.443559 85.270479 C 84.576662 85.274394 84.780231 85.266564 84.897674 85.258735 C 85.015118 85.24699 85.191283 85.219587 85.293068 85.196098 C 85.394853 85.176524 85.547529 85.129547 85.62974 85.094314 C 85.715865 85.059081 85.841139 84.996444 85.90769 84.949466 C 85.974241 84.906404 86.072111 84.824193 86.123003 84.769386 C 86.173896 84.710664 86.244362 84.616709 86.279595 84.550158 C 86.310913 84.483606 86.353976 84.373992 86.369635 84.299611 C 86.389209 84.22523 86.400953 84.103872 86.404868 84.021661 C 86.404868 83.943366 86.393124 83.806348 86.377465 83.720223 C 86.361806 83.630182 86.326572 83.485335 86.295254 83.395295 C 86.263936 83.30134 86.205214 83.148663 86.158236 83.054708 C 86.115174 82.956839 86.029048 82.800247 85.974241 82.698462 C 85.91552 82.600593 85.80982 82.436172 85.739354 82.338302 C 85.668888 82.236517 85.543615 82.072096 85.461404 81.966397 C 85.379193 81.864612 85.234346 81.700191 85.144306 81.598407 C 85.050351 81.496622 84.893759 81.332201 84.791975 81.230416 C 84.69019 81.128632 84.51794 80.968126 84.408326 80.870256 C 84.298711 80.772386 84.118631 80.615794 84.001187 80.517925 C 83.883744 80.42397 83.695834 80.271293 83.574475 80.181253 C 83.453117 80.087298 83.253463 79.946365 83.128189 79.856325 C 83.006831 79.7702 82.803262 79.637097 82.674074 79.554887 C 82.548801 79.472676 82.341317 79.347403 82.216043 79.273022 C 82.086855 79.194726 81.883286 79.081197 81.754098 79.010731 C 81.628825 78.944179 81.425256 78.83848 81.296068 78.775843 C 81.170795 78.717122 80.97114 78.623167 80.849782 78.56836 C 80.724509 78.517467 80.532684 78.435257 80.411326 78.388279 C 80.293882 78.345217 80.105972 78.27475 79.992443 78.239517 C 79.878914 78.200369 79.702749 78.145562 79.593135 78.118159 C 79.487435 78.08684 79.319099 78.047693 79.217315 78.024204 C 79.119445 78.00463 78.962853 77.977226 78.868899 77.965482 C 78.778858 77.949823 78.634011 77.938078 78.551801 77.930249 C 78.465675 77.926334 78.336487 77.926334 78.262106 77.930249 C 78.187725 77.930249 78.074196 77.941993 78.007645 77.953738 C 77.945008 77.965482 77.847138 77.985056 77.788417 78.00463 C 77.73361 78.024204 77.651399 78.055522 77.608336 78.082926 C 77.561359 78.106414 77.494807 78.153392 77.459574 78.180795 C 77.424341 78.212114 77.377364 78.266921 77.353875 78.306069 C 77.326471 78.341302 77.295153 78.407853 77.279494 78.450916 C 77.26775 78.490064 77.25209 78.564445 77.244261 78.611422 C 77.240346 78.6584 77.240346 78.736696 77.248176 78.787588 C 77.25209 78.83848 77.26775 78.924605 77.283409 78.979412 C 77.299068 79.03422 77.326471 79.12426 77.34996 79.182982 C 77.373449 79.237789 77.420426 79.331744 77.451745 79.39438 C 77.483063 79.453102 77.541785 79.550972 77.580933 79.609694 C 77.623995 79.67233 77.694462 79.7702 77.741439 79.832837 C 77.788417 79.895473 77.866712 79.993343 77.921519 80.05598 C 77.976327 80.118616 78.066367 80.216486 78.125089 80.279123 C 78.187725 80.341759 78.285595 80.439629 78.352146 80.498351 C 78.414783 80.560987 78.520482 80.654942 78.590948 80.713664 C 78.661415 80.772386 78.774944 80.866341 78.84541 80.921148 C 78.915876 80.97987 79.037234 81.065995 79.111615 81.120802 C 79.185996 81.175609 79.307355 81.25782 79.381736 81.308712 C 79.460032 81.359604 79.58139 81.4379 79.659686 81.488793 C 79.737982 81.53577 79.85934 81.606236 79.937636 81.649299 C 80.015932 81.692362 80.141205 81.758913 80.215586 81.798061 C 80.293882 81.837209 80.41524 81.895931 80.489621 81.931164 C 80.564002 81.966397 80.685361 82.017289 80.755827 82.044693 C 80.830208 82.076011 80.943737 82.119074 81.014203 82.146477 C 81.084669 82.169966 81.194283 82.205199 81.260835 82.224773 C 81.327386 82.244347 81.433086 82.275665 81.495722 82.28741 C 81.558359 82.303069 81.656229 82.322643 81.71495 82.334387 C 81.769757 82.342217 81.859798 82.353961 81.914605 82.361791 C 81.965497 82.365705 82.047708 82.36962 82.094685 82.36962 C 82.145577 82.36962 82.216043 82.365705 82.259106 82.361791 C 82.302169 82.357876 82.364805 82.346131 82.400039 82.338302 C 82.435272 82.330472 82.490079 82.310898 82.521397 82.299154 C 82.548801 82.283495 82.591863 82.260006 82.619267 82.240432 C 82.642756 82.224773 82.674074 82.193455 82.693648 82.173881 C 82.709307 82.150392 82.732796 82.115159 82.74454 82.09167 C 82.756284 82.068181 82.771944 82.025119 82.775858 81.997715 C 82.779773 81.970312 82.783688 81.923334 82.783688 81.895931 C 82.783688 81.864612 82.775858 81.81372 82.771944 81.782402 C 82.764114 81.751083 82.748455 81.696276 82.73671 81.661043 C 82.724966 81.629725 82.701477 81.571003 82.685818 81.53577 C 82.666244 81.500537 82.634926 81.441815 82.611437 81.406582 C 82.591863 81.371349 82.552715 81.308712 82.525312 81.273479 C 82.497908 81.234331 82.450931 81.175609 82.419613 81.136461 C 82.388294 81.101228 82.337402 81.038592 82.302169 81.003359 C 82.266936 80.964211 82.208214 80.905489 82.172981 80.870256 C 82.133833 80.831108 82.071196 80.772386 82.028134 80.737153 C 81.988986 80.70192 81.922434 80.643198 81.879372 80.607965 C 81.836309 80.576647 81.765843 80.52184 81.72278 80.486606 C 81.675803 80.455288 81.605336 80.400481 81.558359 80.369163 C 81.511381 80.337844 81.437 80.290867 81.390023 80.259549 C 81.34696 80.232145 81.268664 80.185168 81.221687 80.157764 C 81.174709 80.130361 81.100328 80.087298 81.053351 80.063809 C 81.006374 80.04032 80.931993 80.001173 80.88893 79.981599 C 80.841952 79.95811 80.767571 79.922877 80.724509 79.907218 C 80.681446 79.887644 80.607065 79.856325 80.564002 79.840666 C 80.52094 79.825007 80.454388 79.801518 80.41524 79.789774 C 80.372178 79.774115 80.305626 79.754541 80.270393 79.746711 C 80.231245 79.734967 80.168609 79.719308 80.133376 79.715393 C 80.098142 79.707563 80.039421 79.695819 80.008102 79.691904 C 79.972869 79.687989 79.921977 79.684075 79.890659 79.684075 C 79.863255 79.68016 79.816278 79.68016 79.788874 79.684075 C 79.761471 79.684075 79.722323 79.687989 79.698834 79.695819 C 79.675345 79.699734 79.640112 79.707563 79.620538 79.715393 C 79.600964 79.723222 79.569646 79.734967 79.553987 79.742796 C 79.538328 79.754541 79.514839 79.7702 79.503094 79.781944 C 79.49135 79.793689 79.475691 79.817177 79.467861 79.828922 C 79.456117 79.844581 79.448287 79.86807 79.444373 79.883729 C 79.436543 79.899388 79.432628 79.926792 79.432628 79.942451 C 79.432628 79.962025 79.432628 79.989428 79.436543 80.009002 C 79.436543 80.028576 79.444373 80.059894 79.448287 80.079468 C 79.456117 80.099042 79.467861 80.134275 79.475691 80.153849 C 79.487435 80.173423 79.503094 80.208656 79.514839 80.232145 C 79.526583 80.251719 79.550072 80.290867 79.565731 80.310441 C 79.58139 80.33393 79.604879 80.369163 79.624453 80.392651 C 79.640112 80.41614 79.67143 80.451373 79.691004 80.474862 C 79.710578 80.498351 79.745811 80.533584 79.7693 80.557073 C 79.788874 80.580561 79.828022 80.615794 79.851511 80.635368 C 79.874999 80.658857 79.914147 80.69409 79.941551 80.713664 C 79.96504 80.737153 80.008102 80.768471 80.035506 80.79196 C 80.058995 80.811534 80.105972 80.842852 80.133376 80.862426 C 80.160779 80.882 80.203842 80.913318 80.231245 80.932892 C 80.258649 80.948552 80.305626 80.97987 80.33303 80.995529 C 80.360433 81.011188 80.407411 81.038592 80.434814 81.054251 C 80.462218 81.06991 80.509195 81.093399 80.536599 81.109058 C 80.564002 81.120802 80.61098 81.144291 80.638383 81.156035 C 80.665787 81.16778 80.70885 81.187354 80.732338 81.195183 C 80.759742 81.206928 80.802805 81.222587 80.826293 81.230416 C 80.853697 81.238246 80.892845 81.253905 80.916333 81.25782 C 80.939822 81.26565 80.97897 81.277394 81.002459 81.281309 C 81.025947 81.285223 81.061181 81.293053 81.080755 81.296968 C 81.100328 81.300883 81.135562 81.304797 81.151221 81.304797 C 81.170795 81.308712 81.202113 81.308712 81.217772 81.308712 C 81.237346 81.308712 81.260835 81.304797 81.276494 81.304797 C 81.292153 81.300883 81.315642 81.296968 81.327386 81.293053 C 81.339131 81.289138 81.358705 81.285223 81.370449 81.277394 C 81.378279 81.273479 81.393938 81.26565 81.405682 81.25782 C 81.413512 81.24999 81.425256 81.238246 81.429171 81.230416 C 81.437 81.222587 81.44483 81.210842 81.448745 81.199098 C 81.45266 81.191269 81.456574 81.175609 81.456574 81.163865 C 81.460489 81.156035 81.460489 81.140376 81.460489 81.128632 C 81.460489 81.116888 81.456574 81.097314 81.45266 81.085569 C 81.448745 81.073825 81.44483 81.054251 81.440915 81.042507 C 81.433086 81.030762 81.425256 81.007273 81.417426 80.995529 C 81.413512 80.983785 81.401767 80.960296 81.390023 80.948552 C 81.382193 80.932892 81.370449 80.913318 81.358705 80.897659 C 81.34696 80.885915 81.331301 80.862426 81.319557 80.850682 C 81.307812 80.835023 81.288238 80.811534 81.276494 80.79979 C 81.260835 80.78413 81.241261 80.764556 81.225602 80.748897 C 81.213857 80.737153 81.190369 80.717579 81.174709 80.70192 C 81.15905 80.690175 81.135562 80.670602 81.119902 80.654942 C 81.104243 80.643198 81.07684 80.623624 81.061181 80.61188 C 81.045521 80.600135 81.018118 80.580561 81.002459 80.568817 C 80.982885 80.557073 80.955481 80.541413 80.939822 80.529669 C 80.924163 80.517925 80.896759 80.502266 80.877185 80.490521 C 80.861526 80.482692 80.834123 80.467032 80.814549 80.459203 C 80.79889 80.451373 80.771486 80.435714 80.755827 80.427885 C 80.740168 80.420055 80.712764 80.408311 80.697105 80.400481 C 80.681446 80.396566 80.654043 80.384822 80.638383 80.380907 C 80.622724 80.373078 80.599235 80.365248 80.583576 80.361333 C 80.567917 80.357418 80.544428 80.349589 80.528769 80.345674 C 80.517025 80.341759 80.493536 80.337844 80.481792 80.33393 C 80.470047 80.33393 80.446559 80.330015 80.434814 80.3261 C 80.42307 80.3261 80.403496 80.3261 80.395666 80.3261 C 80.383922 80.3261 80.368263 80.3261 80.356519 80.3261 C 80.348689 80.3261 80.33303 80.330015 80.3252 80.330015 C 80.317371 80.330015 80.305626 80.33393 80.297797 80.337844 C 80.289967 80.341759 80.278223 80.345674 80.274308 80.349589 C 80.270393 80.353504 80.262564 80.361333 80.254734 80.365248 C 80.250819 80.369163 80.246904 80.376992 80.24299 80.380907 C 80.239075 80.384822 80.239075 80.396566 80.23516 80.400481 C 80.23516 80.408311 80.231245 80.41614 80.231245 80.42397 C 80.231245 80.431799 80.23516 80.439629 80.23516 80.447459 C 80.23516 80.455288 80.239075 80.467032 80.239075 80.474862 C 80.24299 80.482692 80.246904 80.494436 80.250819 80.502266 C 80.254734 80.510095 80.262564 80.52184 80.266478 80.529669 C 80.270393 80.537499 80.278223 80.553158 80.286052 80.560987 C 80.289967 80.568817 80.301711 80.580561 80.305626 80.588391 C 80.313456 80.596221 80.3252 80.61188 80.33303 80.619709 C 80.340859 80.627539 80.352604 80.639283 80.360433 80.651028 C 80.368263 80.658857 80.383922 80.670602 80.391752 80.678431 C 80.399581 80.686261 80.41524 80.698005 80.42307 80.705835 C 80.434814 80.713664 80.450473 80.725409 80.458303 80.733238 C 80.470047 80.741068 80.485707 80.752812 80.493536 80.760642 C 80.505281 80.768471 80.52094 80.780216 80.532684 80.78413 C 80.540514 80.79196 80.560088 80.803704 80.567917 80.807619 C 80.579662 80.815449 80.595321 80.823278 80.607065 80.831108 C 80.614895 80.835023 80.634469 80.842852 80.642298 80.850682 C 80.654043 80.854597 80.669702 80.862426 80.681446 80.866341 C 80.689276 80.870256 80.704935 80.878085 80.716679 80.882 C 80.724509 80.885915 80.740168 80.88983 80.747997 80.893745 C 80.759742 80.897659 80.771486 80.901574 80.783231 80.901574 C 80.79106 80.905489 80.802805 80.909404 80.810634 80.909404 C 80.822378 80.913318 80.834123 80.913318 80.841952 80.917233 C 80.849782 80.917233 80.861526 80.917233 80.865441 80.917233 C 80.873271 80.921148 80.885015 80.921148 80.88893 80.921148 C 80.896759 80.917233 80.904589 80.917233 80.912419 80.917233 C 80.916333 80.917233 80.924163 80.913318 80.928078 80.913318 C 80.931993 80.913318 80.939822 80.909404 80.943737 80.905489 C 80.947652 80.905489 80.951566 80.901574 80.955481 80.897659 C 80.959396 80.897659 80.963311 80.893745 80.967226 80.88983 C 80.967226 80.885915 80.97114 80.882 80.97114 80.878085 C 80.97114 80.874171 80.975055 80.870256 80.975055 80.866341 C 80.975055 80.862426 80.975055 80.854597 80.975055 80.850682 C 80.975055 80.846767 80.97114 80.838937 80.97114 80.835023 C 80.97114 80.831108 80.967226 80.823278 80.967226 80.819364 C 80.963311 80.815449 80.959396 80.807619 80.959396 80.803704 C 80.955481 80.795875 80.951566 80.788045 80.947652 80.78413 C 80.943737 80.780216 80.939822 80.772386 80.935907 80.764556 C 80.931993 80.760642 80.924163 80.752812 80.920248 80.748897 C 80.916333 80.744983 80.908504 80.737153 80.904589 80.729323 C 80.900674 80.725409 80.892845 80.717579 80.885015 80.713664 C 80.8811 80.705835 80.873271 80.698005 80.865441 80.69409 C 80.861526 80.690175 80.853697 80.682346 80.845867 80.678431 C 80.841952 80.674516 80.830208 80.666687 80.826293 80.662772 C 80.818464 80.658857 80.810634 80.651028 80.802805 80.647113 C 80.79889 80.643198 80.787145 80.635368 80.779316 80.631454 C 80.775401 80.627539 80.763657 80.623624 80.759742 80.619709 C 80.751912 80.615794 80.740168 80.607965 80.736253 80.607965 C 80.728424 80.60405 80.720594 80.600135 80.712764 80.596221 C 80.70885 80.592306 80.697105 80.588391 80.69319 80.584476 C 80.685361 80.584476 80.677531 80.580561 80.669702 80.576647 C 80.665787 80.576647 80.657957 80.572732 80.650128 80.572732 C 80.646213 80.568817 80.638383 80.568817 80.630554 80.564902 C 80.626639 80.564902 80.618809 80.564902 80.614895 80.560987 C 80.61098 80.560987 80.60315 80.560987 80.599235 80.560987 C 80.591406 80.560987 80.587491 80.560987 80.583576 80.560987 C 80.579662 80.560987 80.571832 80.560987 80.567917 80.560987 C 80.567917 80.560987 80.560088 80.560987 80.556173 80.560987 C 80.556173 80.560987 80.552258 80.564902 80.548343 80.564902 C 80.544428 80.564902 80.540514 80.568817 80.540514 80.568817 C 80.536599 80.572732 80.536599 80.572732 80.532684 80.576647 C 80.532684 80.576647 80.528769 80.580561 80.528769 80.580561 C 80.528769 80.584476 80.528769 80.588391 80.524854 80.588391 C 80.524854 80.592306 80.524854 80.596221 80.524854 80.596221 C 80.524854 80.600135 80.524854 80.60405 80.528769 80.607965 C 80.528769 80.607965 80.528769 80.61188 80.528769 80.615794 C 80.528769 80.619709 80.532684 80.623624 80.532684 80.627539 C 80.536599 80.627539 80.536599 80.635368 80.540514 80.635368 C 80.540514 80.639283 80.544428 80.643198 80.544428 80.647113 C 80.548343 80.651028 80.552258 80.654942 80.556173 80.658857 C 80.556173 80.662772 80.560088 80.666687 80.564002 80.670602 C 80.567917 80.670602 80.571832 80.678431 80.575747 80.678431 C 80.579662 80.682346 80.583576 80.686261 80.587491 80.690175 C 80.587491 80.69409 80.595321 80.698005 80.599235 80.70192 C 80.60315 80.705835 80.607065 80.709749 80.61098 80.709749 C 80.614895 80.713664 80.618809 80.717579 80.622724 80.721494 C 80.626639 80.721494 80.634469 80.725409 80.638383 80.729323 C 80.642298 80.733238 80.646213 80.737153 80.650128 80.737153 C 80.654043 80.741068 80.661872 80.744983 80.665787 80.744983 C 80.669702 80.748897 80.673616 80.748897 80.677531 80.752812 C 80.681446 80.752812 80.689276 80.756727 80.69319 80.756727 C 80.697105 80.760642 80.70102 80.760642 80.704935 80.764556 C 80.70885 80.764556 80.712764 80.768471 80.716679 80.768471 C 80.720594 80.768471 80.724509 80.772386 80.728424 80.772386 C 80.732338 80.772386 80.736253 80.772386 80.740168 80.776301 C 80.744083 80.776301 80.747997 80.776301 80.751912 80.776301 C 80.751912 80.776301 80.755827 80.776301 80.759742 80.776301 C 80.763657 80.776301 80.767571 80.776301 80.767571 80.776301 C 80.771486 80.776301 80.775401 80.776301 80.775401 80.776301 C 80.775401 80.776301 80.779316 80.776301 80.783231 80.776301 C 80.783231 80.772386 80.787145 80.772386 80.787145 80.772386 C 80.787145 80.772386 80.79106 80.768471 80.79106 80.768471 C 80.79106 80.768471 80.794975 80.768471 80.794975 80.764556 C 80.794975 80.764556 80.794975 80.760642 80.794975 80.760642 C 80.794975 80.760642 80.79889 80.756727 80.79889 80.756727 C 80.79889 80.756727 80.79889 80.752812 80.79889 80.752812 C 80.79889 80.748897 80.794975 80.748897 80.794975 80.744983 C 80.794975 80.744983 80.794975 80.741068 80.794975 80.741068 C 80.794975 80.737153 80.79106 80.733238 80.79106 80.733238 C 80.79106 80.733238 80.787145 80.729323 80.787145 80.725409 C 80.787145 80.725409 80.783231 80.721494 80.783231 80.721494 C 80.779316 80.717579 80.779316 80.713664 80.775401 80.713664 C 80.775401 80.709749 80.771486 80.709749 80.771486 80.705835 C 80.767571 80.705835 80.767571 80.70192 80.763657 80.70192 C 80.763657 80.698005 80.759742 80.69409 80.755827 80.69409 C 80.755827 80.69409 80.751912 80.690175 80.747997 80.686261 C 80.747997 80.686261 80.744083 80.682346 80.740168 80.682346 C 80.740168 80.682346 80.736253 80.678431 80.732338 80.674516 C 80.732338 80.674516 80.728424 80.674516 80.724509 80.670602 C 80.724509 80.670602 80.720594 80.666687 80.716679 80.666687 C 80.712764 80.666687 80.712764 80.662772 80.70885 80.662772 C 80.704935 80.662772 80.70102 80.658857 80.70102 80.658857 C 80.697105 80.658857 80.69319 80.654942 80.69319 80.654942 C 80.689276 80.654942 80.685361 80.651028 80.685361 80.651028 C 80.681446 80.651028 80.681446 80.651028 80.677531 80.651028 C 80.677531 80.647113 80.673616 80.647113 80.669702 80.647113 C 80.669702 80.647113 80.665787 80.647113 80.665787 80.647113 C 80.661872 80.647113 80.661872 80.647113 80.657957 80.647113 C 80.657957 80.647113 80.654043 80.647113 80.654043 80.647113 C 80.650128 80.647113 80.650128 80.647113 80.650128 80.647113 C 80.646213 80.647113 80.646213 80.647113 80.646213 80.647113 C 80.642298 80.647113 80.642298 80.647113 80.642298 80.647113 C 80.638383 80.647113 80.638383 80.647113 80.638383 80.651028 C 80.638383 80.651028 80.634469 80.651028 80.634469 80.651028 C 80.634469 80.651028 80.634469 80.654942 80.634469 80.654942 C 80.634469 80.658857 80.634469 80.658857 80.634469 80.658857 C 80.634469 80.658857 80.634469 80.662772 80.634469 80.662772 C 80.634469 80.662772 80.634469 80.666687 80.634469 80.666687 C 80.634469 80.666687 80.634469 80.670602 80.634469 80.670602 C 80.638383 80.670602 80.638383 80.674516 80.638383 80.674516 C 80.638383 80.674516 80.642298 80.678431 80.642298 80.678431 C 80.642298 80.678431 80.642298 80.682346 80.646213 80.682346 C 80.646213 80.682346 80.646213 80.686261 80.646213 80.686261 C 80.650128 80.686261 80.650128 80.690175 80.650128 80.690175 C 80.654043 80.690175 80.654043 80.69409 80.654043 80.69409 C 80.657957 80.69409 80.657957 80.698005 80.661872 80.698005 C 80.661872 80.698005 80.661872 80.70192 80.665787 80.70192 C 80.665787 80.70192 80.669702 80.705835 80.669702 80.705835 C 80.669702 80.705835 80.673616 80.705835 80.673616 80.709749 C 80.677531 80.709749 80.677531 80.709749 80.681446 80.709749 C 80.681446 80.713664 80.685361 80.713664 80.685361 80.713664 C 80.685361 80.713664 80.689276 80.717579 80.689276 80.717579 C 80.689276 80.717579 80.69319 80.717579 80.69319 80.717579 C 80.697105 80.717579 80.697105 80.721494 80.70102 80.721494 C 80.70102 80.721494 80.70102 80.721494 80.704935 80.721494 C 80.704935 80.721494 80.70885 80.721494 80.70885 80.721494 C 80.70885 80.725409 80.712764 80.725409 80.712764 80.725409 C 80.712764 80.725409 80.716679 80.725409 80.716679 80.725409 C 80.716679 80.725409 80.716679 80.725409 80.720594 80.725409 C 80.724509 80.725409 80.724509 80.725409 80.724509 80.725409 C 80.724509 80.725409 80.728424 80.725409 80.728424 80.725409 C 80.728424 80.725409 80.728424 80.725409 80.728424 80.721494 C 80.728424 80.721494 80.728424 80.721494 80.732338 80.721494 C 80.732338 80.721494 80.732338 80.717579 80.732338 80.717579 C 80.732338 80.717579 80.732338 80.717579 80.732338 80.713664 C 80.732338 80.713664 80.732338 80.709749 80.732338 80.709749 C 80.732338 80.709749 80.728424 80.709749 80.728424 80.709749 C 80.728424 80.709749 80.728424 80.705835 80.728424 80.705835 C 80.728424 80.705835 80.728424 80.705835 80.728424 80.70192 C 80.724509 80.70192 80.724509 80.70192 80.724509 80.70192 C 80.724509 80.70192 80.724509 80.698005 80.720594 80.698005 C 80.720594 80.69409 80.716679 80.69409 80.716679 80.69409 C 80.716679 80.69409 80.716679 80.69409 80.712764 80.690175 C 80.70885 80.690175 80.70885 80.690175 80.70885 80.686261 C 80.70885 80.686261 80.704935 80.686261 80.704935 80.686261 C 80.704935 80.686261 80.704935 80.686261 80.70102 80.686261 C 80.70102 80.682346 80.70102 80.682346 80.70102 80.682346 C 80.697105 80.682346 80.697105 80.682346 80.697105 80.682346 C 80.697105 80.682346 80.69319 80.682346 80.69319 80.678431 C 80.69319 80.678431 80.69319 80.678431 80.689276 80.678431 C 80.689276 80.678431 80.685361 80.678431 80.685361 80.678431 C 80.681446 80.678431 80.681446 80.678431 80.681446 80.678431 C 80.681446 80.678431 80.681446 80.678431 80.677531 80.678431 C 80.677531 80.678431 80.673616 80.678431 80.673616 80.678431 C 80.673616 80.682346 80.673616 80.682346 80.673616 80.682346 C 80.673616 80.682346 80.673616 80.686261 80.673616 80.686261 C 80.673616 80.686261 80.673616 80.690175 80.673616 80.690175 C 80.677531 80.690175 80.677531 80.690175 80.677531 80.690175 C 80.677531 80.690175 80.677531 80.690175 80.677531 80.69409 C 80.677531 80.69409 80.677531 80.69409 80.681446 80.69409 C 80.681446 80.69409 80.681446 80.69409 80.681446 80.698005 C 80.681446 80.698005 80.685361 80.698005 80.685361 80.698005 C 80.685361 80.698005 80.689276 80.698005 80.689276 80.70192 C 80.689276 80.70192 80.689276 80.70192 80.69319 80.70192 C 80.69319 80.70192 80.69319 80.70192 80.697105 80.70192 C 80.697105 80.705835 80.697105 80.705835 80.697105 80.705835 C 80.697105 80.705835 80.70102 80.705835 80.70102 80.705835 C 80.704935 80.705835 80.704935 80.705835 80.704935 80.705835 C 80.704935 80.705835 80.704935 80.705835 80.70885 80.705835 C 80.70885 80.705835 80.70885 80.705835 80.70885 80.70192 C 80.70885 80.70192 80.70885 80.70192 80.70885 80.698005 C 80.70885 80.698005 80.704935 80.698005 80.704935 80.698005 C 80.704935 80.698005 80.704935 80.69409 80.704935 80.69409 C 80.70102 80.69409 80.70102 80.69409 80.70102 80.69409 C 80.70102 80.69409 80.70102 80.690175 80.697105 80.690175 C 80.697105 80.690175 80.69319 80.690175 80.69319 80.690175 C 80.69319 80.690175 80.689276 80.690175 80.689276 80.690175 C 80.685361 80.690175 80.685361 80.690175 80.685361 80.690175 C 80.685361 80.690175 80.685361 80.690175 80.689276 80.690175 C 80.689276 80.69409 80.689276 80.69409 80.689276 80.69409 C 80.689276 80.69409 80.689276 80.69409 80.69319 80.698005 C 80.69319 80.698005 80.69319 80.698005 80.697105 80.698005 C 80.697105 80.698005 80.70102 80.698005 80.70102 80.698005 C 80.70102 80.698005 80.697105 80.69409 80.697105 80.69409 C 80.69319 80.69409 80.69319 80.69409 80.69319 80.69409 C 80.69319 80.69409 80.69319 80.698005 80.69319 80.698005 C 80.69319 80.698005 80.697105 80.698005 80.697105 80.698005 C 80.697105 80.69409 80.697105 80.69409 80.697105 80.69409 C 80.697105 80.69409 80.697105 80.69409 80.69319 80.69409 C 80.69319 80.69409 80.697105 80.69409 80.697105 80.69409 C 80.697105 80.69409 80.69319 80.69409 80.69319 80.69409 C 80.69319 80.69409 80.697105 80.69409 80.697105 80.69409 C 80.697105 80.69409 80.69319 80.69409 80.69319 80.69409 C 80.69319 80.69409 80.697105 80.69409 80.697105 80.69409 C 80.697105 80.69409 80.69319 80.69409 80.69319 80.69409 C 80.69319 80.69409 80.697105 80.69409 80.697105 80.69409 C 80.697105 80.69409 80.69319 80.69409 80.69319 80.69409 " transform="matrix(0.997819,0,0,-0.997819,199.943766,363.186038)"/> +</g> +<path style="fill:none;stroke-width:0.79701;stroke-linecap:butt;stroke-linejoin:miter;stroke:rgb(0%,65.098572%,83.921814%);stroke-opacity:1;stroke-miterlimit:10;" d="M 82.204299 108.469521 L 85.116902 109.503026 " transform="matrix(0.997819,0,0,-0.997819,199.943766,363.186038)"/> +<path style="fill-rule:nonzero;fill:rgb(0%,65.098572%,83.921814%);fill-opacity:1;stroke-width:0.79701;stroke-linecap:butt;stroke-linejoin:miter;stroke:rgb(0%,65.098572%,83.921814%);stroke-opacity:1;stroke-miterlimit:10;" d="M 7.367534 0.00033958 L 1.285779 2.294679 L 3.291098 -0.00100507 L 1.288183 -2.293187 Z M 7.367534 0.00033958 " transform="matrix(0.940155,-0.33412,-0.33412,-0.940155,281.968022,254.954144)"/> +<path style="fill:none;stroke-width:0.79701;stroke-linecap:butt;stroke-linejoin:miter;stroke:rgb(0%,65.098572%,83.921814%);stroke-opacity:1;stroke-miterlimit:10;" d="M 35.105467 24.148871 L 32.016698 24.27023 " transform="matrix(0.997819,0,0,-0.997819,199.943766,363.186038)"/> +<path style="fill-rule:nonzero;fill:rgb(0%,65.098572%,83.921814%);fill-opacity:1;stroke-width:0.79701;stroke-linecap:butt;stroke-linejoin:miter;stroke:rgb(0%,65.098572%,83.921814%);stroke-opacity:1;stroke-miterlimit:10;" d="M 7.368674 -0.000252319 L 1.288212 2.292532 L 3.290001 0.00057469 L 1.287752 -2.295467 Z M 7.368674 -0.000252319 " transform="matrix(-0.997,-0.0390646,-0.0390646,0.997,234.971562,339.088887)"/> +<g clip-path="url(#clip46)" clip-rule="nonzero"> +<path style="fill:none;stroke-width:0.79701;stroke-linecap:butt;stroke-linejoin:miter;stroke:rgb(0%,65.098572%,83.921814%);stroke-opacity:1;stroke-miterlimit:10;" d="M 8.966418 80.69409 C 8.966418 80.69409 15.085234 85.826379 17.504574 87.740711 C 19.923914 89.658958 23.90134 92.669431 26.41072 94.497638 C 28.9201 96.32193 33.01497 99.179726 35.586986 100.898319 C 38.155088 102.620826 42.324339 105.294627 44.923759 106.895776 C 47.527094 108.496925 51.723748 110.971072 54.330998 112.439118 C 56.938248 113.911079 61.123158 116.162083 63.706919 117.489196 C 66.29068 118.81631 70.420783 120.832427 72.961481 122.006863 C 75.498265 123.185215 79.530498 124.950785 81.996815 125.96863 C 84.467047 126.986476 88.366178 128.49367 90.73854 129.347094 C 93.110903 130.200518 96.845612 131.441506 99.104445 132.130509 C 101.363279 132.815597 104.894419 133.786465 107.02015 134.303217 C 109.141965 134.823884 112.446048 135.520717 114.419102 135.869133 C 116.392155 136.221464 119.437862 136.648176 121.246494 136.832171 C 123.055127 137.016166 125.822883 137.172758 127.451436 137.196247 C 129.079988 137.21582 131.546305 137.114036 132.986948 136.977018 C 134.423676 136.840001 136.580725 136.491584 137.821713 136.197975 C 139.062701 135.908281 140.890908 135.321062 141.928327 134.886521 C 142.961832 134.451979 144.461196 133.637703 145.287216 133.070058 C 146.113237 132.498499 147.272015 131.472824 147.890551 130.779907 C 148.505173 130.083074 149.327279 128.865575 149.730503 128.055213 C 150.137641 127.248767 150.623075 125.855101 150.818814 124.942956 C 151.018468 124.03081 151.171145 122.484468 151.16723 121.478367 C 151.163315 120.476181 150.99498 118.796736 150.79141 117.716254 C 150.591756 116.635772 150.110237 114.838884 149.722673 113.695765 C 149.335109 112.552647 148.556066 110.665718 147.992336 109.471708 C 147.424692 108.277697 146.367698 106.320302 145.635633 105.087143 C 144.899652 103.857899 143.584283 101.849612 142.695626 100.59688 C 141.806969 99.344147 140.256712 97.312372 139.227122 96.047895 C 138.197533 94.783418 136.431963 92.747727 135.2771 91.487165 C 134.122237 90.222688 132.164842 88.202656 130.900365 86.957753 C 129.631973 85.71285 127.514072 83.728052 126.15564 82.510553 C 124.793294 81.293053 122.538375 79.363062 121.097732 78.18471 C 119.661005 77.006359 117.292557 75.150748 115.797107 74.023289 C 114.297743 72.891915 111.847085 71.12243 110.308573 70.057607 C 108.766146 68.98887 106.26068 67.321169 104.69085 66.322898 C 103.124934 65.324627 100.58815 63.77437 99.01049 62.85048 C 97.43283 61.930504 94.896047 60.509436 93.326216 59.671671 C 91.752471 58.829991 89.239176 57.549855 87.688919 56.80213 C 86.142577 56.050491 83.672345 54.919116 82.161236 54.261432 C 80.650128 53.607662 78.254277 52.628965 76.79406 52.073065 C 75.333844 51.51325 73.031947 50.695059 71.634368 50.237028 C 70.236788 49.778998 68.04842 49.125228 66.725222 48.768982 C 65.405938 48.412736 63.350673 47.923388 62.117514 47.668926 C 60.884356 47.414465 58.973938 47.089538 57.83865 46.932946 C 56.703361 46.780269 54.957364 46.619763 53.92386 46.564956 C 52.89427 46.514063 51.32444 46.506234 50.404464 46.553211 C 49.488404 46.596274 48.102568 46.745036 47.300036 46.882054 C 46.501419 47.019071 45.311323 47.316595 44.634065 47.543653 C 43.952891 47.770711 42.966364 48.209167 42.410464 48.518436 C 41.858479 48.831619 41.071606 49.399263 40.644894 49.790742 C 40.222097 50.178306 39.638793 50.867309 39.341269 51.329255 C 39.043745 51.7912 38.664011 52.589817 38.49176 53.118313 C 38.319509 53.64681 38.147259 54.543297 38.096366 55.1266 C 38.049389 55.713819 38.072878 56.696431 38.143344 57.334542 C 38.217725 57.968737 38.433038 59.025731 38.620948 59.702989 C 38.808858 60.380248 39.204252 61.499878 39.501776 62.212369 C 39.803214 62.920946 40.370859 64.091468 40.774082 64.827449 C 41.177306 65.563429 41.909371 66.765269 42.410464 67.520824 C 42.907643 68.272463 43.78847 69.497792 44.375689 70.261176 C 44.966822 71.02456 45.980752 72.257719 46.650181 73.021103 C 47.31961 73.784487 48.454899 75.013731 49.194794 75.7732 C 49.93469 76.528754 51.175678 77.742339 51.97821 78.486149 C 52.776827 79.229959 54.11177 80.412225 54.961279 81.136461 C 55.810789 81.856783 57.220113 83.003816 58.112685 83.696734 C 59.001342 84.393566 60.465473 85.485793 61.389364 86.147392 C 62.313254 86.812906 63.816533 87.846411 64.759997 88.468862 C 65.703462 89.091314 67.230229 90.058267 68.185438 90.637655 C 69.136732 91.21313 70.675244 92.105702 71.626538 92.634198 C 72.577832 93.162695 74.108515 93.973056 75.051979 94.45066 C 75.995443 94.928265 77.502637 95.648586 78.426527 96.071383 C 79.350418 96.490266 80.822378 97.120547 81.718865 97.484622 C 82.615352 97.848698 84.032506 98.381109 84.893759 98.686463 C 85.758928 98.987901 87.113445 99.422443 87.931636 99.66516 C 88.749827 99.907877 90.029963 100.244549 90.797262 100.424629 C 91.564561 100.604709 92.758572 100.843512 93.471063 100.960955 C 94.183555 101.078399 95.279696 101.219331 95.933466 101.274138 C 96.583321 101.33286 97.577677 101.372008 98.160981 101.372008 C 98.748199 101.368093 99.632942 101.317201 100.145779 101.258479 C 100.658617 101.195843 101.42983 101.05491 101.872201 100.937467 C 102.310658 100.823938 102.960513 100.592965 103.328503 100.424629 C 103.692578 100.260208 104.221075 99.947025 104.510769 99.731711 C 104.800464 99.512483 105.203687 99.128834 105.415086 98.866543 C 105.630399 98.604252 105.908349 98.146222 106.045367 97.844783 C 106.17847 97.539429 106.335061 97.022677 106.397698 96.68209 C 106.45642 96.341504 106.491653 95.76603 106.479909 95.394125 C 106.464249 95.02222 106.382039 94.399768 106.295913 94.00046 C 106.213703 93.601151 106.017963 92.939552 105.865287 92.516754 C 105.71261 92.093957 105.411171 91.397125 105.191943 90.958668 C 104.972715 90.520212 104.569491 89.799891 104.291541 89.345775 C 104.013591 88.895574 103.516413 88.159594 103.183656 87.697649 C 102.846984 87.239618 102.267595 86.495808 101.883946 86.033863 C 101.496382 85.568003 100.838697 84.824193 100.40807 84.362248 C 99.977443 83.904218 99.253207 83.164322 98.783432 82.710207 C 98.313658 82.256091 97.5307 81.531855 97.025692 81.089484 C 96.524599 80.647113 95.690749 79.942451 95.158337 79.515739 C 94.629841 79.089027 93.756843 78.411768 93.204858 78.00463 C 92.656787 77.593577 91.752471 76.951552 91.188741 76.567902 C 90.621096 76.180338 89.701121 75.57746 89.129562 75.213385 C 88.554088 74.853224 87.622368 74.293409 87.046894 73.960652 C 86.47142 73.627895 85.543615 73.118973 84.96814 72.817534 C 84.392666 72.516095 83.476606 72.05415 82.912876 71.787944 C 82.345232 71.517824 81.448745 71.1146 80.896759 70.879713 C 80.344774 70.644826 79.475691 70.296409 78.94328 70.096755 C 78.414783 69.901016 77.577018 69.611321 77.07201 69.450815 C 76.563088 69.290309 75.768385 69.059336 75.290781 68.934063 C 74.813177 68.812704 74.069367 68.640454 73.623081 68.554328 C 73.180709 68.468203 72.491706 68.358589 72.080654 68.307696 C 71.669601 68.260719 71.043234 68.209827 70.671329 68.198082 C 70.303339 68.182423 69.739609 68.190253 69.410767 68.213741 C 69.081925 68.233315 68.584747 68.299867 68.298967 68.354674 C 68.013187 68.409481 67.59039 68.526925 67.351588 68.616965 C 67.108871 68.70309 66.760455 68.871426 66.564715 68.992785 C 66.372891 69.110228 66.09494 69.325542 65.946178 69.474304 C 65.801331 69.619151 65.601677 69.881442 65.499892 70.053692 C 65.398108 70.225943 65.272835 70.527382 65.218028 70.723121 C 65.159306 70.918861 65.108414 71.251618 65.100584 71.470846 C 65.08884 71.68616 65.108414 72.05415 65.143647 72.289037 C 65.174965 72.523925 65.265005 72.915404 65.343301 73.16595 C 65.417682 73.416497 65.574273 73.82755 65.691717 74.08984 C 65.805246 74.352131 66.024474 74.782758 66.177151 75.052879 C 66.333743 75.322999 66.607778 75.76537 66.799603 76.04332 C 66.987512 76.317356 67.316355 76.767556 67.539498 77.045506 C 67.758726 77.327371 68.138461 77.777572 68.389007 78.055522 C 68.635639 78.337387 69.058436 78.783673 69.332471 79.061623 C 69.606507 79.339573 70.068452 79.781944 70.365976 80.052065 C 70.659585 80.322185 71.152848 80.752812 71.469946 81.015103 C 71.78313 81.281309 72.299882 81.696276 72.628724 81.946823 C 72.957566 82.201284 73.497807 82.596678 73.834479 82.83548 C 74.175066 83.078197 74.727051 83.450102 75.071553 83.67716 C 75.419969 83.900303 75.979784 84.252634 76.3282 84.460118 C 76.676616 84.667602 77.240346 84.988614 77.588762 85.180439 C 77.937179 85.372264 78.496994 85.661958 78.83758 85.834209 C 79.182082 86.00646 79.734067 86.264836 80.070739 86.413598 C 80.407411 86.566274 80.943737 86.789417 81.268664 86.918605 C 81.593592 87.047794 82.110344 87.235703 82.423527 87.345318 C 82.73671 87.451017 83.226059 87.603694 83.523583 87.689819 C 83.821107 87.77203 84.283052 87.889473 84.561002 87.95211 C 84.838952 88.014747 85.269579 88.096957 85.527955 88.136105 C 85.786331 88.175253 86.181725 88.218316 86.412698 88.23789 C 86.647585 88.253549 87.003831 88.265293 87.21523 88.261378 C 87.426628 88.253549 87.743726 88.23006 87.923807 88.206571 C 88.107802 88.179168 88.381837 88.120446 88.542343 88.077383 C 88.698935 88.030406 88.925993 87.940366 89.055181 87.877729 C 89.188284 87.811177 89.372279 87.693734 89.474063 87.611523 C 89.575848 87.529313 89.712865 87.384465 89.787246 87.286596 C 89.861627 87.188726 89.955582 87.016475 89.998645 86.902946 C 90.045622 86.789417 90.0926 86.593678 90.112174 86.468405 C 90.127833 86.343131 90.135663 86.127818 90.123918 85.9908 C 90.116089 85.853783 90.080856 85.62281 90.041708 85.474048 C 90.006475 85.325286 89.932094 85.082569 89.869457 84.925978 C 89.810735 84.769386 89.693291 84.514925 89.611081 84.354418 C 89.524955 84.189997 89.372279 83.927706 89.266579 83.75937 C 89.16088 83.594949 88.97297 83.324829 88.847697 83.156493 C 88.722424 82.988157 88.50711 82.714122 88.362263 82.545786 C 88.217416 82.37745 87.970784 82.103414 87.814192 81.935079 C 87.653686 81.766743 87.383566 81.496622 87.2074 81.332201 C 87.035149 81.16778 86.745455 80.901574 86.557545 80.741068 C 86.37355 80.580561 86.064282 80.3261 85.868542 80.169508 C 85.672803 80.012917 85.35179 79.766285 85.152136 79.621438 C 84.948567 79.472676 84.615809 79.237789 84.408326 79.096856 C 84.200842 78.959839 83.86417 78.74061 83.652771 78.611422 C 83.441373 78.478319 83.100786 78.278665 82.889387 78.157307 C 82.681903 78.039863 82.341317 77.855868 82.129918 77.746254 C 81.922434 77.63664 81.585762 77.472219 81.382193 77.374349 C 81.174709 77.280394 80.845867 77.135547 80.646213 77.053336 C 80.446559 76.967211 80.129461 76.845852 79.937636 76.775386 C 79.745811 76.70492 79.440458 76.603135 79.256463 76.544413 C 79.072468 76.489606 78.786688 76.407396 78.610522 76.364333 C 78.438272 76.32127 78.172066 76.262549 78.007645 76.235145 C 77.847138 76.203827 77.600507 76.168594 77.451745 76.152934 C 77.306898 76.137275 77.07984 76.121616 76.946737 76.117701 C 76.813634 76.117701 76.610065 76.121616 76.492621 76.133361 C 76.375178 76.145105 76.199012 76.168594 76.097228 76.192082 C 75.995443 76.215571 75.842766 76.262549 75.760556 76.293867 C 75.67443 76.3291 75.549157 76.395651 75.482606 76.438714 C 75.416054 76.485692 75.318184 76.567902 75.267292 76.622709 C 75.2164 76.677516 75.145934 76.775386 75.110701 76.838023 C 75.079382 76.904574 75.03632 77.018103 75.02066 77.088569 C 75.001087 77.16295 74.989342 77.288223 74.985427 77.366519 C 74.985427 77.44873 74.997172 77.585747 75.012831 77.671873 C 75.02849 77.757998 75.063723 77.902845 75.095041 77.9968 C 75.12636 78.08684 75.185082 78.239517 75.232059 78.337387 C 75.275122 78.431342 75.361247 78.591848 75.416054 78.689718 C 75.474776 78.791503 75.580475 78.952009 75.650942 79.053793 C 75.721408 79.155578 75.846681 79.319999 75.928892 79.421784 C 76.011102 79.523568 76.155949 79.687989 76.24599 79.789774 C 76.339945 79.895473 76.496536 80.05598 76.598321 80.157764 C 76.700105 80.259549 76.872356 80.420055 76.98197 80.517925 C 77.091584 80.619709 77.271664 80.776301 77.389108 80.870256 C 77.506552 80.968126 77.694462 81.116888 77.81582 81.210842 C 77.937179 81.300883 78.136833 81.44573 78.262106 81.531855 C 78.383465 81.617981 78.587034 81.754998 78.716222 81.837209 C 78.841495 81.915505 79.048979 82.044693 79.174252 82.119074 C 79.30344 82.193455 79.507009 82.310898 79.636197 82.37745 C 79.761471 82.447916 79.96504 82.553615 80.094228 82.612337 C 80.219501 82.674974 80.419155 82.768929 80.540514 82.819821 C 80.661872 82.874628 80.857612 82.952924 80.97897 82.999901 C 81.096414 83.046879 81.284324 83.11343 81.397852 83.152578 C 81.511381 83.187811 81.687547 83.242618 81.797161 83.273937 C 81.90286 83.30134 82.071196 83.344403 82.172981 83.363977 C 82.270851 83.387465 82.427442 83.414869 82.521397 83.426613 C 82.611437 83.438358 82.756284 83.454017 82.838495 83.457932 C 82.92462 83.461846 83.053808 83.465761 83.128189 83.461846 C 83.20257 83.457932 83.316099 83.446187 83.382651 83.438358 C 83.445287 83.426613 83.543157 83.403125 83.601879 83.387465 C 83.656686 83.367891 83.738897 83.332658 83.781959 83.30917 C 83.828937 83.285681 83.895488 83.238703 83.930721 83.207385 C 83.965954 83.176067 84.012932 83.12126 84.036421 83.086027 C 84.063824 83.046879 84.095142 82.984242 84.110802 82.941179 C 84.122546 82.898117 84.138205 82.827651 84.146035 82.780673 C 84.149949 82.733696 84.149949 82.651485 84.14212 82.600593 C 84.138205 82.5497 84.122546 82.46749 84.106887 82.412683 C 84.091228 82.357876 84.063824 82.267836 84.040335 82.209114 C 84.016847 82.150392 83.969869 82.056437 83.938551 81.997715 C 83.907233 81.938993 83.848511 81.841124 83.809363 81.778487 C 83.7663 81.719765 83.695834 81.617981 83.648856 81.559259 C 83.601879 81.496622 83.523583 81.394838 83.468776 81.336116 C 83.413969 81.273479 83.323929 81.171695 83.265207 81.112973 C 83.20257 81.050336 83.104701 80.952466 83.038149 80.88983 C 82.975513 80.831108 82.869813 80.733238 82.799347 80.674516 C 82.728881 80.615794 82.615352 80.525754 82.544886 80.467032 C 82.47442 80.412225 82.353061 80.322185 82.27868 80.267378 C 82.204299 80.216486 82.082941 80.130361 82.00856 80.079468 C 81.930264 80.028576 81.808905 79.95028 81.73061 79.903303 C 81.652314 79.856325 81.530955 79.781944 81.45266 79.738882 C 81.374364 79.695819 81.24909 79.629268 81.174709 79.59012 C 81.096414 79.554887 80.975055 79.49225 80.900674 79.460932 C 80.826293 79.425698 80.704935 79.374806 80.634469 79.343488 C 80.560088 79.31217 80.446559 79.269107 80.376092 79.245618 C 80.305626 79.218215 80.196012 79.182982 80.129461 79.163408 C 80.062909 79.143834 79.95721 79.11643 79.894573 79.100771 C 79.831937 79.085112 79.734067 79.065538 79.675345 79.057708 C 79.620538 79.045964 79.530498 79.03422 79.475691 79.030305 C 79.424799 79.02639 79.342588 79.01856 79.295611 79.01856 C 79.244718 79.01856 79.174252 79.022475 79.131189 79.02639 C 79.088127 79.03422 79.02549 79.042049 78.990257 79.053793 C 78.955024 79.061623 78.900217 79.081197 78.868899 79.092941 C 78.841495 79.104686 78.798432 79.132089 78.771029 79.147748 C 78.74754 79.167322 78.716222 79.194726 78.696648 79.218215 C 78.680989 79.237789 78.6575 79.273022 78.645756 79.300425 C 78.634011 79.323914 78.618352 79.363062 78.614437 79.390465 C 78.610522 79.417869 78.606608 79.464846 78.606608 79.496165 C 78.606608 79.527483 78.614437 79.57446 78.618352 79.609694 C 78.626182 79.641012 78.641841 79.691904 78.653585 79.727137 C 78.665329 79.76237 78.688818 79.817177 78.704477 79.852411 C 78.724051 79.887644 78.75537 79.946365 78.778858 79.985513 C 78.798432 80.020746 78.83758 80.079468 78.864984 80.118616 C 78.892387 80.153849 78.939365 80.216486 78.970683 80.251719 C 79.002001 80.290867 79.052894 80.349589 79.088127 80.388737 C 79.12336 80.42397 79.182082 80.482692 79.217315 80.52184 C 79.256463 80.557073 79.319099 80.615794 79.362162 80.651028 C 79.40131 80.690175 79.467861 80.744983 79.510924 80.780216 C 79.553987 80.815449 79.624453 80.870256 79.667516 80.905489 C 79.714493 80.936807 79.784959 80.987699 79.831937 81.019018 C 79.878914 81.050336 79.953295 81.101228 80.000273 81.128632 C 80.043335 81.15995 80.121631 81.206928 80.168609 81.234331 C 80.215586 81.261735 80.289967 81.300883 80.336945 81.324371 C 80.383922 81.351775 80.458303 81.387008 80.501366 81.410497 C 80.548343 81.433985 80.622724 81.465304 80.665787 81.484878 C 80.70885 81.504452 80.783231 81.531855 80.826293 81.547514 C 80.869356 81.563174 80.935907 81.590577 80.975055 81.602321 C 81.018118 81.614066 81.080755 81.63364 81.119902 81.645384 C 81.15905 81.653214 81.221687 81.668873 81.25692 81.676702 C 81.292153 81.684532 81.350875 81.692362 81.382193 81.696276 C 81.417426 81.700191 81.468319 81.704106 81.499637 81.708021 C 81.527041 81.708021 81.574018 81.708021 81.601422 81.708021 C 81.628825 81.704106 81.667973 81.700191 81.691462 81.696276 C 81.71495 81.692362 81.750184 81.680617 81.769757 81.676702 C 81.789331 81.668873 81.82065 81.657128 81.836309 81.645384 C 81.851968 81.637555 81.875457 81.617981 81.887201 81.606236 C 81.898946 81.594492 81.914605 81.574918 81.922434 81.559259 C 81.930264 81.547514 81.942008 81.524026 81.945923 81.508366 C 81.953753 81.492707 81.957667 81.465304 81.957667 81.44573 C 81.957667 81.430071 81.957667 81.398752 81.953753 81.383093 C 81.953753 81.363519 81.945923 81.332201 81.942008 81.312627 C 81.934179 81.289138 81.922434 81.25782 81.914605 81.234331 C 81.90286 81.214757 81.887201 81.179524 81.875457 81.15995 C 81.863712 81.136461 81.840224 81.101228 81.824565 81.07774 C 81.808905 81.054251 81.785417 81.019018 81.765843 80.995529 C 81.750184 80.975955 81.718865 80.936807 81.699291 80.917233 C 81.679717 80.893745 81.644484 80.854597 81.620995 80.835023 C 81.601422 80.811534 81.562274 80.776301 81.538785 80.752812 C 81.515296 80.733238 81.476148 80.698005 81.448745 80.674516 C 81.425256 80.654942 81.382193 80.619709 81.35479 80.600135 C 81.331301 80.580561 81.284324 80.545328 81.25692 80.525754 C 81.229517 80.50618 81.186454 80.478777 81.15905 80.459203 C 81.131647 80.439629 81.084669 80.412225 81.057266 80.396566 C 81.029862 80.376992 80.982885 80.353504 80.955481 80.337844 C 80.928078 80.322185 80.8811 80.298697 80.853697 80.283037 C 80.826293 80.267378 80.779316 80.247804 80.751912 80.23606 C 80.724509 80.224316 80.681446 80.204742 80.657957 80.192997 C 80.630554 80.185168 80.587491 80.169508 80.564002 80.157764 C 80.536599 80.149935 80.497451 80.13819 80.473962 80.130361 C 80.450473 80.122531 80.411326 80.114701 80.387837 80.106872 C 80.364348 80.102957 80.329115 80.095127 80.309541 80.095127 C 80.289967 80.091213 80.254734 80.087298 80.239075 80.083383 C 80.219501 80.083383 80.188183 80.083383 80.172523 80.083383 C 80.152949 80.083383 80.129461 80.083383 80.113802 80.087298 C 80.098142 80.087298 80.074654 80.091213 80.062909 80.095127 C 80.051165 80.099042 80.031591 80.106872 80.019847 80.110787 C 80.012017 80.118616 79.996358 80.126446 79.984614 80.134275 C 79.976784 80.13819 79.96504 80.149935 79.961125 80.157764 C 79.953295 80.165594 79.945466 80.181253 79.941551 80.189082 C 79.937636 80.196912 79.933721 80.212571 79.933721 80.224316 C 79.929806 80.23606 79.929806 80.251719 79.929806 80.263463 C 79.929806 80.275208 79.933721 80.290867 79.937636 80.302611 C 79.941551 80.31827 79.945466 80.337844 79.94938 80.349589 C 79.95721 80.361333 79.96504 80.380907 79.972869 80.396566 C 79.976784 80.408311 79.988528 80.427885 80.000273 80.443544 C 80.008102 80.455288 80.019847 80.478777 80.031591 80.490521 C 80.043335 80.50618 80.058995 80.525754 80.070739 80.541413 C 80.082483 80.553158 80.102057 80.576647 80.113802 80.592306 C 80.129461 80.60405 80.149035 80.627539 80.164694 80.639283 C 80.176438 80.654942 80.199927 80.674516 80.215586 80.686261 C 80.231245 80.70192 80.254734 80.721494 80.270393 80.733238 C 80.286052 80.744983 80.313456 80.768471 80.329115 80.780216 C 80.344774 80.79196 80.372178 80.811534 80.387837 80.819364 C 80.407411 80.831108 80.434814 80.850682 80.450473 80.862426 C 80.466133 80.870256 80.493536 80.88983 80.51311 80.897659 C 80.528769 80.909404 80.556173 80.921148 80.575747 80.932892 C 80.591406 80.940722 80.618809 80.952466 80.634469 80.960296 C 80.650128 80.968126 80.677531 80.97987 80.69319 80.987699 C 80.70885 80.995529 80.736253 81.003359 80.751912 81.011188 C 80.767571 81.015103 80.79106 81.026847 80.806719 81.030762 C 80.822378 81.034677 80.845867 81.042507 80.861526 81.046421 C 80.873271 81.050336 80.896759 81.054251 80.908504 81.054251 C 80.920248 81.058166 80.943737 81.06208 80.955481 81.06208 C 80.967226 81.065995 80.982885 81.065995 80.994629 81.065995 C 81.006374 81.065995 81.022033 81.065995 81.033777 81.065995 C 81.041607 81.065995 81.057266 81.06208 81.065095 81.06208 C 81.072925 81.058166 81.084669 81.054251 81.092499 81.054251 C 81.100328 81.050336 81.112073 81.046421 81.115988 81.042507 C 81.119902 81.038592 81.127732 81.030762 81.135562 81.026847 C 81.139476 81.022933 81.143391 81.015103 81.147306 81.007273 C 81.151221 81.003359 81.151221 80.995529 81.155136 80.987699 C 81.155136 80.983785 81.15905 80.97204 81.15905 80.968126 C 81.15905 80.960296 81.155136 80.948552 81.155136 80.940722 C 81.155136 80.936807 81.151221 80.925063 81.151221 80.917233 C 81.147306 80.909404 81.143391 80.897659 81.139476 80.88983 C 81.135562 80.882 81.127732 80.866341 81.123817 80.858511 C 81.119902 80.850682 81.112073 80.838937 81.104243 80.831108 C 81.100328 80.823278 81.088584 80.807619 81.084669 80.79979 C 81.07684 80.79196 81.065095 80.780216 81.057266 80.772386 C 81.049436 80.760642 81.037692 80.748897 81.029862 80.741068 C 81.022033 80.733238 81.006374 80.721494 80.998544 80.709749 C 80.990714 80.70192 80.975055 80.690175 80.967226 80.682346 C 80.955481 80.674516 80.939822 80.662772 80.931993 80.654942 C 80.920248 80.647113 80.904589 80.635368 80.896759 80.627539 C 80.885015 80.623624 80.869356 80.61188 80.857612 80.60405 C 80.849782 80.596221 80.830208 80.588391 80.822378 80.580561 C 80.810634 80.576647 80.794975 80.564902 80.783231 80.560987 C 80.775401 80.553158 80.755827 80.545328 80.747997 80.541413 C 80.736253 80.537499 80.720594 80.529669 80.70885 80.525754 C 80.70102 80.517925 80.685361 80.51401 80.673616 80.510095 C 80.665787 80.50618 80.650128 80.498351 80.642298 80.498351 C 80.630554 80.494436 80.618809 80.490521 80.607065 80.486606 C 80.599235 80.482692 80.587491 80.482692 80.579662 80.478777 C 80.567917 80.478777 80.556173 80.474862 80.548343 80.474862 C 80.540514 80.474862 80.528769 80.470947 80.524854 80.470947 C 80.517025 80.470947 80.505281 80.470947 80.501366 80.470947 C 80.493536 80.470947 80.485707 80.470947 80.477877 80.470947 C 80.473962 80.474862 80.466133 80.474862 80.462218 80.474862 C 80.458303 80.478777 80.450473 80.482692 80.446559 80.482692 C 80.442644 80.486606 80.438729 80.486606 80.434814 80.490521 C 80.4309 80.494436 80.426985 80.498351 80.42307 80.502266 C 80.42307 80.502266 80.419155 80.510095 80.419155 80.51401 C 80.419155 80.51401 80.41524 80.52184 80.41524 80.525754 C 80.41524 80.529669 80.41524 80.533584 80.41524 80.537499 C 80.41524 80.545328 80.419155 80.549243 80.419155 80.553158 C 80.419155 80.560987 80.42307 80.564902 80.42307 80.572732 C 80.426985 80.576647 80.4309 80.584476 80.4309 80.588391 C 80.434814 80.592306 80.438729 80.600135 80.442644 80.60405 C 80.446559 80.61188 80.450473 80.619709 80.454388 80.623624 C 80.458303 80.627539 80.466133 80.635368 80.470047 80.643198 C 80.473962 80.647113 80.481792 80.654942 80.485707 80.658857 C 80.489621 80.666687 80.497451 80.674516 80.505281 80.678431 C 80.509195 80.682346 80.517025 80.690175 80.524854 80.69409 C 80.528769 80.70192 80.536599 80.705835 80.544428 80.713664 C 80.548343 80.717579 80.560088 80.725409 80.564002 80.729323 C 80.571832 80.733238 80.579662 80.741068 80.587491 80.744983 C 80.591406 80.748897 80.60315 80.752812 80.61098 80.756727 C 80.614895 80.760642 80.626639 80.768471 80.630554 80.772386 C 80.638383 80.776301 80.650128 80.780216 80.654043 80.78413 C 80.661872 80.788045 80.669702 80.79196 80.677531 80.795875 C 80.681446 80.795875 80.69319 80.79979 80.697105 80.803704 C 80.704935 80.807619 80.712764 80.811534 80.720594 80.811534 C 80.724509 80.815449 80.732338 80.815449 80.740168 80.819364 C 80.744083 80.819364 80.751912 80.823278 80.759742 80.823278 C 80.763657 80.823278 80.771486 80.827193 80.775401 80.827193 C 80.779316 80.827193 80.787145 80.831108 80.79106 80.831108 C 80.79889 80.831108 80.802805 80.831108 80.806719 80.831108 C 80.810634 80.831108 80.818464 80.831108 80.822378 80.831108 C 80.822378 80.831108 80.830208 80.827193 80.834123 80.827193 C 80.834123 80.827193 80.838038 80.827193 80.841952 80.823278 C 80.845867 80.823278 80.849782 80.823278 80.849782 80.819364 C 80.853697 80.819364 80.853697 80.815449 80.857612 80.815449 C 80.857612 80.815449 80.861526 80.811534 80.861526 80.807619 C 80.861526 80.807619 80.861526 80.803704 80.865441 80.79979 C 80.865441 80.79979 80.865441 80.795875 80.865441 80.79196 C 80.865441 80.79196 80.865441 80.788045 80.861526 80.78413 C 80.861526 80.780216 80.861526 80.776301 80.861526 80.772386 C 80.861526 80.772386 80.857612 80.768471 80.857612 80.764556 C 80.853697 80.760642 80.853697 80.756727 80.849782 80.752812 C 80.849782 80.748897 80.845867 80.744983 80.845867 80.741068 C 80.841952 80.741068 80.838038 80.733238 80.834123 80.733238 C 80.834123 80.729323 80.830208 80.725409 80.826293 80.721494 C 80.822378 80.717579 80.818464 80.713664 80.814549 80.709749 C 80.810634 80.705835 80.806719 80.70192 80.802805 80.698005 C 80.802805 80.698005 80.794975 80.690175 80.79106 80.690175 C 80.787145 80.686261 80.783231 80.682346 80.779316 80.678431 C 80.775401 80.674516 80.771486 80.670602 80.767571 80.670602 C 80.763657 80.666687 80.755827 80.662772 80.751912 80.658857 C 80.747997 80.658857 80.744083 80.654942 80.740168 80.651028 C 80.736253 80.651028 80.728424 80.647113 80.724509 80.643198 C 80.720594 80.643198 80.716679 80.639283 80.712764 80.639283 C 80.70885 80.635368 80.70102 80.631454 80.697105 80.631454 C 80.69319 80.631454 80.689276 80.627539 80.685361 80.627539 C 80.681446 80.623624 80.677531 80.623624 80.673616 80.623624 C 80.669702 80.619709 80.665787 80.619709 80.661872 80.619709 C 80.657957 80.615794 80.654043 80.615794 80.650128 80.615794 C 80.646213 80.615794 80.642298 80.615794 80.638383 80.615794 C 80.638383 80.61188 80.634469 80.61188 80.630554 80.61188 C 80.626639 80.61188 80.622724 80.61188 80.622724 80.61188 C 80.618809 80.61188 80.614895 80.61188 80.614895 80.615794 C 80.614895 80.615794 80.61098 80.615794 80.607065 80.615794 C 80.607065 80.615794 80.60315 80.615794 80.60315 80.619709 C 80.60315 80.619709 80.599235 80.619709 80.599235 80.619709 C 80.599235 80.623624 80.595321 80.623624 80.595321 80.623624 C 80.595321 80.627539 80.595321 80.627539 80.595321 80.627539 C 80.595321 80.631454 80.591406 80.631454 80.591406 80.635368 C 80.591406 80.635368 80.591406 80.639283 80.591406 80.639283 C 80.591406 80.639283 80.595321 80.643198 80.595321 80.643198 C 80.595321 80.647113 80.595321 80.651028 80.595321 80.651028 C 80.595321 80.651028 80.599235 80.654942 80.599235 80.658857 C 80.599235 80.658857 80.60315 80.662772 80.60315 80.662772 C 80.60315 80.666687 80.607065 80.666687 80.607065 80.670602 C 80.61098 80.670602 80.61098 80.674516 80.614895 80.678431 C 80.614895 80.678431 80.618809 80.682346 80.618809 80.682346 C 80.622724 80.686261 80.622724 80.686261 80.626639 80.690175 C 80.626639 80.690175 80.630554 80.69409 80.634469 80.698005 C 80.634469 80.698005 80.638383 80.70192 80.642298 80.70192 C 80.642298 80.705835 80.646213 80.705835 80.650128 80.709749 C 80.650128 80.709749 80.654043 80.713664 80.657957 80.713664 C 80.657957 80.713664 80.661872 80.717579 80.665787 80.717579 C 80.665787 80.721494 80.669702 80.721494 80.673616 80.725409 C 80.677531 80.725409 80.677531 80.725409 80.681446 80.729323 C 80.685361 80.729323 80.689276 80.729323 80.689276 80.733238 C 80.69319 80.733238 80.697105 80.733238 80.697105 80.737153 C 80.70102 80.737153 80.704935 80.737153 80.704935 80.737153 C 80.70885 80.737153 80.70885 80.741068 80.712764 80.741068 C 80.712764 80.741068 80.716679 80.741068 80.720594 80.741068 C 80.720594 80.741068 80.724509 80.744983 80.724509 80.744983 C 80.728424 80.744983 80.728424 80.744983 80.732338 80.744983 C 80.732338 80.744983 80.736253 80.744983 80.736253 80.744983 C 80.740168 80.744983 80.740168 80.744983 80.740168 80.744983 C 80.744083 80.744983 80.744083 80.744983 80.744083 80.744983 C 80.747997 80.744983 80.747997 80.741068 80.747997 80.741068 C 80.751912 80.741068 80.751912 80.741068 80.751912 80.741068 C 80.751912 80.741068 80.755827 80.741068 80.755827 80.737153 C 80.755827 80.737153 80.755827 80.733238 80.755827 80.733238 C 80.755827 80.733238 80.755827 80.729323 80.755827 80.729323 C 80.755827 80.729323 80.755827 80.729323 80.755827 80.725409 C 80.755827 80.721494 80.755827 80.721494 80.755827 80.721494 C 80.751912 80.717579 80.751912 80.717579 80.751912 80.717579 C 80.751912 80.713664 80.747997 80.713664 80.747997 80.713664 C 80.747997 80.709749 80.747997 80.709749 80.744083 80.709749 C 80.744083 80.705835 80.744083 80.705835 80.744083 80.705835 C 80.740168 80.70192 80.740168 80.70192 80.740168 80.698005 C 80.736253 80.698005 80.736253 80.698005 80.736253 80.69409 C 80.732338 80.69409 80.732338 80.69409 80.728424 80.69409 C 80.728424 80.690175 80.724509 80.690175 80.724509 80.690175 C 80.724509 80.686261 80.720594 80.686261 80.720594 80.686261 C 80.720594 80.682346 80.716679 80.682346 80.716679 80.682346 C 80.712764 80.682346 80.712764 80.678431 80.70885 80.678431 C 80.70885 80.678431 80.704935 80.678431 80.704935 80.674516 C 80.704935 80.674516 80.70102 80.674516 80.70102 80.674516 C 80.697105 80.674516 80.697105 80.670602 80.697105 80.670602 C 80.69319 80.670602 80.69319 80.670602 80.689276 80.670602 C 80.689276 80.670602 80.689276 80.666687 80.685361 80.666687 C 80.685361 80.666687 80.681446 80.666687 80.681446 80.666687 C 80.681446 80.666687 80.677531 80.666687 80.677531 80.666687 C 80.677531 80.666687 80.673616 80.666687 80.673616 80.666687 C 80.673616 80.666687 80.673616 80.666687 80.669702 80.666687 C 80.665787 80.666687 80.665787 80.666687 80.665787 80.666687 C 80.665787 80.666687 80.661872 80.666687 80.661872 80.666687 C 80.661872 80.666687 80.661872 80.666687 80.657957 80.666687 C 80.657957 80.666687 80.657957 80.670602 80.657957 80.670602 C 80.657957 80.670602 80.657957 80.670602 80.657957 80.674516 C 80.657957 80.674516 80.657957 80.678431 80.657957 80.678431 C 80.657957 80.678431 80.657957 80.682346 80.661872 80.682346 C 80.661872 80.686261 80.661872 80.686261 80.661872 80.686261 C 80.665787 80.686261 80.665787 80.686261 80.665787 80.690175 C 80.665787 80.690175 80.665787 80.690175 80.669702 80.690175 C 80.669702 80.690175 80.669702 80.69409 80.669702 80.69409 C 80.669702 80.69409 80.673616 80.69409 80.673616 80.69409 C 80.673616 80.698005 80.673616 80.698005 80.677531 80.698005 C 80.677531 80.698005 80.677531 80.698005 80.677531 80.70192 C 80.681446 80.70192 80.681446 80.70192 80.681446 80.70192 C 80.681446 80.70192 80.685361 80.70192 80.685361 80.705835 C 80.685361 80.705835 80.685361 80.705835 80.689276 80.705835 C 80.69319 80.709749 80.69319 80.709749 80.69319 80.709749 C 80.69319 80.709749 80.697105 80.709749 80.697105 80.709749 C 80.697105 80.709749 80.697105 80.709749 80.70102 80.709749 C 80.70102 80.709749 80.70102 80.713664 80.70102 80.713664 C 80.70102 80.713664 80.704935 80.713664 80.704935 80.713664 C 80.70885 80.713664 80.70885 80.713664 80.70885 80.713664 C 80.712764 80.713664 80.712764 80.713664 80.712764 80.713664 C 80.712764 80.713664 80.716679 80.713664 80.716679 80.713664 C 80.716679 80.709749 80.716679 80.709749 80.716679 80.709749 C 80.716679 80.705835 80.716679 80.705835 80.716679 80.705835 C 80.716679 80.70192 80.716679 80.70192 80.716679 80.70192 C 80.716679 80.70192 80.716679 80.70192 80.712764 80.70192 C 80.712764 80.70192 80.712764 80.698005 80.712764 80.698005 C 80.712764 80.698005 80.712764 80.698005 80.70885 80.698005 C 80.70885 80.698005 80.70885 80.69409 80.70885 80.69409 C 80.70885 80.69409 80.704935 80.69409 80.704935 80.69409 C 80.704935 80.69409 80.704935 80.690175 80.704935 80.690175 C 80.704935 80.690175 80.70102 80.690175 80.70102 80.690175 C 80.70102 80.690175 80.697105 80.690175 80.697105 80.686261 C 80.697105 80.686261 80.697105 80.686261 80.69319 80.686261 C 80.689276 80.686261 80.689276 80.686261 80.689276 80.686261 C 80.689276 80.686261 80.689276 80.682346 80.689276 80.682346 C 80.685361 80.682346 80.685361 80.682346 80.685361 80.682346 C 80.685361 80.682346 80.685361 80.682346 80.685361 80.686261 C 80.685361 80.686261 80.685361 80.686261 80.681446 80.686261 C 80.681446 80.686261 80.681446 80.690175 80.681446 80.690175 C 80.681446 80.690175 80.685361 80.690175 80.685361 80.690175 C 80.685361 80.69409 80.685361 80.69409 80.685361 80.69409 C 80.689276 80.69409 80.689276 80.698005 80.689276 80.698005 C 80.689276 80.698005 80.689276 80.698005 80.69319 80.698005 C 80.69319 80.698005 80.69319 80.70192 80.69319 80.70192 C 80.69319 80.70192 80.697105 80.70192 80.697105 80.70192 C 80.697105 80.70192 80.70102 80.70192 80.70102 80.70192 C 80.70102 80.70192 80.704935 80.70192 80.704935 80.70192 C 80.704935 80.70192 80.704935 80.698005 80.704935 80.698005 C 80.704935 80.698005 80.70102 80.698005 80.70102 80.698005 C 80.70102 80.69409 80.70102 80.69409 80.70102 80.69409 C 80.70102 80.69409 80.70102 80.69409 80.697105 80.69409 C 80.697105 80.690175 80.69319 80.690175 80.69319 80.690175 C 80.69319 80.690175 80.689276 80.690175 80.689276 80.690175 C 80.689276 80.690175 80.689276 80.69409 80.689276 80.69409 C 80.689276 80.69409 80.689276 80.69409 80.69319 80.69409 C 80.69319 80.69409 80.69319 80.698005 80.69319 80.698005 C 80.697105 80.698005 80.697105 80.698005 80.697105 80.698005 C 80.697105 80.698005 80.697105 80.698005 80.697105 80.69409 C 80.697105 80.69409 80.69319 80.69409 80.69319 80.69409 C 80.697105 80.69409 80.697105 80.69409 80.697105 80.69409 C 80.69319 80.69409 80.69319 80.69409 80.69319 80.69409 C 80.69319 80.69409 80.697105 80.69409 80.697105 80.69409 C 80.697105 80.69409 80.69319 80.69409 80.69319 80.69409 C 80.69319 80.69409 80.697105 80.69409 80.697105 80.69409 C 80.697105 80.69409 80.69319 80.69409 80.69319 80.69409 C 80.69319 80.69409 80.697105 80.69409 80.697105 80.69409 C 80.697105 80.69409 80.69319 80.69409 80.69319 80.69409 " transform="matrix(0.997819,0,0,-0.997819,199.943766,363.186038)"/> +</g> +<path style="fill:none;stroke-width:0.79701;stroke-linecap:butt;stroke-linejoin:miter;stroke:rgb(0%,65.098572%,83.921814%);stroke-opacity:1;stroke-miterlimit:10;" d="M 79.185996 52.922574 L 76.273393 51.885155 " transform="matrix(0.997819,0,0,-0.997819,199.943766,363.186038)"/> +<path style="fill-rule:nonzero;fill:rgb(0%,65.098572%,83.921814%);fill-opacity:1;stroke-width:0.79701;stroke-linecap:butt;stroke-linejoin:miter;stroke:rgb(0%,65.098572%,83.921814%);stroke-opacity:1;stroke-miterlimit:10;" d="M 7.368191 0.0022922 L 1.285124 2.292942 L 3.291755 0.000947547 L 1.287528 -2.294923 Z M 7.368191 0.0022922 " transform="matrix(-0.940155,0.33412,0.33412,0.940155,278.957723,310.379738)"/> +<path style="fill:none;stroke-width:0.79701;stroke-linecap:butt;stroke-linejoin:miter;stroke:rgb(0%,65.098572%,83.921814%);stroke-opacity:1;stroke-miterlimit:10;" d="M 126.284828 137.239309 L 129.373597 137.117951 " transform="matrix(0.997819,0,0,-0.997819,199.943766,363.186038)"/> +<path style="fill-rule:nonzero;fill:rgb(0%,65.098572%,83.921814%);fill-opacity:1;stroke-width:0.79701;stroke-linecap:butt;stroke-linejoin:miter;stroke:rgb(0%,65.098572%,83.921814%);stroke-opacity:1;stroke-miterlimit:10;" d="M 7.368638 0.00158306 L 1.288176 2.294367 L 3.290118 -0.00150193 L 1.287716 -2.293632 Z M 7.368638 0.00158306 " transform="matrix(0.997,0.0390646,0.0390646,-0.997,325.954184,226.244975)"/> +<g style="fill:rgb(0%,0%,0%);fill-opacity:1;"> + <use xlink:href="#glyph0-2" x="365.094729" y="285.22447"/> +</g> +<g style="fill:rgb(0%,0%,0%);fill-opacity:1;"> + <use xlink:href="#glyph0-3" x="277.413409" y="195.712153"/> +</g> +</g> +</svg> diff --git a/Chapter9/MarkovChains.md b/Chapter9/MarkovChains.md index 0436b59..d99e6fd 100644 --- a/Chapter9/MarkovChains.md +++ b/Chapter9/MarkovChains.md @@ -69,7 +69,8 @@ Suppose $P$ is a stochastic matrix. If $\vect{x}$ is a probability vector, then ::: -:::{prf:proof} +:::{admonition} Proof of {prf:ref}`Prop:MarkovChains:StoMatPreservesProbVect` +:class: myproof Note first that every entry of a stochastic matrix or a probability vector is non-negative. Consequently, every entry of $P\vect{x}$ is also non-negative. @@ -157,7 +158,8 @@ If $P$ is a stochastic matrix, then $1$ is an eigenvalue of $P$. Moreover, there ::: -:::{prf:proof} +:::{admonition} Proof of {prf:ref}`Prop:MarkovChains:StoMat1EV` +:class: myproof Showing that $1$ is an eigenvalue is a very non-trivial exercise. Showing that there is a corresponding eigenvector without negative entries would lead us too far. @@ -224,7 +226,8 @@ If $P$ is a regular stochastic matrix, then it has a unique steady state $\vect{ ::: -:::{prf:proof} +:::{admonition} Proof of {prf:ref}`Thm:MarkovChains:PerronFrobenius` +:class: myproof The proof is quite complicated and falls outside the scope of this text. @@ -239,6 +242,7 @@ Let us consider the following toy problem, illustrated in {numref}`Figure %s <Fi :::{figure} Images/Fig-MarkovChains-MarkovChainonNodes.svg :name: Fig:MarkovChains:FourNodesinCircle +:class: dark-light The problem from {prf:ref}`Ex:MarkovChains:MarkovChainonNodes` illustrated. @@ -290,6 +294,7 @@ What makes this Markov chain behave so weirdly is the fact that any two nodes ar :::{figure} Images/Fig-MarkovChains-ExtraLoop.svg :name: Fig:MarkovChains:ExtraLoop +:class: dark-light The problem from {prf:ref}`Ex:MarkovChains:MarkovChainonNodes` with an extra loop. Note that the outgoing arrows from node 1 now have different probabilities. diff --git a/Chapter9/PowerMethod.md b/Chapter9/PowerMethod.md index 2f20f9b..d4167b5 100644 --- a/Chapter9/PowerMethod.md +++ b/Chapter9/PowerMethod.md @@ -126,8 +126,8 @@ Moreover, suppose $\vect{x}$ is the result after a (sufficiently) large number o :::: - -::::{dropdown} Informal proof of {prf:ref}`Prop:Powermethod:Powermed`. +::::{admonition} Informal proof of {prf:ref}`Prop:Powermethod:Powermed` +:class: myproof, dropdown For the proof we assume that the matrix is diagonalizable, to be able to use {eq}`Eq:PowerMethod:GenSol`. For an 'arbitrary' matrix the odds are very small that it has a double eigenvalue, and as long as this is not the eigenvalue with the highest modulus the conclusion of the theorem is still valid. So we assume that $\vect{v}_1, \ldots, \vect{v}_n$ is a set of $n$ linearly independent eigenvectors for $A$. @@ -424,8 +424,8 @@ Since $0$ is not an eigenvalue, we may conclude that $A$ is invertible. Then the power method applied to $A^{-1}$ converges (apart from the usual exceptional cases) to an eigenvector $\vect{v}_n$ for the smallest eigenvalue $\lambda_n$. :::: - -::::{dropdown} Proof of the inverse power method +::::{admonition} Proof of {prf:ref}`Prop:PowerMethod:SmallestEigenvalue` ({prf:ref}`Inverse Power Method <Prop:PowerMethod:SmallestEigenvalue>`) +:class: myproof, dropdown We make use of the property in {numref}`Exc:EigenValues:EigenvaluesInverse` in @@ -768,7 +768,8 @@ As mentioned, starting from a complex initial vector $\vect{z}_0$ won't work e The best is of course to think of a way out yourself. <BR> If you do not see such a way out, but your curiosity has been aroused, you can open the 'workaround' below. -::::{dropdown} Workaround to get to the dominant complex eigenvalues +::::{admonition} Workaround to get to the dominant complex eigenvalues +:class: note, dropdown By definition, a dominant eigenvalue must be *unique* , i.e., $|\lambda_1| > |\lambda_2| \geq \ldots \, |\lambda_n|$. <BR> The question is, how can we get rid of the dominant eigenvalue *pair* ? diff --git a/README.md b/README.md index adb7446..cee4ae6 100644 --- a/README.md +++ b/README.md @@ -61,7 +61,7 @@ jupyter-book build --all . :url: lines_and_planes/normal_equation_plane_origin :fig: Images/image_shown_in_print_version.svg :name: name_that_is_used_to_refer_to_this_figure -:status: approved +:class: dark-light :title: This title is shown when you full-screen the applet A plane through the point $P$. diff --git a/README.md.bak b/README.md.bak index db5ef14..adb7446 100644 --- a/README.md.bak +++ b/README.md.bak @@ -72,22 +72,51 @@ A plane through the point $P$. ## Parameters for an applet -Some parameters can be set for an applet. Only the `url` and `fig` parameters are required; the rest is optional. +Some parameters can be set for an applet. Only the `url`, `fig` and `name` parameters are required; the rest is optional. It is recommended to add a `status` to the applet, which can be `unreviewed`, `in-review` or `reviewed`. ````md ```{applet} :url: lines_and_planes/normal_equation_plane_origin # Required url :fig: Images/lines_and_planes/normal_equation_plane_origin.svg # Image shown in print version -:title: hello # a string that will be shown as the title of the applet when the aplet is in fullscreen mode :status: reviewed # default is "unreviewed". Other options are "in-review" and "reviewed" -:width: 100% # the width of the applet -:height: 500px # the height of the applet -:background: #ffffff # the background color of the applet -:autoPlay: enabled # if the applet should start playing automatically -:isPerspectiveCamera: disabled # if the camera should be a perspective or orthographic camera -:position: 1,1,1 # the position of the camera related to the origin. Spaces not allowed -:enablePan: disabled # if the user can pan the camera (right mouse drag on desktop, two finger drag on mobile) -:distance: 30 # the distance of the camera from the origin for a *perspective* camera. Distance is a linear value, *higher* is further away. -:zoom: 30 # the distance of the camera from the origin for a *orthographic* camera. Zoom is a logarithmic value, *lower* is further away. +:name: Fig:InnerProduct:ProjectionVectorLine + +A title that describes the applet ``` ```` + +### Optional parameters + +| Parameter | Description | Default | +| ----------------------------------------------------------------------------------------------------------------------------------- | -------------------------------------------------------------------------------------------- | ------------ | +| `iframe` | This parameter is added by default and set to true for each applet in this book. | +| \ Therefore, this parameter is not configurable for this book. When using an applet in different context will change the bahaviour. | false | +| `title` | A string that will be shown as the title of the applet when the applet is in fullscreen mode | "" | +| `status` | The status of the applet. Can be `unreviewed`, `in-review` or `reviewed` | `unreviewed` | +| `width` | The width of the applet in pixels | 100% | +| `height` | The height of the applet in pixels | 400px | + +### Control parameters + +> [!WARNING] +> Work in progress + +### 2D Specific parameters + +> [!TIP] +> You should add split-\* before the parameter to make it apply to the right scene + +| Parameter | Description | Default | +| ---------- | -------------------------------------------- | ------- | +| position2D | The position of the applet in the 2D plane | 0,0 | +| zoom2D | The zoom level of the applet in the 2D plane | 1 | + +### 3D Specific parameters + +> [!TIP] +> You should add split-\* before the parameter to make it apply to the right scene + +| Parameter | Description | Default | +| ---------- | -------------------------------------------- | ------- | +| position3D | The position of the applet in the 3D plane | 0,0,0 | +| zoom3D | The zoom level of the applet in the 3D plane | 1 | diff --git a/_ext/applet.py b/_ext/applet.py index b71d662..1eb6b43 100644 --- a/_ext/applet.py +++ b/_ext/applet.py @@ -34,9 +34,19 @@ class AppletDirective(Figure): def run(self): url = self.options.get("url") fig = self.options.get("fig") + assert url is not None assert fig is not None + iframe_class = self.options.get("class") # expect a list/string of classes + + if iframe_class is None: + iframe_class = "" + elif isinstance(iframe_class, list): + iframe_class = " ".join(iframe_class) + else: + iframe_class = str(iframe_class) + self.arguments = [fig] self.options["class"] = ["applet-print-figure"] (figure_node,) = Figure.run(self) @@ -58,7 +68,7 @@ class AppletDirective(Figure): applet_html = f""" <div class="applet" style="{style}; "> <noscript class="loading-lazy"> - <iframe src="{full_url}" allow="fullscreen" loading="lazy" frameborder="0"></iframe> + <iframe class="{iframe_class}" src="{full_url}" allow="fullscreen" loading="lazy" frameborder="0"></iframe> </noscript> </div> """ diff --git a/_static/extra_css_config.css b/_static/extra_css_config.css index 4c28017..02123aa 100644 --- a/_static/extra_css_config.css +++ b/_static/extra_css_config.css @@ -1,3 +1,55 @@ +:root { + --raspberry: rgb(165,0,52); + --raspberry-min: rgb(165,0,52,3%); + --raspberry-mid: rgb(165,0,52,20%); + --yellow: #FFB81C; + --yellow-min: #FFB81C05; + --yellow-mid: #FFB81C20; + --darkGreen: #009B77; + --darkGreen-min: #009B7710; + --darkGreen-mid: #009B7725; + --blue: #0076C2; + --blue-min: #0076C210; + --blue-mid: #0076C225; + --black: var(--pst-color-text-base); + --black-min: #56565605; + --black-mid: #56565625; + --orange: #EC6842; + --orange-min: #EC684210; + --orange-mid: #EC684225; + --cyan: #00A6D6; + --gray: #7d7d7d; + --gray-min: #7d7d7d05; + --gray-mid: #7d7d7d20; + --purple: #6f1d77; + --purple-min: #6f1d7705; + --purple-mid: #6f1d7720; + --pink: #EF60A3; + --pink-min: #EF60A310; + --pink-mid: #EF60A325; + --red: #E03C31; + --red-min: #E03C3110; + --red-mid: #E03C3125; + --green: #6CC24A; + --green-min: #6CC24A10; + --green-mid: #6CC24A25; +} + +/* Two div's to make default any other admonition a weird colour and symbol we just do not want to use*/ +div.admonition { + border-color: var(--pink); + background-color: var(--pink-min); +} + +div.admonition > .admonition-title { + background-color: var(--pink-mid); +} + +div.admonition > .admonition-title::after { + color: var(--pink); + content: "\f6e8"; +} + .applet { height: 500px; } @@ -23,3 +75,214 @@ display: initial; } } + + +div.grasple p.admonition-title::after { + content: "\f12e"; + color: var(--raspberry); +} +div.grasple p.admonition-title::before { + content: ""; +} +div.grasple { + border-color: var(--raspberry); + background-color: var(--raspberry-min); +} +div.grasple > p.admonition-title { + background-color: var(--raspberry-mid); +} + +div.exercise p.admonition-title::after { + content: "\f12e"; + color: var(--raspberry); +} +div.exercise p.admonition-title::before { + content: ""; +} +div.exercise { + border-color: var(--raspberry); + background-color: var(--raspberry-min); +} +div.exercise > p.admonition-title { + background-color: var(--raspberry-mid); +} + + +div.definition p.admonition-title::after { + content: "\f02d"; + color: var(--blue); +} +div.definition { + border-color: var(--blue); + background-color: var(--blue-min); +} +div.definition > p.admonition-title { + background-color: var(--blue-mid); +} + +div.theorem p.admonition-title::after, +div.proposition p.admonition-title::after, +div.corollary p.admonition-title::after { + content: "\f51b"; + color: var(--darkGreen); +} +div.theorem, div.proposition, div.corollary { + border-color: var(--darkGreen); + background-color: var(--darkGreen-min); +} +div.theorem > p.admonition-title, + div.proposition > p.admonition-title, + div.corollary >p.admonition-title { + background-color: var(--darkGreen-mid); +} + +div.example { + border-color: var(--yellow); + background-color: var(--yellow-min); +} +div.example > p.admonition-title { + background-color: var(--yellow-mid); + /* color: white; */ +} +div.example p.admonition-title::after { + content: "\f002"; + transform: scale(-1, 1); + color: var(--yellow); +} + +div.admonition.solution { + border-color: var(--purple); + background-color: var(--purple-min); +} + +div.admonition.solution > .admonition-title { + background-color: var(--purple-mid); + /* color: white; */ +} + +div.admonition.solution > .admonition-title::after { + content: "\e5a0"; + color: var(--purple); +} + +div.admonition.myproof { + border-color: var(--darkGreen); + background-color: var(--gray-min); +} + +div.admonition.myproof > .admonition-title { + background-color: var(--gray-mid); +} + +div.admonition.myproof > .admonition-title::after { + content: "\f51c"; + color: var(--gray); +} + +div.algorithm > .admonition-title::after { + content: "\f051"; + color: var(--black); +} + +div.algorithm { + border-color: var(--black); + background-color: var(--black-min); +} + +div.algorithm > .admonition-title { + background-color: var(--black-mid); +} + +div.admonition.bonus { + border-color: var(--gray); + background-color: var(--gray-min); +} + +div.admonition.bonus > .admonition-title { + background-color: var(--gray-mid); +} + +div.admonition.bonus > .admonition-title::after { + content: "\f06b"; + color: var(--gray); +} + +div.admonition.caution, div.admonition.warning, div.admonition.attention, div.admonition.important { + border-color: var(--orange); + background-color: var(--orange-min); +} + +div.admonition.caution > .admonition-title, + div.admonition.warning > .admonition-title, + div.admonition.attention > .admonition-title, + div.admonition.important > .admonition-title { + background-color: var(--orange-mid); +} + +div.admonition.caution > .admonition-title::after, + div.admonition.warning > .admonition-title::after, + div.admonition.attention > .admonition-title::after, + div.admonition.important > .admonition-title::after { + color: var(--orange); +} + +div.admonition.danger, div.admonition.error { + border-color: var(--red); + background-color: var(--red-min); +} + +div.admonition.danger > .admonition-title, + div.admonition.error > .admonition-title { + background-color: var(--red-mid); +} + +div.admonition.danger > .admonition-title::after, + div.admonition.error > .admonition-title::after { + color: var(--red); +} + +div.admonition.hint, div.admonition.note, div.admonition.seealso, div.admonition.tip, div.admonition.remark, div.admonition.observation { + border-color: var(--green); + background-color: var(--green-min); +} + +div.admonition.hint > .admonition-title, + div.admonition.note > .admonition-title, + div.admonition.seealso > .admonition-title, + div.admonition.tip > .admonition-title, + div.admonition.remark > .admonition-title, + div.admonition.observation > .admonition-title { + background-color: var(--green-mid); +} + +div.admonition.hint > .admonition-title::after, + div.admonition.note > .admonition-title::after, + div.admonition.seealso > .admonition-title::after, + div.admonition.tip > .admonition-title::after, + div.admonition.remark > .admonition-title::after, + div.admonition.observation > .admonition-title::after { + color: var(--green); + content: "\f249"; +} + +html[data-theme="dark"] .dark-light { + filter: invert(1) hue-rotate(180deg) saturate(1.5); +} + +html[data-theme="dark"] .dark-light-same { + background-color: transparent !important; +} + +.red {color: var(--red)} +.blue {color: var(--blue)} +.green {color: var(--green)} + +html[data-theme="dark"] .red { + filter: invert(1) hue-rotate(180deg) saturate(1.5); +} +html[data-theme="dark"] .blue { + filter: invert(1) hue-rotate(180deg) saturate(1.5); +} +html[data-theme="dark"] .green { + filter: invert(1) hue-rotate(180deg) saturate(1.5); +} \ No newline at end of file diff --git a/_toc.yml b/_toc.yml index cad5186..b765505 100644 --- a/_toc.yml +++ b/_toc.yml @@ -70,7 +70,6 @@ parts: numbered: True chapters: - file: 'Appendices/ComplexNumbers.md' - # - file: 'Appendices/SVDProof.md' - file: 'Appendices/InverseMatrixTheorem.md' - caption: Colophon numbered: False diff --git a/add_darklight_grasple.py b/add_darklight_grasple.py new file mode 100644 index 0000000..6e5badd --- /dev/null +++ b/add_darklight_grasple.py @@ -0,0 +1,46 @@ +#!/usr/bin/env python +# coding: utf-8 + +# In[3]: + + +import os +import numpy as np +files = [] +ignore = ['_build','_static','_ext','sphinx-grasple'] +for dirpath, dirnames, filenames in os.walk('.'): + if np.all([dirpath.find(x)<0 for x in ignore]): + for filename in filenames: + if filename.endswith('.md'): + files.append(os.path.join(dirpath, filename.replace('.md',''))) + +for file in files: + # load the relevant notebook as a text file + with open(file+".md") as f: + new_data = None + if file not in ['.\\README']: + data = f.read() + datalines = np.array(data.split('\n')) + new_datalines = [] + for li,line in enumerate(datalines): + # add line to new lines + new_datalines.append(line) + grasple = line.find('{grasple}') + if grasple>-1: + # grasple found + # check if next line is already dark-light + nextline = datalines[li+1] + if nextline!=':iframeclass: dark-light': + # add the line + new_datalines.append(':iframeclass: dark-light') + new_data = '\n'.join(new_datalines) + if not(new_data is None): + with open(file+".md",'w') as f: + f.write(new_data) + + +# In[ ]: + + + + diff --git a/install.sh b/install.sh index 8a4a643..a28e31b 100644 --- a/install.sh +++ b/install.sh @@ -1,16 +1,8 @@ #!/bin/bash echo "Installing dependencies..." -pip install -r requirements.txt - -echo "Installing the new sphinx-grasple package" -git clone https://github.com/dbalague/sphinx-grasple - -cd sphinx-grasple -python3 setup.py install -cd .. -rm -rf sphinx-grasple +pip install -r requirements.txt +pip install sphinx-grasple/ -echo "sphinx-grasple package was installed!" echo "Ready!" diff --git a/sphinx-grasple b/sphinx-grasple index ec36e44..5ad7a03 160000 --- a/sphinx-grasple +++ b/sphinx-grasple @@ -1 +1 @@ -Subproject commit ec36e444b3aeb9a2f840da910326ab844fea62d2 +Subproject commit 5ad7a03721f94b1f1e067a5396d6214430138406 -- GitLab